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Abstract
In the recent past, the gene therapy field has witnessed a remarkable series of
successes, many of which have involved primary immunodeficiency diseases,
such as X-linked severe combined immunodeficiency, adenosine deaminase
deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome.
While such progress has widened the choice of therapeutic options in some
specific cases of primary immunodeficiency, much remains to be done to
extend the geographical availability of such an advanced approach and to
increase the number of diseases that can be targeted. At the same time,
emerging technologies are stimulating intensive investigations that may lead to
the application of precise genetic editing as the next form of gene therapy for
these and other human genetic diseases.
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Introduction
Primary immunodeficiency diseases (PIDs) are a heterogeneous 
group of mostly rare genetic diseases comprising over 250 dif-
ferent clinical entities and resulting from a vast variety of aber-
rations affecting the biological pathways of development and 
differentiation of the immune system1. The most severe forms of 
PIDs are characterized by recurrent and life-threatening infections, 
the risk of which can be obviated only with the reconstitution of a 
normally functioning immune system. Since the late 1960s, allo-
geneic hematopoietic stem cell transplantation (HSCT) has been 
successfully used to treat severe PIDs and it still represents the 
treatment of choice. While its results have been improving steadily 
over the past few decades, HSCT remains an intensive procedure 
burdened by significant morbidity and mortality, especially when 
affected patients cannot benefit from HLA-identical sibling donors2. 
Based on the notion that genetic correction of autologous hemat-
opoietic stem cells (HSCs) could provide a safer alternative for any 
patient from whom HSCs can be obtained, gene therapy approaches 
for PIDs were developed starting in the mid-1980s and were ini-
tially based on the use of gene transfer vectors derived from murine 
gamma-retroviruses3. These pioneer clinical protocols made their 
entry into the clinical arena in the early 1990s and focused on patients 
affected with adenosine deaminase (ADA)-deficient severe com-
bined immunodeficiency (SCID) who derived limited benefit from 
the genetic correction of either their peripheral blood lymphocytes or 

CD34+ hematopoietic progenitors4–7. Following technical progress 
led to the identification of effective combinations of cytokines and 
growth factors (e.g. interleukin [IL]-3, IL-6, stem cell factor [SCF], 
thrombopoietin, and fms-like tyrosine kinase [Flt]-3 ligand) that, 
together with culture supports such as fibronectin, resulted in major 
improvements in the ability to introduce genes into HSCs8,9. These 
improvements preluded to the first unambiguous successful clinical 
applications of gene therapy in patients affected with X-linked 
SCID (SCIDX-1), ADA-SCID, and Wiskott-Aldrich syndrome 
(WAS)10–13 (Figure 1). Unfortunately, with the initial clear clinical 
benefits, the first serious complications of gene therapy also occurred. 
In a significant number of patients treated using murine gamma- 
retroviral vectors, insertional oncogenesis events driven by the 
presence of the powerful viral enhancer elements resulted in acute 
leukemias that, in some cases, have had fatal outcomes14–16. These 
serious adverse events have sparked a revision of the assessment of 
risks and benefits of integrating gene transfer as therapy for PIDs 
and prompted the development and application of new generations 
of viral vectors with increased safety characteristics.

This commentary will summarize the results of the current clini-
cal trials that are making use of such newer vectors with the 
goal of continuing the expansion of successful applications of 
gene therapy for PIDs, while increasing the safety of clinical 
investigations.

