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A B S T R A C T   

During the COVID-19 pandemic, the patient care delivery paradigm rapidly shifted to remote technological 
solutions. Rising rates of life expectancy of older people, and deaths due to chronic diseases (CDs) such as cancer, 
diabetes and respiratory disease pose many challenges to healthcare. While the feasibility of Remote Patient 
Monitoring (RPM) with a Smart Healthcare Monitoring (SHM) framework was somewhat questionable before the 
COVID-19 pandemic, it is now a proven commodity and is on its way to becoming ubiquitous. More health 
organizations are adopting RPM to enable CD management in the absence of individual monitoring. The current 
studies on SHM have reviewed the applications of IoT and/or Machine Learning (ML) in the domain, their ar-
chitecture, security, privacy and other network related issues. However, no study has analyzed the AI and 
ubiquitous computing advances in SHM frameworks. The objective of this research is to identify and map key 
technical concepts in the SHM framework. In this context an interesting and meaningful classification of the 
research articles surveyed for this work is presented. The comprehensive and systematic review is based on the 
“Preferred Reporting Items for Systematic Review and Meta-Analysis” (PRISMA) approach. A total of 2540 pa-
pers were screened from leading research archives from 2016 to March 2021, and finally, 50 articles were 
selected for review. The major advantages, developments, distinctive architectural structure, components, 
technical challenges and possibilities in SHM are briefly discussed. A review of various recent cloud and fog 
computing based architectures, major ML implementation challenges, prospects and future trends is also pre-
sented. The survey primarily encourages the data driven predictive analytics aspects of healthcare and the 
development of ML models for health empowerment.   

Summary of important acronyms  

Acronym Definition 
5G Fifth Generation 
AI Artificial Intelligence 
AAL Ambient Assisted Living 
ACM Association for Computing Machinery 
ANN Artificial Neural Network 
BBN Bayesian Belief Network 
BP Blood Pressure 
CC Cloud Computing 
CD Chronic Disease 
CNN Convolutional Neural Network 
CVD Cardiovascular Disease 
DBN Deep Belief Network 
DC Data Center 

(continued on next column)  

(continued ) 

DL Deep Learning 
DT Decision Tree 
ECG Electrocardiography 
EHM Elderly Healthcare Monitoring 
ENN Elman Neural Network 
EWS Early Warning Score 
FC Fog Computing 
GAN Generative Adversarial Network 
HRRM Hybrid Real-time Remote Monitoring 
HoF Hospital of the Future 
IEEE Institute of Electrical and Electronics Engineers 
IoT Internet of Things 
IoMT Internet of Medical Things 
k-NN k-Nearest Neighbor 
LR Logistic Regression 
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(continued ) 

LSTM Long Short Term Memory 
MDPI Multidisciplinary Digital Publishing Institute 
ML Machine Learning 
M-Health Mobile Health 
NB Naive Bayes 
PCA Principal Component Analysis 
PDO Probability of Disease Outbreak 
PHS Panic Health Status 
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
QoS Quality of Service 
RBM Restricted Boltzmann Machine 
RF Radio Frequency 
RFID Radio Frequency Identification 
RNN Recurrent Neural Network 
RPM Remote Patient Monitoring 
SHM Smart Healthcare Monitoring 
SPMR Smart Patient Monitoring and Recommendation 
SVM Support Vector Machine 
WBAN Wireless Body Area Network 
WPM Wearable Patient Monitoring 
WSN Wireless Sensor Network  

1. Introduction 

1.1. Background 

Chronic diseases account for approximately 74 % of all fatalities 
worldwide, according to the most recent statistics (2019). During few 
decades, life expectancy has increased significantly due to modern 
health care facilities. However, the stakeholders in the healthcare 
domain, such as patients, doctors, clinicians, caregivers and devices 
often need assistance and regular monitoring. In such cases, an auton-
omous supporting system may be helpful. Machine Learning (ML) and 
computing is on the edge to transform every domain including health-
care. The emerging paradigms of the Internet of Things (IoT), Ubiqui-
tous Computing, Cloud Computing (CC), and analytics have the 
potential to implement Smart-Health Knowledge Systems. These 

systems host novel links between a person's natural habitat, his body, 
and the Internet with the goal of producing and managing “participa-
tory” medical knowledge. 

