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Abstract
Herein, the LASSBio Chemical Library is presented as a valuable source of compounds for screening to identify hits suit-
able for subsequent hit-to-lead optimization stages. A feature of the LASSBio Chemical Library worth highlighting is the 
fact that it is a smart library designed by medicinal chemists with pharmacological activity as the main priority. The great 
majority of the compounds part of this library have shown in vivo activity in animal models, which is an indication that they 
possess overall favorable bioavailability properties and, hence, adequate pharmacokinetic profiles. This, in turn, is supported 
by the fact that approximately 85% of the compounds are compliant with Lipinski’s rule of five and ca. 95% are compliant 
with Veber’s rules, two important guidelines for oral bioavailability. In this work it is presented a virtual screening meth-
odology combining a pharmacophore-based model and an empirical Gibbs free energy-based model for the ligand–protein 
interaction to explore the LASSBio Chemical Library as a source of new hits for the inhibition of the phosphatidylinositol 
4-kinase IIIβ (PI4KIIIβ) enzyme, which is related to the development of viral infections (including enteroviruses, SARS 
coronavirus, and hepatitis C virus), cancers and neurological diseases. The approach resulted in the identification of two 
hits, LASSBio-1799 (7) and LASSBio-1814 (10), which inhibited the target enzyme with IC50 values of 3.66 μM and IC50 
and 6.09 μM, respectively. This study also enabled the determination of the structural requirements for interactions with 
the active site of PI4KIIIβ, demonstrating the importance of both acceptor and donor hydrogen bonding groups for forming 
interactions with binding site residues Val598 and Lys549.
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Introduction

Chemical libraries have been playing an important role 
in contemporary drug discovery and development. Lead 
discovery is a critical phase in drug discovery, and lead 
compounds can be obtained from different sources, such 
as natural products, endogenous ligands, compounds in 
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clinical trials and marketed drugs [1]. Currently, medici-
nal chemists often use strategies such as virtual screening 
(VS) or high-throughput screening (HTS) at the beginning 
of drug discovery campaigns to identify promising chemical 
structures as promising starting points for further optimiza-
tion, which have made chemical libraries valuable sources 
of compounds [2, 3].

Now that Medicinal Chemistry is entering the era of “big 
data”, chemical libraries have become even more important 
as tools for exploring the vastness of the chemical space [4]. 
Pharmaceutical companies’ proprietary compound librar-
ies are frequently used in small-molecule drug discovery 
research programmes, and strategies for enhancing chemical 
diversity with the aim of appropriately covering chemical 
space are essential to the success of a drug discovery cam-
paign [5]. Along with extensive chemical diversity, achiev-
ing a successful hit/lead identification rate from a chemi-
cal library is also directly related to its components having 
adequate physicochemical properties [6, 7]. Physicochemi-
cal parameters related to oral bioavailability are important 
indicators of the overall quality of chemical libraries [5]. In 
this context, rule-based guidelines, such as Lipinski’s Rule 
of Five (Ro5) [8] and Veber’s rules [9], have emerged to 
support the interpretation of parameters and to filter and 
optimize chemical libraries.

Currently, chemical libraries of contrasting sizes are 
available, ranging from a few hundred to millions of com-
pounds. Virtual chemical libraries such as PubChem [10] 
and ZINC [11] contain millions of compounds. These vast, 
non-curated libraries generally resemble catalogues and usu-
ally demand the employment of a series of filters to enhance 
the quality of the structures subject to screening.

On the other side of the spectrum, there are “smart 
libraries” that have been built upon Medicinal Chemistry 
concepts and strategies to improve the lead-likeness of 
the hits, and therefore, increase the success rates of the 

screening. The Prestwick Chemical Library [12] is prob-
ably the flagship smart library. It consists of off-patent 
selected drugs chosen to increase the probability of iden-
tifying high-quality hits by prioritizing high chemical 
and pharmacological diversity. According to Prestwick’s 
website, drug discovery campaigns using their library as 
a screening starting point have resulted in one drug on the 
market and eleven drug candidates in clinical trials [12].

In this context, the contributions of chemical libraries 
in the early phases of drug discovery programmes have 
undoubtedly increased in recent years [5]. The usefulness 
of such an approach is illustrated by the discovery of the 
anti-HIV drug maraviroc. The early discovery phase of 
this clinical agent was based on a HTS of Pfizer’s propri-
etary chemical library that was conducted to find novel 
starting points for a low-molecular weight and orally bio-
available CCR5 antagonist as a clinical candidate for the 
treatment of AIDS [13].

By understanding that performing some sort of screen-
ing on chemical libraries as the starting point in drug dis-
covery campaigns is a one-way ticket phenomenon, we 
have recently started to explore our in-house chemical 
library, named “LASSBio Chemical Library”, more often 
in our Medicinal Chemistry research programmes [14]. 
The LASSBio Chemical Library is a smart library cur-
rently containing ca. 2300 compounds; the library content 
selection has been driven by Medicinal Chemistry con-
cepts, with pharmacological activity as the main priority 
and with a focus on designing compounds with the most 
adequate lead-like and/or drug-like properties (Fig. 1). 
For instance, approximately 85% of these compounds are 
compliant with Lipinski’s Ro5 [8] and 95% with Veber’s 
rules [9]. The great majority of compounds in the LASS-
Bio Chemical Library have shown in vivo activities in one 
or more animal models, after being administrated orally, 
which is an indication that they possess overall favourable 

Fig. 1   Drug-likeness and lead-
likeness ranges of compounds in 
the LASSBio Chemical Library 
considering their molecular 
weight and cLogP distribution
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bioavailability and, hence, adequate pharmacokinetic 
profiles.