Figure 1. Schematic representation of a typical gene therapy procedure for primary immunodeficiency diseases (PIDs). CD43+ 
hematopoietic progenitors are obtained through bone marrow harvest or peripheral blood apheresis after pharmacological mobilization. Cells 
are then cultured in vitro with cytokines and growth factors (e.g. SCF, TPO, and Flt-3 ligand) and exposed to viral vectors. Finally, transduced 
cells are collected and reinfused to the patient through a peripheral vein. If the gene therapy protocol involves myeloreductive chemotherapy, 
the cytoreductive agent is administered ~24 hours before the infusion of gene-corrected cells. (Graphics modified from original illustrations 
by Derryl Leja, NHGRI, Image Gallery, www.genome.gov).
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Improving the safety of gene therapy for primary 
immunodeficiencies
X-linked severe combined immunodeficiency
This form of SCID is caused by mutations affecting the expres-
sion of the common gamma chain (γc) of the receptors for IL-2, 
IL-4, IL-7, IL-9, IL-15, and IL-2117,18 and, similar to other SCID 
diseases, is characterized by combined impairment of T- and B-cell 
immunity and early susceptibility to overwhelming infections. 
Clinical gene therapy trials using murine gamma-retroviral vectors 
expressing γc were developed in the mid 1990s as an alternative 
therapeutic option to HSCT and, in the early 2000s, yielded the first 
convincing results that gene therapy could provide a cure for human 
genetic diseases10,12. Unfortunately, five out of the 20 SCIDX-1 
patients treated in these trials developed T-cell leukemia between 
2 and 5 years after gene therapy. In all cases, evidence pointed to 
the integration of the γc retroviral vector in the vicinity of onco- 
genes (LMO2 or CCND2) as the promoting factor due to the pres-
ence of a powerful enhancer element within the retroviral construct 
that is accepted to have caused aberrant oncogene activation and 
consequent leukemogenesis14,15.

Investigators in the field reacted to these adverse events by develop-
ing safer γc gene transfer vector alternatives. A gamma-retroviral 
vector devoid of enhancer sequences was demonstrated to be effec-
tive in the mouse model of SCIDX-119 and then brought to the clinic 
in a consortium study including centers in Paris, Boston, Cincinnati, 
Los Angeles, and London. Recently published data show that 
seven out of eight evaluable patients achieved significant numbers 
of corrected, diverse, and functional circulating T-lymphocytes 
with temporal kinetics that did not differ from earlier γc gene 
therapy trials. In contrast to T cells, there was not significant 
correction of the B-cell compartment, with all patients remaining on 
immunoglobulin replacement therapy. Importantly, at 12–39 months 
post-gene therapy, no clonal expansions were detected and analysis 
of retroviral integration sites showed significantly less clustering 
near LMO-2, EVI1, or other lymphoid oncogenes compared to the 
earlier γc gene therapy trials20. If confirmed after extended follow-
up, these findings would indicate that the use of enhancer-deleted 
retroviral vectors can result in similar restoration of immune func-
tion for SCIDX-1 patients compared to first-generation gamma- 
retroviral vectors, while affording superior safety.

As another alternative to gamma-retroviral vectors for gene therapy 
of SCIDX-1 and other PIDs, investigators turned to gene transfer 
constructs based on human immunodeficiency virus type 1 (HIV-1) 
that are accepted as integrating vectors with lower potential to 
cause activation of oncogenes located near their genomic integra-
tion sites21. A γc-expressing lentiviral vector based on HIV-1 has 
been developed22 and is being used in a two-site clinical trial open 
at the St. Jude Children’s Research Center in Memphis, where 
typical SCIDX-1 patients will be enrolled, and at the National 
Institutes of Health, where atypical, older patients are treated. 
The latter arm of the trial uses non-myeloablative conditioning to 
improve the efficacy of engraftment of gene-corrected cells and has 
enrolled five patients with encouraging preliminary results of recon-
stitution of B-lymphocyte function in two patients at >2.5 years 
post-treatment23. Whether or not lentiviral-mediated gene therapy 
for SCIDX-1 represents a safe and effective alternative will need to 
be established based on extended patient accrual and follow-up.

Wiskott-Aldrich syndrome
WAS is an X-linked disorder with a spectrum of clinical presentations 
ranging from isolated mild thrombocytopenia to life-threatening 
bleeding episodes, severe eczema, recurrent infections, autoimmune 
disorders, and high incidence of lymphomas. Functional abnormali-
ties affect all major lymphoid and myeloid cell populations and 
contribute to the heterogeneous and medically challenging clinical 
presentation of affected patients24. HSCT can be curative for WAS, 
but its outcome is unsatisfactory when HLA-identical donors are 
not available2,25, which supported the development of gene therapy 
for this disease.