The monitoring of patients with Smart Healthcare Monitoring (SHM) 
systems aims at various categories of patients, such as post-surgery pa-
tients, elderly patients, neonates, patients with disabilities and with 
chronic illnesses. All such patients have conditions that need to be 
monitored with SHM systems remotely and in real time. The techno-
logical revolution in healthcare informatics has been predicted long ago 
and is underway as the use cases shown in this Fig. 1 make it clear. The 
major use-cases [1,2] are depicted in Fig. 1. According to the authors 
[1], monitoring, offering assistance, disease diagnosis, self-care and 
management, wellness, customized healthcare, and quantitative and/or 
qualitative facility improvement are among the current use-cases of 
emerging IT. New use-cases [3] are continuously emerging to handle the 
immediate need for inexpensive, accessible care. 

The SHM has been enabled by various tools that uninterruptedly 
monitor vital values/signs, manages treatments automatically, follow 
real time information and self-managed treatment of patient. The new 
term coined for fusion of medical devices, healthcare applications and 
computer networks is the Internet of Medical Things (IoMT) [4]. Fig. 2, 
displays a substantial picture of how various healthcare tools/technol-
ogies are convened together to form IoMT. SHM systems are an immi-
nent solution for addressing many of the challenges by enablement of 
various technologies between the patients and their care delivery 
environment. However, the SHM systems are utilizing medical tools and 
applications along with networking and intelligent technologies. The 
healthcare industry has been revolutionized by the inclusion of IoT [5], 
Wireless Body Area Network (WBAN) [6–8], Mobile communication, 
Edge [9,10] and Ubiquitous computing. Furthermore, in the current 
situation, certain domains, such as Big Data analysis, CC [11], Ubiqui-
tous Computing, and M-Health, also show a key role in this field. Also, 
the application of ML and Artificial Intelligence (AI) to big data provides 
actionable insights to improve healthcare delivery [12,13]. Although 
there are many instances in which AI can perform healthcare tasks as 
well or better than humans [14]. 

Fig. 1. Healthcare informatics use-cases.  
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The aim of SHM systems and good healthcare facilities includes:  

○ Providing as much comfort as possible to all patients.  
○ Providing freedom of activity and mobility in ‘personal care delivery 

environment’ and at home.  
○ Early detection of disease risks and symptoms.  
○ Timely initiation of preventive care for slowing down the disease 

progression.  
○ Advantages of staying at home rather than in a high-priced hospital 

room.  
○ Lowering the treatment costs and enhance patient satisfaction.  
○ Support in routine activities.  
○ Keeping an eye on the patient's health and offering urgent care and 

assistance, as needed, while advising the paramedics who are on the 
scene. 

1.2. Role of machine learning in healthcare 

The SHM has intensely altered the vision to healthcare. The 
embedded, wearable and ubiquitous IoT sensors can gather data in real- 
time, comprising patient contexts such as mobility. The ML or Deep 
Learning (DL) methods can be applied to the collected data to discover 
unseen patterns and information in the data and for tracking the pa-
tient's health to diagnose and notify about critical conditions. 

ML a sub-domain of AI applies mathematical and scientific tech-
niques for learning and deriving new insights from the data thus making 
healthcare applications more intelligent. Also, the cognitive science is 
the blend of various scientific fields that employs AI, ML, and other 
mathematical and scientific techniques for learning and deriving new 
insights. It is playing a substantial role in making applications more 
intelligent. Latif et al. [15], in their article have discussed how the 5G 
and its concomitant technologies along with AI and ML have the po-
tential to revamp the health care system. Cognitive technologies are 
advancements in computing that mimics some facet of human deliber-
ation processes on a larger scale. 