Kinases are validated targets in drug discovery [15], and 
this work will be focused on a lipid-kinase, PI4KIIIβ, which 
is related to the development of various diseases such as 
viral infections (including enteroviruses, SARS coronavirus, 
and hepatitis C virus), cancers and neurological diseases 
[16–22]. PI4KIIIβ is required for cellular entry by viruses 
bearing the severe acute respiratory syndrome-coronavirus 
(SARS-CoV) spike protein and the cell entry mediated by 
SARS-CoV spike protein is strongly inhibited by knockdown 
of PI4KIIIβ [23]. The identification of new PI4K inhibitors 
is expected to be of therapeutic value and help elucidate the 
mechanisms of action by which this enzyme works [24].

In this work, a combination of SBDD and LBDD proce-
dures was applied for a virtual screening with the LASSBio 
Chemical Library to successfully identify new inhibitors 
with a new molecular pattern for the PI4KIIIβ isoform. 
The procedure started by selecting candidate inhibitors 
from the LASSBio Chemical Library by means of a com-
parison with a proposed pharmacophore map for PI4KIIIβ 
inhibitors. Geometric criteria can be a fast way to identify 
candidate enzyme inhibitors, but the screening approach is 
expected to be made more effective by a combination with 
some SBDD method to quantify the interaction between the 
selected candidate molecules and their expected target, since 
it is expected that a better interaction is related to a better 
activity. The effectiveness of this second step, therefore, is 
dependent on the availability of a reliable method to evaluate 
ligand–protein interactions.

In fact, the activity can be predicted directly by means of 
some QSAR approach, but this involves the evaluation of a 
number of ligand-related terms and the use of some statis-
tical method to identify which terms are the most impor-
tant for the observed activity. With some training, excellent 
correlations between selected terms and the activity can be 
obtained, but in many cases the complex nature of these cor-
relations makes difficult the interpretation of the resulting 
equations, and, consequently, their application.

The ligand–protein interaction is determined by the Gibbs 
free energy of binding (ΔGbind). Methods such as free energy 
perturbation (FEP) can be used for evaluating ΔGbind, but its 
generalized use in virtual screening campaigns is difficulted 
by the high computational cost of the method. A simpler and 
faster approach to estimate ΔGbind is the use of a thermody-
namic cycle to develop a function calibrated with available 
experimental data, containing a series of terms that can be 
calculated separately [25, 26]. Entropic terms calculation is 
always the most difficult problem to solve in such models, 
but it can be simplified by using a thermodynamic cycle to 
obtain relative values, i.e. the model could be used to cal-
culate ΔGbind for a ligand provided that the corresponding 
value for a reference ligand is known [26]. In this way, the 

resulting equation would be composed by a series of dif-
ferences between calculated quantities for each ligand. As 
a consequence, when some of these quantities have similar 
values for different ligands, as is the case for some entropic 
terms such as the rigid-body entropy for molecules with 
comparable molecular masses [27], they would approxi-
mately cancel each other, so that it would be unnecessary 
to calculate them.

The remaining terms that need to be calculated included 
those associated with the intermolecular interactions 
between the ligand and the protein and between the ligand 
and the solvent, and with the change in the degrees of free-
dom resulting from the interactions between the species (a 
conformational entropy term) [25, 26]. It is important to 
stress that, differently from QSAR approaches, where the 
independent variables are selected by application of statisti-
cal methods to produce the best possible correlations with 
some activity data, in the present case each term has a clear 
significance for the activity, since they are defined on the 
basis of the thermodynamics inherent to the phenomena 
involved in the ligand–protein interaction.

The term associated with the interactions between the 
ligand and the protein is a pure enthalpy term that can be 
evaluated by a number of methods, including semi-empirical 
molecular orbital models that can produce results with good 
accuracy at a low computational cost [28–30]. Some exam-
ples of the use of enthalpy data calculated by semi-empirical 
methods for free energy calculations are available in the lit-
erature [25, 31–33].

The evaluation of the remaining terms is more laborious, 
but it was made easier by calibrating the ΔGbind prediction 
function by means of available experimental data, such as Ki 
or IC50 values, which reflect the affinity of the compounds 
for enzymes or receptors, leading to the so-called empiri-
cal models [26, 34]. In this paper, using empirical ΔGbind 
models created to predict the activity of PI4KIIIβ inhibitors 
based on data available in the literature, we screened the 
LASSBio Chemical Library for potential PI4KIIIβ inhibitors 
and then experimentally determined their enzymatic activi-
ties to validate our approach.

Methodology

The pharmacophore model of the PI4KIIIβ enzyme was 
created based on a meticulous analysis of the binding 
modes of compounds selected from articles in which 
structure–activity relationships were studied [35–40]. In 
this analysis, it was possible to identify the pharmaco-
phore features that were crucial for molecular recogni-
tion by the enzyme, described in Fig. 2. The distances 
between the pharmacophore features for all compounds 
used were defined using PyMOL v.1.4 (Schrödinger, LLC) 
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to determine the ideal distance ranges between the three 
main points that allowed molecular recognition (Fig. 2).