The first clinical gene therapy trial for WAS was carried out in 
Germany and used a gamma-retroviral vector to correct CD34+ cells 
from ten WAS patients, nine of whom showed significant increase 
of platelet counts and restoration of immune responses. Unfortu-
nately, seven patients developed acute leukemia likely due to vector- 
mediated activation of the LMO2, MDS1, or MN1 genes16. Therefore, 
gamma-retroviral vector-mediated gene therapy of WAS appears 
to carry an unacceptably high level of risk of insertional oncogen-
esis. Providing an alternative to the use of murine gamma-retroviral 
vectors, WAS gene transfer constructs based on HIV-1 had also 
become available26, which allowed for their application to two 
clinical trials, the initial results of which have been recently pub-
lished. In the first trial, Italian investigators showed improvement 
of platelet counts, immune function, and clinical manifestations of 
the disease in three patients at ≥1 year after gene therapy. Impor-
tantly, comparison of retroviral and lentiviral vector integration 
sites in samples from the German and Italian studies showed lack 
of overrepresentation of sites targeting oncogenes in the Italian 
patient group, while demonstrating early enrichment of oncogenic 
targets in patients from the German trial27. In the second trial, six 
out of seven patients treated in London and Paris also showed 
improvement of immune function and clinical manifestations 
6–42 months after treatment, during which no vector-mediated 
clonal expansions were noted28. Of note, for reasons that are not yet 
clear, neither trial resulted in reconstitution of normal platelet num-
bers, although bleeding episodes significantly reduced in number 
and severity, and treated patients became independent from trans-
fusion and need for thrombopoiesis stimulator factors27,28. More 
recently, a trial using the same lentiviral vector used in the Ital-
ian and French sites described above has launched in Boston, MA, 
USA and has enrolled four patients as of December 2015 with simi-
lar results29. Based on these observations, it can be concluded that 
lentiviral-mediated gene therapy for WAS is feasible and can result 
in significant benefit for treated patients. Clearly, however, long-term 
observation is warranted to confirm the superior safety of lentiviral 
gene transfer as an alternative treatment option for this disease.

Chronic granulomatous disease
Gene therapy has long been considered an attractive alternative 
therapeutic option for X-linked chronic granulomatous disease 
(CGD), a genetic defect affecting the expression of the gp91phox 
molecule and characterized by impaired superoxide production in 
phagocytic cells with consequent susceptibility to life-threatening 
abscesses and/or granuloma formations in the skin, liver, lungs, or 
bone of affected patients30. Early clinical trials were performed in 
the late 1990s with limited success due to low engraftment of gene-
corrected hematopoietic progenitor cells and often only transitory 
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functional correction of 0.5–1% of peripheral blood granulocytes31–35. 
A trial performed in Germany in 2004 using a gamma-retroviral 
vector expressing gp91phox under the transcriptional control of the 
spleen focus-forming virus long terminal repeat (LTR) appeared to 
have achieved superior results in two CGD patients when around 
15% of neutrophils were found to be functionally corrected early 
after treatment. This fraction increased due to insertional activation 
of the PRDM16 and MDS1/EVI1 genes in clonal cell populations 
that expanded with time. Unfortunately, both patients eventually 
presented with myelodysplasia that was likely caused by the activa-
tion of the EVI1 gene and that resulted in lethal complications36–38. 
The same clonal expansion was observed in two children with 
CGD treated in Switzerland with the same protocol with signifi-
cant correction of functional neutrophils and eradication of fungal 
infections. In one of these two cases, the clonal expansion was also 
followed by the occurrence of myelodysplasia and both patients 
were rescued with allogeneic stem cell transplantation39,40.

Similar to what ensued after the cases of leukemogenesis in the 
SCIDX-1 and WAS trials, an enhancer element-devoid gamma-
retroviral vector and a lentiviral vector expressing gp91phox have 
been developed for safer gene therapy approaches for CGD41,42 and 
multicenter clinical trials are planned in Europe and the USA to 
determine their efficacy. In addition to the needed improvements 
in safety, gene therapy approaches for CGD are confronting the 
as-yet-unexplained difficulty in achieving long-term engraftment of 
significant levels of transduced cells. The lack of a strong selec-
tive advantage of gene-corrected populations in this disease may 
imply that higher levels of HSC transduction and engraftment 
will be needed to obtain clinical benefit. In this respect, the gene 
therapy field is likely to borrow from the experience of HSCT in 
CGD to identify preparative conditioning regimens that are effec-
tive and well tolerated43. Finally, with the aim of avoiding possible 
toxic effects of gp91phox expression in hematopoietic progenitors, 
the newer constructs for gene therapy of CGD carry myeloid- 
specific promoters and/or allow for microRNA-mediated post- 
transcriptional downregulation of expression in hematopoietic 
stem/progenitor cells42,44.