We expect to see a stronger convergence between AI, ML and SHM 
frameworks as technology advances. Data from “Electronic Health Re-
cords” (EHR) can aid in the detection of infection patterns and the 
identification of people at risk before they develop symptoms. Using ML 

and AI to drive these analytics can improve their accuracy and give 
healthcare providers with faster, more accurate alerts. ML algorithms 
and their ability to synthesize very complex information may open up 
new avenues for tailoring medicines to a person's genetic composition. 
The big-data generated by medical devices are a perfect fit with ML 
capabilities for disease diagnosis and emergency care for patients. This 
system enables caregivers and healthcare professionals to find patients 
at high risk and administer special care. AI has brought confidence in 
SHM and reduced the human error factors. However, telemedicine via 
IoMT generates vast amounts of data, which must then be transmitted, 
analyzed and stored. Therefore, ML algorithms need to be extended on 
big-data for faster analysis, which is possible on scalable CC platforms. 

Nevertheless, critical healthcare infrastructure requires more robust 
architectures for higher accuracy, availability and real-time responses. 
So, here is the need for advanced cloud design including edge intelli-
gence and fog computing (FC) [16]. 

1.3. Motivation 

During the COVID-19 pandemic, the patient care delivery paradigm 
rapidly shifted to remote technological solutions. Tele-health reduced 
the susceptibility of the disease as well as the risk of its spread. More 
health organizations adopted RPM to enable CD management in the 
absence of personal encounters. The potential of the SHM framework for 
RPM is undoubtedly increasing. The current studies [17,18,20–25] on 
SHM have either reviewed the applications of IoT and/or ML in the 
healthcare domain. Other studies [26–30] reviewed the SHM from the 
prospect of architecture, security, privacy and other network related 
issues. However, no study has analyzed the AI and ubiquitous computing 
advances in SHM frameworks for RPM. The key motivation of this 
comprehensive survey is to present the SHM architectures that target 
health data analysis using real-time monitoring of vital signs and patient 
context with state-of-the-art ML techniques. The major advantages, de-
velopments, distinctive architectural structure, components, technical 
challenges and possibilities in SHM are briefly discussed. A review of 
various recent cloud and fog computing based architectures, major ML 
implementation challenges, prospects and future trends is also pre-
sented. The survey primarily encourages the data driven predictive an-
alytics aspects of healthcare and the development of ML models for 

Fig. 2. IoMT at a glance.  
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health empowerment. 

1.4. Our contribution 

Comprehensive reviews in this area are mandatory for new in-
vestigators as most surveys are providing an overview of the prevailing 
technological progress. Most review articles discuss the tools and tech-
nologies in various different aspects. This article discusses the most 
recent development in the SHM frameworks from 2016 to March 2021 in 
a realistic perspective. This comprehensive survey is to present the SHM 
architectures that target health data analysis using real-time monitoring 
of vital signs and patient context with state-of-the-art ML techniques. 

• Analyzed AI and ubiquitous computing progress in the SHM frame-
work for RPM.  

• Classification of state-of-the-art surveys/review articles on the basis 
of various parameters is presented. 

• Presented a comprehensive review of recent real-time SHM frame-
works powered by AI, ML, cloud and edge computing, and analytics.  

• Discusses the architecture, components, applications, intelligence 
involved, advances, challenges, issues and future path in the field of 
SHM.  

• Key ML implementation challenges, prospects and future trends are 
also presented.  

• An interesting taxonomy of research articles surveyed is presented on 
the basis of wellness, elderly health care and patient suffering from 
CD. 