For construction of the free energy model to evaluate 
the ligand–protein interaction for the virtual screening, a 
literature review was initially performed to identify inhibi-
tors of human PI4KIIIβ, which allowed the selection of 33 
ligands (Fig. S1 Supporting Information). The protonation 
states at physiological pH (7.4) were defined by Percepta 
2012 Release (ACD/LABS). The 3D structures were opti-
mized using Spartan’16 (Wavefunction, Inc.) in two steps: 
a Monte Carlo conformational analysis with the MMFF 
molecular mechanics method [41], followed by a structural 
re-optimization of the lowest-energy conformer with the 
PM6 semi-empirical method [42].

Of the 11 Homo sapiens PI4KIIIβ structures available in 
the Protein Data Bank (PDB) [43], the structure of 4D0L 
[44] has the best resolution (2.94 Å). This structure was 
chosen for molecular docking studies of the selected inhib-
itors (Fig. S1) with GOLD 5.4.0 (CCDC); the ChemPLP 
[45] scoring function was employed because it presented 
the better performance in redocking studies (an average 
RMSD of 0.82 Å). The carbon atom of the co-crystallized 
ligand PIK93 (N-(5-(4-chloro-3-(((2-hydroxyethyl)amino)
sulfonyl)phenyl)-4-methyl-2-thiazolyl)-acetamide) with 
coordinates (x = − 15.242, y = 310.700, z = 84.272) was 
chosen as the centre of the binding site (10 Å radius).

Ten solutions were generated in each docking run, and 
the process was repeated three times, generating a total of 
thirty solutions for each ligand. There was a great struc-
tural variability in the generated poses, so the results were 
analysed according to two criteria: first, only the solutions 
with a binding mode that could match the PI4KIIIβ pharma-
cophore model (Fig. 2) were selected, considering that the 
lack of any of the interactions could lead to the inactivity of 
a candidate inhibitor on the studied enzyme; then, the pose 
with the highest score was chosen among the poses matching 
the pharmacophoric criteria.

To reduce the computational time for quantum mechani-
cal calculations necessary for obtaining the interaction 
enthalpy for the empirical ΔGbind prediction models, only 
amino acid residues that were part of the enzyme’s active 
site in the chosen docking poses were considered. The bind-
ing site region was composed of all amino acid residues 
with at least one atom within a 6 Å radius from the ligand. 
H atoms were used to complete the valence of the atoms 
where the bonds were truncated. In order to avoid large 
structural changes in the truncated protein models that could 
occur during the energy minimization, the coordinates of 
the atoms from the peptide bonds were frozen. In this way, 
the general arrangement of the binding site was conserved, 
while the ligand and the side chains conformations were 
allowed to adopt better conformations to improve their inter-
actions according to the quantum mechanical model. The 
total charges were calculated considering lysine and argi-
nine residues as protonated (charge equal to + 1) and the 
aspartic acid and glutamic acid residues in the deprotonated 
form (charge equal to − 1); histidine residues were consid-
ered as neutral. In order to include the effect of the medium 
around the selected residues in the quantum calculations, 
the remaining protein was replaced by a continuum with a 
suitable dielectric constant.

The resulting systems were then subjected to geom-
etry optimization using the PM7 semi-empirical molecu-
lar orbital method [46], available in MOPAC2016 (Stewart 
Computational Chemistry). PM7 was chosen because it is 
better than previous Hamiltonians for describing noncova-
lent interactions, an essential characteristic for the present 
study. Hydrogen atoms were used to complete the valence of 
the atoms of the truncated bonds. The ligand–protein inter-
action enthalpy was determined by Eq. 1:

where ΔHint is the interaction enthalpy and ΔHf
complex, 

ΔHf
protein and ΔHf

ligand are the enthalpies of formation of the 
complex, the empty binding site and the ligand, respectively. 
In each case, the enthalpy of formation was obtained after 
geometry optimizations to stationary points of the potential 
energy surface, so the conformation of the ligand is not the 

(1)ΔHint = ΔH
complex

f
− (ΔH

protein

f
+ ΔH

ligand

f
)

Fig. 2   Proposed PI4KIIIβ pharmacophore map showing the features 
that are essential for the molecular recognition of inhibitors. The mol-
ecules interact by forming hydrogen bonds (dotted red lines) with 
Val598 and Lys549 and by aromatic ring interactions (green bracket) 
with Tyr583. Also shown are the distance ranges between the three 
pharmacophore features that allow molecular recognition (coloured in 
blue)
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same inside and outside the binding site, as expected. The 
same apply to the side chains of the amino acid residues, 
i.e. their conformations in the optimized complex and in the 
empty binding site are not the same.

Following the original proposal based on a thermody-
namic cycle for the construction of free energy prediction 
models [26], it was necessary to include two additional terms 
in that model: a term associated with the conformational 
entropic losses that occur when acyclic bonds in the ligand 
become non-rotatable upon binding was obtained from the 
GOLD 5.4.0 (CCDC) ChemPLP scoring function results 
of the molecular docking solutions (torsional energy: Etor) 
[45]; and the energy term for the ligands’ solvation (Esolv), 
which was calculated by the SM5.4 model [47] available in 
Spartan’16 (Wavefunction, Inc.).