Adenosine deaminase deficiency
This form of SCID is caused by genetic defects of ADA and presents 
with extreme reduction of lymphocyte numbers and impairment of 
immune functions that can lead to early death from infections45. 
HSCT and enzyme replacement therapy (ERT) are available forms 
of treatment for this disease, but each has drawbacks that limit 
their efficacy46,47. As mentioned above, in the mid-1980s, ADA 
deficiency was identified as an ideal candidate disorder for trials 
of gene therapy. A series of clinical trials tested gamma-retroviral 
vector-mediated ADA gene transfer into patients’ peripheral blood 
T lymphocytes4,5,48–51, bone marrow, or cord blood HSCs6,7,52 as an 
alternative treatment option to HSCT and ERT, but failed to result 
in self-standing improvements of the disease in treated patients.

The turning point was when the experimental protocols were 
changed to include administration of mild myeloreductive chemo-
therapy with busulfan (e.g. 4 mg/kg) or melphalan (140 mg/m2), 
and the withholding of ERT, as steps aimed at increasing the ini-
tial advantage of gene-corrected HSCs. As shown initially by 

Aiuti and collaborators in Italy, this approach was revealed to be 
extremely effective in achieving immune reconstitution (increases 
in T-cell counts, normalization of T-cell function, and restoration 
of responses to vaccinations) in the majority of ten treated patients 
who remained off ERT in the long term11,53.

These encouraging results were confirmed in a similar gene therapy 
trial conducted in the UK, in which four out of six treated patients 
showed increases in T-cell and B-cell numbers, with normalization 
of in vitro lymphocyte responses and adequate immunoglobulin 
production in three subjects54,55.

Our own investigations performed at the Children’s Hospital Los 
Angeles, University of California Los Angeles, and the National 
Institutes of Health compared the immune reconstitution observed in 
four patients treated without prior administration of chemotherapy 
and while on ERT to that of six patients whose treatment strat-
egy involved low-dose busulfan chemotherapy (75–90 mg/m2)  
and withdrawal of ERT. The results demonstrated that the use 
of reduced-intensity conditioning favored engraftment of gene- 
modified stem cells and the generation of ADA-expressing 
lymphocytes and consequent immune reconstitution56.

It is important to note that the immune recovery observed in 
ADA-SCID patients after gene therapy with gamma-retroviral 
vectors occurred in the absence of insertional oncogenesis events, 
which distinguishes the experience in this disease from the other 
PIDs discussed above. The reasons underlying this contrast remain 
unclear, but they may reflect biological differences between ADA, 
γc, and the WAS protein and their possible contributing roles in 
leukemogenesis. Regardless of the current safety record of gamma-
retroviral vector-mediated gene therapy for ADA-SCID, compel-
ling reasons existed to generate a newer, more efficient, and safer 
ADA vector, which was accomplished with the development of a 
lentiviral construct57 that is being tested in the UK and USA with 
very encouraging preliminary results58.

Future prospects and challenges
Preclinical development is underway for several other forms of 
PID that would benefit from gene therapy approaches (Table 1). 
Promising results have been obtained using lentiviral vectors to 
correct SCID due to RAG1, RAG2, and Artemis deficiencies in 
mouse and xenotransplant models59–65 and are expected to translate 
into clinical experiments in the near future. Gene therapy for PIDs 
such as purine nucleoside phosphorylase (PNP) deficiency, Janus 
kinase (JAK)-3-deficient SCID, and leukocyte adhesion deficiency 
type 1 (LAD-1) was considered and/or unsuccessfully carried out 
before technological advances established the current levels of 
feasibility of clinical gene transfer66–68. Better outcomes would be 
expected if these experiments were to be re-attempted at present 
times. For several other forms of PIDs, the tissue-restricted or 
finely regulated characteristics of expression of the causal genes 
represent significant challenges and will require additional techni-
cal progress. It is hoped that the expanding application of “gene 
editing” strategies (e.g. zinc-finger nucleases [ZFNs], transcription 
activator-like effector nucleases [TALENs], and clustered regu-
larly interspaced short palindromic repeats [CRISPR]/CRISPR- 
associated endonuclease [Cas-9] technology) will ultimately provide 
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the ability of performing precise genetic correction of PID-causing 
mutations, while respecting the physiological machineries of gene 
expression regulation and avoiding the problems of ectopic gene 
expression that are inherent in current “gene addition” approaches. 
Important proofs-of-concept have already been obtained using 
ZFN technology, including the repair of γc mutations in in vitro and 
in vivo xenotransplant models69,70 and the site-directed addition of 
the gp91phox complementary DNA (cDNA) in induced pluripotent 
stem cells (iPSCs)71.