1.5. Outline 

The rest of the paper is structured as per the outline: Section 2 pre-
sents the methodology for selecting suitable papers for this compre-
hensive survey. The development, distinctive architectural structure and 
components of SHM are briefly discussed in Section 3. The contributions 
of recently published review papers are also presented in Section 3. The 
technical challenges and prospects in the SHM framework are described 
in Section 4. Section 4 also provides a comprehensive review of the 
various architectures proposed in various research articles based on an 
interesting classification. Section 5 presents the key challenges of ML 
implementation in the SHM frameworks. In Section 6, an interesting 
assortment of reviews and research publications is offered. Section 7 
concludes the review paper by providing a comprehensive discussion 
explaining the key benefits of SHM systems and future trends in the 
systems. 

2. Methodology for review 

The preferred reporting items for comprehensive review have been 
chosen using PRISMA, which is a systematic review methodology [31]. 
The PRISMA is a four-step selection process with identification, 
screening, eligibility, and inclusion. 

2.1. Article search and selection strategy 

For this review, the articles from scientific archives such as Elsevier, 
Springer, IEEE, Google Scholar and ACM covering years 2016 to March – 
2021 has been screened. The resources offered cover scientific and 
technical literature and offer a wealth of information about research 
efforts in a broad but relevant field. As mentioned in Table 1, this scope 
is covered by relevant and important keywords. Fig. 3 shows the actual 
query string at the top. Table 1 displays the keywords used to find 
eligible articles, as well as the number of articles found. This study is 
limited to studies in English-language. Mostly, the articles published in 
journals have been included, as they are complete and appropriate sci-
entific work according to this survey. We have also included other 
relevant articles to connect certain concepts and techniques. To identify 

more related papers, references of the selected papers were also 
searched and referred. 

2.2. Search results 

Initially, by searching various literature sources, 2540 studies were 
identified. After that, three iterations of screening and filtering were 
carried out. Duplicate articles were removed after the first iteration, 
leaving only 451 articles published in the last five years (2016–March- 
2021) for screening. The papers are screened based on their titles and 
keywords, and those that were outside the scope of our domain were 
excluded. The abstracts of 146 publications were read in the second 
iteration to filter the results. Articles that aren't included are either out of 
our domain's scope or don't match our criteria. Thus, a total of 146 
studies were accessed and included to be evaluated for eligibility. In the 
final iteration, after complete text reading and rejecting the papers 
outside the scope, 50 articles are selected for final review. 

Fig. 3 depicts the flow of study selection process. Fig. 4 depicts the 
number of eligible articles found for this survey based on publication 
venue. The most common publication venue is Elsevier Journals (40.0 
%). The second most common publication venue is Springer Journals 
(32.0 %). The remaining articles (28.0 %) belong to other reputed 
Journals. 

3. Smart healthcare monitoring frameworks 

3.1. Introduction 

The feasibility of RPM with the SHM framework was somewhat 
questionable before the COVID-19 pandemic, now it is a proven com-
modity and is on its way to becoming ubiquitous. Also, the increasing 
rate of aging population and deaths due to CDs such as CVD, cancer, 
diabetes and respiratory disease pose many challenges in healthcare. 
Overall, CDs are responsible for more than 70 % of global deaths. SHM 
frameworks are rapidly establishing themselves as the most effective 
tools for CD management. The SHM frameworks/architectures are pri-
marily focused on remote monitoring of elderly patients, patients with 
chronic diseases, and wellness conditions. The goal of these SHM 
frameworks is to provide valuable knowledge by reviewing the patient's 
vital signs, history and symptoms in real time to better healthcare for 
patients, reduce disease progression and discover the causes of diseases. 

Despite excellent infrastructure and advanced technologies, tradi-
tional health services cannot meet the needs of the present and the 
future. Medical services are not affordable or accessible to everyone 
these days, but smart healthcare enables stakeholders to manage some of 
their emergencies. The SHM framework not only eliminates geograph-
ical barriers by monitoring patients remotely but also reduces patient 

Table 1 
Searched keywords and results.  