For the calibration of the final equation for ΔGbind cal-
culation, experimental ΔGbind data are necessary and they 
could be obtained from Ki data (assuming ΔGbind = RT ln 
Ki). Unfortunately, it was not possible apply the Cheng–Pru-
soff equation to directly convert the available IC50 into Ki, 
since some necessary quantities were not available in the 
papers from which the IC50 data were collected: the fixed 
substrate concentration and the concentration of substrate 
at which the enzyme activity is at half maximal. So, in the 
absence of these data, we assumed that the IC50 data, as a 
first approximation, would be linearly related to Ki. In this 
case, RT ln Ki could be replaced by RT ln (X. IC50) = RT 
ln IC50 + RT ln X, where X is the proportionality constant 
between Ki and IC50. Although X is unknown, RT ln X 
would be incorporated in the coefficient a5 from Eq. 2, which 
would be obtained with the remaining coefficients after cali-
bration of the final equation by multiple regression with the 
experimental data.

Naturally, the same reasoning holds for logarithms to 
base 10, so, after replacing ΔGbind with pIC50 (− log IC50), 
the calculated energy terms were combined with the pIC50 
data from known inhibitors with a multiple linear regression 
analysis to calibrate the model. This assumption, however, 
can present some limitations because, unlike Ki values, IC50 
data can be influenced by the experimental method used 
in their determination [48]. Thus, the influence of the IC50 
determination method was evaluated by comparing the 
results obtained with the data of compounds from the same 
reference or obtained by the same methodology.

The final correlations generated by linear regression fol-
lowed the model described by Eq. 2:

where a1…a5 are the linear regression coefficients. All sta-
tistical analysis was obtained with OriginPro. In Eq. 2, pIC50 
is proposed to have a quadratic dependence with Esolv as 
suggested by Wang et al. [26], because it is common that 

(2)
pIC50 = a1ΔHint + a2 Etor − a3Esolv − a4 Esolv2 + a5

compounds which are either too hydrophobic or too hydro-
philic would not be able to achieve a high binding affinity. 
A better pIC50 would be obtained for compounds with inter-
mediate solubilities, so the dependence between pIC50 and 
solubility would be better described by a parabolic function. 
For the reader interested in more details about the deriva-
tion of Eq. 2, a discussion is presented in the Supporting 
Information.

To evaluate Esolv, we tried different methods, but the 
free energy of solvation calculated with the SM5.4 model 
[47] produced the best results. In the thermodynamic 
cycle, this term represents the free energy cost to desolvate 
the ligand molecule prior to its entry into the enzyme, 
where the interaction with the binding site will occur.

After obtaining adequate equations, it was the moment 
to search for candidate PI4KIIIβ inhibitors among the two 
thousand molecules from the LASSBio Chemical Library. 
As a first step, they were structurally analysed to verify 
the presence of functional groups in positions suitable 
for interacting with the PI4KIIIβ active site based on our 
pharmacophore model (Fig. 2). This step reduced the num-
ber of compounds to evaluate with the SBDD approach, 
since only those that had appropriate distances to match 
the pharmacophore model were docked into the active site 
of PI4KIIIβ (PDB: 4D0L) using GOLD 5.4.0 (CCDC), as 
previously described. Here we kept the same criteria we 
used for the literature compounds. Initially, we analyzed 
every docking pose and selected only those that presented 
the three essential interactions for the molecular recogni-
tion and, after that, we selected the pose with the highest 
score among those that performed all three interactions.

To choose compounds for experimental inhibitory 
activity determination, their ΔHint, Esolv and Etor terms 
were calculated and applied to the best activity prediction 
models, according to the correlation coefficient values and 
structural coverage criteria. Compounds that had calcu-
lated pIC50 values of at least 7.0 by all the chosen models 
were selected for inhibitory activity evaluation.

The water solubility of each of the selected compounds 
(1, 4, 7, 10, 11 and PIK93) was experimentally determined 
to ensure that the tests were carried out within a range of 
concentrations that ensures that the compounds are fully 
soluble, avoiding false results. The experiments were per-
formed following the protocol described by Nunes, where 
the aqueous concentration was correlated with ultraviolet 
absorbance [49]. First, the wavelength at which the com-
pounds had the highest absorption was determined, and 
then serial dilutions were prepared to obtain a calibration 
curve. The compounds were then dissolved in a phosphate 
buffer solution to obtain a supersaturated solution, which 
was stirred at 37 °C and filtered prior to spectrophoto-
metric analysis. The solubility of each compound was 
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then determined by the equation obtained from the linear 
regression of the calibration curve.

The experimental inhibitory activity evaluation was per-
formed by the Reaction Biology Corporation (RBC, USA). 
The company uses the ADP-Glo™ assay to determine the 
inhibitory effect of compounds against the PI4KIIIβ enzyme 
(PROMEGA). This assay can be used to monitor the activ-
ity of any enzyme that generates ADP as the product of its 
reaction. It is performed on a multi-well plate and can detect 
kinase activity at very low reaction volumes (up to 5 μL).