While there are excellent prospects for the safer implementation of 
gene therapy for an increasing number of PIDs, it is difficult to ignore 
that clinical gene transfer remains a laborious procedure restricted 
to a very small number of highly specialized academic centers 
worldwide. For PIDs like ADA-SCID, SCIDX-1, and WAS, the 
current results make gene therapy a realistic therapeutic alternative 

that can be considered as part of the clinical management plan. 
Access to this therapeutic modality, however, is far from simple 
owing to financial and geographical considerations. As a pos-
sible solution, strategies are being developed that would allow 
hematopoietic progenitors to be collected at the patient’s local insti-
tution and sent to gene therapy centers where the gene transfer pro-
cedure would be performed. Cryopreserved, gene-corrected samples 
would then be sent back for infusion. The involvement of pharma-
ceutical and biotechnology companies would make these objectives 
easier to achieve, and it is encouraging that corporate interest in 
supporting clinical gene therapy trials for PIDs is increasing.

Thirty years after proof-of-principle experiments demonstrating 
the first corrections of genetic disease phenotypes in vitro72,73, gene 
transfer is fulfilling its promise by achieving convincing curative 
potential for a variety of human disorders. Since the very beginning 

Table 1. Ongoing pre-clinical experimentations of gene therapy for primary immunodeficiency diseases.

Challenges Models* Status

SCIDs

Artemis deficiency Ectopic expression toxicity? KO mouse In vivo gene correction63,64

CD3γ deficiency Regulated gene expression KO mouse In vitro gene correction74

JAK3-SCID Biochemical effects of JAK3 
overexpression KO mouse In vitro and in vivo gene correction; 

failed clinical attempt68,75–79

RAG-1 deficiency Balance efficacy/toxicity KO mouse 
Xenotransplant In vivo gene correction59,61,62,65,80

RAG-2 deficiency High gene expression 
necessary KO mouse In vivo gene correction60,81

Reticular dysgenesis Expression in myeloid 
lineages

KO zebrafish 
iPSCs In vitro and in vivo gene correction82

Combined 
immunodeficiencies

PNP deficiency Non-immunological clinical 
complications KO mouse In vitro and in vivo gene correction66,83

ZAP70 deficiency Restricted gene expression KO mouse In vitro and in vivo gene correction84–88

MHC class II deficiency Regulated gene expression KO mouse In vitro gene correction89

Antibody defects

XLA Restricted gene expression KO mouse 
Xid mouse In vivo gene correction90–93

X-HIM Regulated gene expression KO mouse In vitro and in vivo gene correction94–96

Immune dysregulation 
syndromes

Perforin deficiency Restricted gene expression KO mouse In vivo gene correction97

XLP Regulated gene expression KO mouse In vivo gene correction98

Innate immune defects

LAD-1 Restricted gene expression 
No selective advantage

KO mouse 
CLAD dog

In vitro and in vivo gene correction; 
failed clinical attempt67,99–107

*In addition to biological patient samples.

JAK3, Janus kinase 3; LAD-1, leukocyte adhesion deficiency type 1; PNP, purine nucleoside phosphorylase; RAG, recombination 
activating gene; X-HIM, X-linked hyper-IgM syndrome; XLA, X-linked agammaglobulinemia; XLP, X-linked lymphoproliferative syndrome; 
ZAP70, zeta-chain-associated protein kinase 70; KO, knockout; IPSCs, induced pluripotent stem cells.
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of the field of human gene therapy, PIDs have played a major 
role in driving the evolution and implementation of the initial 
theoretical strategies of this discipline. Cutting-edge activity con-
tinues to characterize this area of gene therapy and will undoubt-
edly foster further applications against human diseases.
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