SN. Keywords Total 
results 

All the words With exact 
phrase 

With at least one word  

1 Healthcare “Remote Patient 
Monitoring” 
(RPM) 

“Machine Learning” 
(ML), “Deep Learning” 
(DL), “Neural Network” 
(NN)  

2540  

2 “Smart 
healthcare” 

RPM “ML”, “DL”, “NN”  451  

3 “Smart 
healthcare” 
“chronic 
disease” 

RPM “ML”, “DL”, “NN”, 
cloud, ubiquitous, 
pervasive  

144  

4 “Smart 
healthcare” 
“chronic 
disease” 

RPM “ML”, “DL”, “NN”, 
cloud, ubiquitous, 
pervasive, prediction  

146  
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care costs. Thus, these frameworks provide many opportunities for pa-
tient monitoring at home and for identifying and preventing harmful 
diseases and conditions [32]. 

3.2. Evolution of SHM 

Medical rehabilitation was introduced in the mid-20th century, 
which faced some obstacles, including long-term observation, support-
ive facilities, availability, and intensive treatment. One promising way 
to address the above problems is by adopting IoT and AI technologies 
and making medical service systems intelligent. IoT can improve the 
quality of rehabilitation systems. The authors [18] surveyed and dis-
cussed various IoT applications in healthcare. IoT was first proposed by 
Brock [33] and Ashton [34] who founded the Auto-ID Center at the 
“Massachusetts Institute of Technology” (MIT). A report on convergent 
technology [35] focused on integrating ‘Information and Communica-
tion Technology (ICT)’ with nanotechnology to improve the produc-
tivity of nations and the quality of life of people. In 2005, a report [36] 
suggested combining IoT with other technologies such as WSN, Object 
Identification and Embedded Systems, etc. to remotely tag, understand 

and control objects on the Internet. In 2008, the term “smart planet” was 
coined by IBM Corp. In recent years, large IoT-based systems and ap-
plications have been developed for various domains such as healthcare 
and have become popular following new concepts such as smart cities. 
IoT allows for pervasive connectivity by allowing resources and devices 
on the network to receive real-time data and support ubiquitous 
decision-making activities. Public facilities and resources in many cities 
are now linked seamlessly to the wider interactions that exist between 
things, humans, or both. IoT and inter-linked technologies in smart cities 
have been able to improve healthcare infrastructure. In this context, a 
good classification of sensors for IoMT has been presented by Ray et al. 
[26] The authors [17,18] summarize IoT applications in healthcare and 
propose future research trends and directions in this area. 

Sadoughi et al. [21] identified and studied existing medical IoT ad-
vances. The most up-to-date experimental and functional IoT knowledge 
in medicine and its intra-domains with bibliographic details of IoT 
research publications, has been provided. 

Malasinghe et al. [37] investigated the latest developments in remote 
healthcare and monitoring, including both contact and non-contact 
technologies. The authors of the review outlined specific concerns that 
most SHM systems have. 

The authors Al Hemairy et al. [38] first classified ‘healthcare moni-
toring systems’ (HMS) developed by various developers on the basis of 
various classification criteria such as mobility, security, context 
awareness etc. The authors also proposed an “Elderly Healthcare 
Monitoring” (EHM) system that combines a range of developing tech-
nologies, such as mobile technology, biosensors, and communications 
networks, to create efficient, scalable solutions. 

In telemedicine applications, the study [39] presents a systematic 
and exhaustive review on the prioritization of patients with several CDs. 
The challenges and open issues, concerning ‘patient prioritization’ in 
telemedicine are presented. They determined the need for a new ‘mul-
tiple-criteria decision-making theory’ to address the domain's current 
issues. 

The survey was conducted by Dang et al. [40] to examine the new 
IoT components, applications, and industry dynamics in healthcare. 
Since 2015, the authors surveyed cloud computing based healthcare 
applications and development in IoT. They also analyzed how the 
promising technologies like CC, AI, “Ambient Assisted Living (AAL)”, 

Fig. 3. Flow for study search and selection strategy based on the PRISMA.  