Results and discussion

Selection of PI4KIIIβ known ligands

Thirty-three PI4KIIIβ-selective inhibitors were selected 
from the literature (Fig. S1). To ensure that the created mod-
els were as general as possible, the compounds’ selection 
was performed considering an adequate IC50 variation. The 
selected compounds had IC50 values between 0.98 nM and 
9727 nM (Table S1). They are mainly imidazo-pyridazine 
or oxazole derivatives (Fig. S1). Some of the molecules 
show ring bioisosterism [50, 51] relative to these two major 
classes; the compounds have purines instead of imidazo-
pyridazines or they have imidazoles, pyrroles or thiazoles 
instead of oxazoles. Most of the selected inhibitors have 
amide or sulfonamide groups in their structures, which are 
important for the molecular recognition process.

Empirical activity prediction models

The creation of the pharmacophore map showed that there 
are three residues in PI4KIIIβ that are mainly responsible for 
molecular recognition: Val598 (hinge), Lys549 and Tyr583. 
All the selected inhibitors have functional groups with ade-
quate distances to form hydrogen bonds with Val598 and 
Lys549 and form aromatic ring interactions with Tyr583 
(Fig. 2). This map was used as a first criterion to select the 
docking poses to be used in further calculations to obtain 
the necessary data for construction of the activity predic-
tion models.

The correlation between the docking scores and the IC50 
data was very low, R2 = 0.16. As this may be a result of limi-
tations in the docking scoring functions [52], other methods 
should be investigated to better quantify the binding modes, 
a necessary step to get an appropriate correlation with the 
affinity of the compounds for the enzyme, which was done in 
this work through the use of empirical models to determine 
ΔGbind.

To reduce the computational time for these calculations 
for the construction of the empirical ΔGbind prediction 
models, only the amino acid residues that were part of the 

enzyme’s active site in the selected docking poses were con-
sidered, and these residues always included Lys549, Tyr583 
and Val598, which are the most important amino acids in 
the molecular recognition process. The medium around the 
selected residues was represented as a continuum by choos-
ing a suitable dielectric constant. Because interactions occur 
at sites on the PI4KIIIβ enzyme that are not exposed to sol-
vent, a dielectric constant of 6.5 was chosen for the bulk 
protein [53].

The calculated data for all the terms necessary for the 
construction of the prediction model described in the meth-
odology are presented in Table S2 (Supporting Information). 
The Etor value of each ligand was included to describe the 
loss of conformational entropy associated with the interac-
tion, corresponding to the energetic effects that oppose the 
interaction. Esolv is related to the ligand interactions with 
the aqueous medium, which plays an important role in the 
determination of ΔGbind and, consequently, the pIC50 values.

Correlations were obtained by multiple linear regression 
analyses, considering pIC50 as the dependent variable and 
ΔHint, Etor and Esolv as the independent variables, with the 
potential inclusion of a quadratic term for Esolv (Esolv

2). In 
previous works [24, 34], the inclusion of an Esolv

2 term was 
necessary for correctly predicting the free energy changes 
related to the interaction between the ligands and proteins. 
The quadratic dependence of pIC50 with the solvation energy 
indicates that intermediate values of solubility are those that 
generate better pIC50 values, as discussed earlier.

Correlations considering the complete set of compounds 
and also only compounds obtained from the same reference 
or for which the IC50 values were determined by the same 
methodology were evaluated to verify how differences in the 
methods used to obtain the experimental data could influ-
ence the quality of the models. The analysis of each biblio-
graphic reference allowed the identification of four different 
methods for IC50 determination (References in Table S1):

•	 ADP-Glo™ assay for kinases (PROMEGA). This method 
was used to determine the IC50 values of compounds S11, 
S8 to S13 and S15 to S22.

•	 Coupling of pyruvate kinase and lactate dehydrogenase 
enzymes assay [16]. This method was used for com-
pounds S2 to S5 and S23 to S33.

•	 Membrane capture assay [54] was used for compounds 
S6, S7 and S12.

•	 Transcreener® assay for fluorescence intensity ADP2 
(BELLBROOK LABS) was used for compound S14.

Among the several correlations evaluated, three were 
chosen for subsequent studies, as they provided good struc-
tural variability in the data set and/or acceptable correla-
tion coefficients, which should be R2 ≥ 0.7. The equations 
are shown in Table 1, and the number of compounds used 
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and the correlation coefficients are also presented. It can be 
observed that, in fact, the use of a mixture of compounds 
obtained from different references negatively influenced the 
correlation, which could be a consequence of differences in 
the methods used in each study to determine the IC50 values. 
To check out for overfitting, adjusted R2 was also calculated 
for each equation.

Although the correlation coefficient obtained from Eq. 3 
was below the adequate value (R2 ≥ 0.7), this equation was 
selected because it contains variables referring to all com-
pounds, and therefore, it is the correlation that is the most 
general.

It was observed that Eq. 4, which has low structural 
coverage but contained only compounds selected from the 
same reference [55], presented the highest coefficient among 
all correlations evaluated and therefore was also selected. 
Finally, Eq. 5 presented a middle ground between structural 
coverage and correlation coefficient, and compounds for 
which the IC50 values were determined by the same meth-
odology [16] were incorporated by adding variables of com-
pounds S6, S7, S12 and S14, which increased the number of 
compounds, keeping R2 within the ideal range (≥ 0.7) and 
Adj-R2 greater than 0.6.