Fig. 4. Number of studies based on publication venue.  
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big data, WSN, and WBAN are being used in healthcare. They discovered 
how IoT and global e-health policies influence the long-term growth of 
IoT and CC in the healthcare industry. 

The study [41] examined at new IoT communication principles and 
technological innovations that could be used in smart healthcare ap-
plications. The emphasis is on low-power wireless technologies to 
enable energy-efficient healthcare-IoT systems. 

SHM frameworks enabled with IoT and inter-linked technologies are 
capable of collecting data in real time and performing analytics imme-
diately to handle emergency situations in a timely and appropriate 
manner. The care provided by the SHM using vital signs, clinically 
relevant information and activity context is an important component of 
virtual care and treatment. IoT has been able to enhance various medical 
applications in RPMs, fitness programs, CDs, rehabilitation and elderly 
care [42]. The authors [43] have recently shown increased research 
addressing RPM using mobile, wearable and sensor technology. The 

potential for SHM adaptation to improve chronic care and telehealth 
will continue to grow over the next five years and stakeholders expect 
the market to double in the same period. Emphasis should be laid on 
educating people about medical care and improving the quality and 
patient experience through these tools. 

3.3. SHM architectures 

These frameworks integrate smart devices and record the patient's 
vital information and activity context. These usually combine WSN, 
WBAN technologies with IoT, for enabling patient monitoring. Also, it 
integrates other technologies such as AI and ML for disease diagnosis, 
identification, and prediction of health status. In addition, the technol-
ogies like CC, edge/fog computing are of utmost importance as the va-
riety, volume and velocity of data is growing. Thus it is helpful to track 
down a patient suffering from CD without frequent hospital visits and 

Fig. 5. Illustration of smart and ubiquitous healthcare monitoring framework.  
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examinations. 
This comprehensive literature review will help to understand the 

architecture of the SHM framework and the applications of IoMT and/or 
ML in the healthcare sector. This systematic review also helps to un-
derstand the technical challenges and ML implementation challenges. 
The architectures are either based on cloud computing [44–51] or are of 
hybrid nature [52–65] which includes both fog and cloud computing. 
While some architecture involve only local computing [66,67], in 
another classification, architectures are based on 2, 3 or 4 tiers. The most 
common architectures are 3-tier [44,45,49–51,53–57,59,62–65,67] and 
4-tier [46,52,58,60,61,66]. Only a few are 2-tier based [47,48,68]. 

Mardini et al. [69] surveyed recent applications in health monitoring 
and classified systems and their general architectures. The standards to 
be used and the challenges faced by the sector were discussed. Finally, 
the evaluation of these applications is presented and the potential future 
scope is discussed. 

Albahari et al. [70] presented a comprehensive review of articles on 
priority-based sensor and triage techniques in telemedicine. The authors 
also examined articles describing the three-tier architecture of tele-
medicine. The challenges, benefits and recommendations are presented 
and some gaps are found. Finally, the issues related to its application and 
development and barriers to use are examined based on the findings 
presented in the literature. 

Baig et al. [71] presented a review of 20 papers on Wearable Patient 
Monitoring (WPM) and investigated the issues of WPM solutions used by 
clinicians in patient care settings. 

Ahmadi et al. [24] have conducted an extensive literature review of 
healthcare-IoT to determine the critical technologies, components, ar-
chitecture, areas of application, security and interoperability issues and 
impacts. 

An illustration of a typical architectural structure is presented in 
Fig. 5 that can form the basis for a good SHM framework. For clarifi-
cation purposes, the typical framework is divided into 3 tiers: sensor 
network, gateway, and cloud Data Center (DC). A brief description of 
each tier is as follows:  

• Tier-I of the architecture includes the sensor network of the IoMT and 
this layer may be called the “perception layer”, “sensing tier” or the 
“data accumulation layer”. Here, smart gateways (aka data aggre-
gators) are responsible for the synchronization of the acquired data. 
The model [58,59] exploits ambient sensors and medical sensors at 
the acquisition layer to collect the patient data.  

• Tier-II of the framework depicts data aggregation, cleaning and 
filtering functions. This layer can be deployed at the edge of the 
network (i.e. at Gateway) and used for feature selection and data 
analytics tasks. The computing operations done at the edge by 
bringing cloud services to the edge of the network is known as fog 
computing. The authors [16] examined a range edge computing ar-
chitectures and techniques that are currently available and evolving. 

• Tier-III comprises of cloud DCs and is also known as “Cloud Pro-
cessing Layer”. Data processed from Tier-II (Fog/Edge Server), is 
transmitted to Cloud DC for mass storage and in-depth analysis. 
Cloud computing provides large-scale data storage, elastic compu-
tational resources and resource sharing for stakeholders. The main 
functions of this layer are: collecting and storing registered patient 
(user) information, analyzing, making decisions, and providing an 
application interface to caregivers and doctors. This tier is connected 
to multiple channels for notification purposes. The characteristics of 
cloud-based architecture, and the challenges of IoT in healthcare, are 
presented by Ahmadi et al. [24]. Darwish et al. [30], provided a 
detailed overview of the current literature on the use of CC and IoT in 
healthcare applications to solve different issues. A brief overview of 
the integration of CC and IoT paradigms as well as their application 
to health care is also presented. 

3.4. Components of SHM architectures 

5G mobile communication is expected to offer extended coverage, 
effective connection between IoT things/objects even in high mobility 
and interoperability of multiple wireless access technologies. The 
emergence of 5G communications technology led to the investigation of 
tactical Internet-based applications, particularly in the healthcare and 
robotics sectors [72]. In this section, the major components of SHM are 
listed and briefly defined. Fig. 6 shows the classification of major com-
ponents. The first and primary component of this taxonomy is about the 
healthcare network. The network is made up of three major components: 
architecture, platform and topology, and it facilitates communication in 
healthcare. 

Sensors, actuators and the Internet are crucial in the development of 
IoT solutions for the SHM framework. IoT can be termed as the con-
nected components used on devices for health monitoring. The bottom 
layer of an IoT system includes sensor connectivity and a network for 
collecting data. This layer is an important aspect of the IoT system as it 
connects the gateway and the network layer through the Internet. Sen-
sors are primarily used to collect vital signs, health data and data from 
the patient's surrounding environment. The data collection system fa-
cilitates the process of data collection, transfer to and from the 
communication devices within the network. End-to-end connected de-
vices in the architecture are responsible for delivering patient data from 
home to the hospital and/or caregivers. The SHM framework harness the 
capabilities of stationary and mobile electronic devices, including lap-
tops, smartphones, and medical terminals, and creates heterogeneous 
computing networks [73]. 

Many communication solutions, such as Bluetooth, WiFi, ZigBee, and 
GSM, allow the interconnection of devices using various access net-
works, including RFID, devices with wireless sensors [74–76], and any 
smart object connected to the Internet over a physical IP [77]. Wireless 
standards like as Lora, ZigBee, and Bluetooth are used by most health-
care systems to communicate data over local and global networks [78]. 

However, in patient care delivery environments these smart devices 
generate vast amounts of heterogeneous data, also known as big data, at 
high velocity. Advanced storage technologies such as “Hadoop Distrib-
uted File System” (HDFS) are a core phase of big data analysis. For more 
stakeholders to support ubiquitous healthcare IoT applications and 
adopt and scale data mining approaches on big data, migrating to cloud 
technologies becomes an urgent need. 