With the exception of model 1 (Eq. 3), which includes all 
ligands, the remaining models were based on a set of some-
what different structures and also different methods of IC50 
determination. In this sense, we consider that our models 
include different levels of structural coverage and accuracy 
in predicting biological activity. The most accurate models 
are also the ones with less structural coverage capability, 
and vice-versa. As we are interested in both characteristics, 
we choose the strategy of using consensus results in order 
to improve the chances of finding new structures with good 
activity data in the LASSBio chemical library.

LASSBio Chemical Library virtual screening

The selection of compounds was made with the 2055 mol-
ecules from the LASSBio Chemical Library [14] in two 
stages. In the first stage, a visual inspection was employed 
to search for compounds with promising interaction pro-
files based on the presence of functional groups at suitable 
positions to interact through hydrophobic interactions with 

Tyr583, act as H-bond acceptors with Lys549 and H-bond 
donors with Val598, the three sites important for molecular 
recognition. This task could be automatized for larger data-
bases, but with a small database, it could be done with a 
relatively low effort. This first analysis resulted in the selec-
tion of 124 candidate PI4KIIIβ ligands. Next, the optimized 
structures of the selected 124 compounds had the distances 
between their putative pharmacophoric features measured 
using PyMOL v. 1.4 (Schrödinger, LLC), for comparison 
with the pharmacophore model. After this second selection 
stage, we finally arrived to 70 compounds with adequate 
distances (see Fig. 2), which were then evaluated in the 
subsequent SBDD molecular docking study in the PI4KIIIβ 
active site, respecting their ionization states at physiological 
pH (7.4).

All the solutions from the molecular docking studies of 
the 70 compounds were subsequently analysed, leading to 
the selection of 15 compounds which, when interacting at 
the PI4KIIIβ site, presented adequate poses that allowed 
all three interactions necessary for molecular recognition. 
The structures of the 15 compounds selected in this step are 
shown in Fig. 3.

The majority of the compounds selected from the LASS-
Bio Chemical Library as PI4KIIIβ ligands are dimethoxy-
substituted 2-chloroquinazolines, whereas five (33%) of the 
selected compounds are N-acylhydrazones (Fig. 3) [59]. The 
binding modes obtained by molecular docking at the active 
site of PI4KIIIβ demonstrated that the N-acylhydrazone sub-
unit of these compounds is important for molecular recogni-
tion as it interacts with the enzyme’s hinge (Val598). The 
methoxy groups attached to the 2-chloroquinazoline rings of 
LASSBio-1799 (7) to LASSBio-1819 (14) interact with the 
Lys549 residue. All the selected compounds have aromatic 
rings in their structures, which can form important interac-
tions with Tyr583, which is also involved in pharmacophore 
recognition.

Table 2 presents the values of the ΔHint, Etor, and Esolv 
variables calculated from the best docking solutions of these 
compounds.

The next step was to use the empirical models created 
with the data obtained from the literature to predict the 
pIC50 values of the 15 selected compounds. Since more 
than one adequate correlation was obtained (Table 1), as 

Table 1   Equations obtained 
by correlation of the variables 
calculated from the 33 inhibitor/
PI4KIIIβ complexes

Also shown are the number of compounds used and their correlation coefficients (R2) and adjusted correla-
tion (Adj-R2)

Equations Compounds (R2) (Adj-R2)

(Eq. 3)pIC50 = −0.04248ΔHint + 0.25705Etor − 0.14951Esolv − 0.00287Esolv2 + 1.9297S1–S33 0.58 0.52
(Eq. 4)pIC50 = −0.05068ΔHint + 0.36485Etor − 2.60214Esolv − 0.04654Esolv2 + 32.84142S5; S24–S33 0.94 0.88

(Eq. 5)pIC50= −0.06206ΔHint+0.26733Etor − 0.77746Esolv − 0.0133Esolv2 − 8.67274S2–S7; S12; 
S14; S23–S33

0.78 0.72



1098	 Journal of Computer-Aided Molecular Design (2020) 34:1091–1103

1 3

Fig. 3   Structure of the 15 compounds selected from the LASS-
Bio Chemical Library after the molecular docking studies with 
PI4KIIIβ. Inter-alia: LASSBio-693 to LASSBio-774 [56], LASS-

Bio-1059 (Unpublished data), LASSBio-1474 (Unpublished data), 
LASSBio-1516 [57], LASSBio-1799 to LASSBio-1819 [58], LASS-
Bio-1845 [59]
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was previously mentioned, a consensus pIC50 value was 
calculated by combining the results from the three chosen 
equations (Table 3).

From the previous discussion, it is clear that because of 
the limitation of the available experimental data, due either 
to differences in the methodologies of activity determina-
tion or to limited structural variability, the results obtained 
by the application of our models should be considered only 
as an indication of the activity profile of new, structurally 
unrelated compounds. Bearing this is mind and considering 
an IC50 of 10 µM as an adequate upper limit for the identifi-
cation of hit compounds, we decided that for a compound to 
be designated for experimental inhibitory activity evaluation 
with a reasonable safety margin, its predicted activity should 
be in the order of magnitude of at most 100 times lower than 
10 µM, i.e., its predicted IC50 should be at most 0.1 µM.

Therefore, all the substances that had a pIC50 greater than 
7.0, as calculated by all three selected equations (consen-
sus pIC50), were selected for inhibitory activity evaluation 
(Table 3). The compounds selected based on this criterion 
were LASSBio-693 (1), LASSBio-1059 (4), LASSBio-1799 
(7), LASSBio-1814 (10) and LASSBio-1816 (11) (Fig. 3).

Inhibitory activity evaluation of the selected 
compounds

Starting from an initial value and making serial twofold 
dilutions, a dose–effect curve based on ten concentrations 

was prepared. For each of the 5 compounds selected from 
the LASSBio Chemical Library, the initial concentration 
value was chosen according to the experimental solubil-
ity, determined using the Nunes method described in the 
methodology section [49]. The experimental solubility, 
IC50, and experimental pIC50 are shown in Table 4. The 
standard used was compound PIK93, a potent inhibitor of 
the enzyme PI4KIIIβ [44].

Unfortunately, it was not possible to evaluate the activ-
ity of compound LASSBio-1816 (11) because of its very 
low solubility (Table 4). Of the four compounds with 
acceptable solubilities, two showed good activities with 
IC50 values lower than 10 μM (Table 4). Although the 
empirical prediction models projected pIC50 values higher 
than the experimentally observed values, they were able to 
select truly active compounds with a hit rate of 50% when 
considering the cherry-picked chemical library compounds 
for enzymatic inhibition. The difference between predicted 
and observed pIC50 values could be a result of differences 
between the methods used to determine the experimental 
activity for the data used for model calibration and that 
employed in this work. It is interesting to observe that the 
most potent PI4KIIIβ inhibitor identified, LASSBio-1799 
(7) (IC50 = 3.66 μM), was predicted to be the most active 
compound of the LASSBio series by two of the three equa-
tions used to calculate the consensus pIC50 value (Eqs. 3 
and 5).

Table 2   ΔHint, Etor and Esolv values calculated for the 15 compounds 
selected from the LASSBio Chemical Library based on the molecular 
docking study

a  Eq. 1 with data obtained with PM7 (MOPAC2016)
b From ChemPLP function (GOLD 5.4.0)
c SM5.4 (Spartan’16)

Compound ΔHint (kcal/mol)a Etor
b Esolv (kcal/mol)c

LASSBio-693 (1) − 83.21 0.36 − 24.28
LASSBio-743 (2) − 51.87 1.37 − 25.99
LASSBio-774 (3) − 69.16 0.55 − 25.26
LASSBio-1059 (4) − 61.51 2.56 − 28.57
LASSBio-1474 (5) − 41.09 2.14 − 21.65
LASSBio-1516 (6) − 61.00 0.39 − 13.22
LASSBio-1799 (7) − 83.99 2.18 − 33.58
LASSBio-1808 (8) − 52.12 3.39 − 29.82
LASSBio-1810 (9) − 59.54 1.51 − 32.71
LASSBio-1814 (10) − 68.30 2.15 − 31.29
LASSBio-1816 (11) − 68.86 2.37 − 31.06
LASSBio-1817 (12) − 70.79 0.56 − 31.89
LASSBio-1818 (13) − 55.82 1.06 − 22.11
LASSBio-1819 (14) − 62.39 0.31 − 23.30
LASSBio-1845 (15) − 50.13 1.88 − 21.06

Table 3   PIC50 values calculated for the 15 compounds selected from 
the LASSBio chemical library using the three chosen Eqs. (3, 4 and 
5)

The five compounds for which their consensus pIC50 values 
were ≥ 7.0 in all equations are underlined and were therefore selected 
for inhibitory activity evaluation

Compound Predicted pIC50

Equation 3 Equation 4 Equation 5

LASSBio-693 (1) 7.49 7.25 7.62
LASSBio-743 (2) 6.43 6.48 6.13
LASSBio-774 (3) 6.95 6.90 6.92
LASSBio-1059 (4) 7.13 7.57 7.19
LASSBio-1474 (5) 6.12 4.54 5.05
LASSBio-1516 (6) 6.10 − 3.34 3.17
LASSBio-1799 (7) 7.84 7.11 8.23
LASSBio-1808 (8) 6.92 7.25 6.83
LASSBio-1810 (9) 6.67 6.05 6.63
LASSBio-1814 (10) 7.25 7.26 7.45
LASSBio-1816 (11) 7.34 7.44 7.55
LASSBio-1817 (12) 6.93 6.60 7.14
LASSBio-1818 (13) 6.48 5.16 5.77
LASSBio-1819 (14) 6.58 5.80 6.18
LASSBio-1845 (15) 6.42 4.55 5.42
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The interaction modes of the two new most potent inhibi-
tors, LASSBio-1799 (7) and LASSBio-1814 (10), with the 
PI4KIIIβ binding site are characterized by a hydrogen bond 
between the N3 atom of the quinazoline ring and Val598 
in the hinge, a second hydrogen bond between the meth-
oxy group at the 6-position of the quinazoline ring and 

the Lys549 residue, as well as aromatic ring interactions 
between the quinazoline ring and hydrophobic residues in 
the binding site, exemplified by Tyr583, and hydrogen bonds 
and additional interactions occurring between the substitu-
ents of the sulfonamide group and auxophoric regions in the 
enzyme’s molecular recognition site (Fig. 4a).

The results of the experimental evaluation show that com-
pound LASSBio-1799 (7) is more potent than compound 
LASSBio-1814 (10) as an inhibitor of enzyme PI4KIIIβ 
(Fig. 4s). By investigating the binding mode of LASS-
Bio-1799 (7), it could be observed that the thiazole ring 
attached to the sulphonamide group allows the formation of 
three additional interactions in the enzyme binding site, a 
hydrogen bond between the nitrogen of the thiazole ring and 
Asp600, another hydrogen bond between the oxygen of the 
sulphonamide and Tyr488 and a possible T stacking interac-
tion with Trp522. Analysis of the binding mode of LASS-
Bio-1814 (10) showed that the unsubstituted sulphonamide 
generates only one additional hydrogen bond with Gln606, 
although an additional interaction with the peptidic oxygen 
of the valine (Val598) in the hinge was present. Nevertheless, 
we proposed that the three additional interactions observed 
for compound LASSBio-1799 (7) are the cause of its greater 
potency against PI4KIIIβ (Fig. 4). These results demonstrate 
that the 2-chloro-4-aminoquinazolinic structural pattern is 
privileged in the design of PI4KIIIβ inhibitors.

Table 4   Experimental solubility and inhibitory activity evaluation 
results

The initial concentrations chosen for each compound that were used 
to prepare the ten-point serial twofold dilution dose–effect curve are 
also shown

Compound Experimental 
solubility (µM)

Initial 
concentration 
(µM)

IC50 (µM) Experi-
mental 
pIC50

LASSBio-693 
(1)

7.82 20 > 20 > 4.70

LASSBio-1059 
(4)

54.70 100 99.8 4.00

LASSBio-1799 
(7)

18.64 50 3.66 5.44

LASSBio-1814 
(10)

7.31 20 6.09 5.21

LASSBio-1816 
(11)

0.51 1.5 – –

PIK93 – 1 0.00578 8.24

Fig. 4   a Binding modes 
of LASSBio-1799 (7) and 
LASSBio-1814 (10) in the 
PI4KIIIβ active site. Figure 
obtained using PyMOL v. 1.4 
(Schrödinger, LLC). b For 
LASSBio-1799 (7), the three 
additional interactions promote 
an increase in potency relative 
to that of LASSBio-1814 (10)
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Conclusions

In this study, we presented for the first time the LASSBio 
Chemical Library, which was successfully explored by a vir-
tual screening procedure to identify hit compounds suitable 
for further hit-to-lead optimization steps in the context of 
developing new PI4KIIIβ inhibitors. The potential applica-
tions of these inhibitors in Medicinal Chemistry are promis-
ing, specially at the present Covid-19 pandemics, since RNA 
viruses hijack the enzyme in order to modify the structure 
of intracellular membranes and use them for the construc-
tion of functional replication machinery; a study of PI4KIIIβ 
inhibitors showed that they exerted antiviral activity against 
a panel of single-stranded positive-sense RNA viruses [37].

This virtual screening consisted in the combination of two 
methods, i.e. a receptor-based pharmacophore model and 
an empirical free energy prediction model. This combined 
strategy enabled the identification of two new inhibitors for 
the target enzyme, LASSBio-1799 (7) and LASSBio-1814 
(10), which presented IC50 = 3.66 μM and IC50 = 6.09 μM, 
respectively. In this context, 2-chloro-4-aminoquinazolinic 
derivatives can be considered a promising starting point for 
the identification of PI4KIIIβ inhibitors.

Additionally, it was possible to establish the struc-
tural requirements for interactions with the active site of 
PI4KIIIβ, demonstrating the importance of the presence 
of hydrogen bond acceptor and donor groups for forming 
interactions with binding site residues Val598 and Lys549, 
as well as the presence of hydrophobic groups, which are 
also important for molecular recognition.

Our proposal was to develop a free energy-based model 
to predict the activity of PI4KIIIβ inhibitors and apply it, 
after a pre-selection with a pharmacophore-based model, 
to find out candidate new PI4KIIIβ inhibitors in our in-
house LASSBio Chemical Library. It must be stressed that 
no compound present at the LASSBio Chemical Library 
was originally designed to inhibit PI4KIIIβ.

The present screening methodology, besides being fast 
and low-cost, was effective, since two of the four selected 
compounds that had adequate solubility to be evaluated 
against PI4KIIIβ presented IC50 values below 10 μM, a 
hit rate of 50%, considering only the assayed compounds. 
The complete search procedure of potential PI4KIIIβ 
inhibitors presented by us is, sequentially, ligand-based 
(by comparison with the pharmacophore constructed from 
known inhibitors), structure-based (by molecular docking 
in the binding pocket of the enzyme), and property-based 
(by calculation of the binding free energy composed of 
rationally selected terms from the thermodynamic cycle 
originally proposed by Wang et al. [26]), which we think 
improves the chances of finding real active compounds in 
the virtual screening approach.

The observed hit rate is strongly suggestive of the effi-
ciency of the procedure, since the chances of choosing a 
compound at random in a chemical library and that com-
pound being able to inhibit a specific enzyme should be quite 
small. For example, the experimental tests for finding hits 
by HTS have a hit rate between 0.01 and 0.1% [60]. This 
low performance is in part a consequence of the presence 
of compounds that interfere with elements of the assay for-
mat or technique, but they are indicative that these chances 
should be quite small. Therefore, the adequate use of in 
silico methodologies is one valid alternative to enhance the 
chances of finding hits for a given target through chemical 
library screening.
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