Cloud and edge computing are essential for smart and efficient 
healthcare systems in smart cities [79]. CC provides rapid deployment, 
flexible resources, and economies of scale by distributing computing 
resources such as CPUs, networking, databases, software [11] and data 
analytics platforms over the Internet. Unlike the centralized paradigm 
CC, fog computing is a decentralized paradigm of computing. “Fog 
computing” (FC) was initially coined by industry [80]. 

Data analysis methods can be described as exploratory or confir-
matory whereas statistical analysis and mathematical modeling are 
robust tools that allow a researcher to draw meaningful conclusions 
from the data. These tools and modalities enable clinicians and patients 
to help monitor, manage, and prevent CD and conditions. ML is pri-
marily an exploratory and comprehensive AI technique used to build 
models that can learn from data. However, statistical methods are often 
incorporated directly into many ML algorithms. In the SHM framework, 
ML is used to build models that help predict risks and provide diagnosis 
and treatment based on medical data. 

4. Technical challenges smart healthcare monitoring 
frameworks 

Among the many developed technologies in the healthcare industry, 
SHM for RPM is one of the most influential. This technology is opening 
new avenues in existing healthcare services. As these tools continue to 
mature, researchers and developers are addressing significant 
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challenges to increase their capabilities and effectiveness. 
In this section we will discuss many of the technical challenges of 

existing legacy systems and the extent to which these challenges have 
been addressed. The challenges are divided into three categories as 
shown in Fig. 7. 

4.1. Data and computational challenges 

RPM is one of the major applications of AAL. AAL systems deployed 
in patient environments generate large amounts of data. Even routine 
monitoring of patients using AAL generates big data [16,81]. 

The 5Vs of Healthcare Big Data include: Velocity, Volume, Variety, 
Veracity or Value, and Validity. Due to new technological advancements 
the data is being generated at high velocity and the associated need for 

processing and analysis of such huge volume of data is increasing. The 
challenge of storing and managing data from the SHM framework lies in 
the properties of big data. Meaningful health care data such as ECG data, 
clinical data and patient references such as activity data comes in a 
variety of formats and sizes, and the pursuit of knowledge organizes that 
the more types of information we integrate, the richer the insights. The 
challenge for SHM lies with the data diversity as well. Standardization 
and dissemination of all information in a common format will increase 
adoption of insights. Therefore, it is necessary to remove noisy, biased 
and incomplete data through pre-processing. In addition to veracity, the 
validity of the data is a significant challenge in SHM. Validity pertains to 
completeness, curation and real-time updates. To ensure valid data, it is 
essential that the information generated is accepted using scientific 
protocols and methods. 

Fig. 6. Classification of major components of SHM.  

Fig. 7. Categorization of technical challenges in SHM frameworks.  
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Sakr and Elgammal [82] recognized and investigated a few of the 
significant difficulties in healthcare systems which have been success-
fully solved by recent breakthroughs in ICT. Considering the improve-
ment and efficacy of health services quality, the authors focused on 
sensor technology, IoT, CC, and Big Data analytics systems. 

From 2010 to 2019, the authors [4] gave a comprehensive picture of 
the IoT and related ML-based solutions that were built or employed. The 
techniques discussed here are intended for a variety of applications in 
healthcare, including tracking cardiac disorders, predicting heart at-
tacks, detecting human behaviours, and classifying breast cancer. 

Faust et al. [22] presented a review of DL algorithms for healthcare 
applications focused on physiological signals. The authors also stated DL 
performs better than typical data analysis and ML algorithms for big and 
varied datasets. 

Purushotham et al. [23] used DL models to present bench-marking 
results for a variety of clinical prediction tasks, including length of 
stay prediction, mortality prediction, and ICD-9 code category predic-
tion. According to their findings, the DL models greatly exceeded all 
other techniques, especially when the input medical data is ‘raw’ time- 
series data. 

The research work [16] examined edge intelligence that uses state- 
of-the-art DL techniques to target health data classification and predic-
tion, as well as the monitoring and recognition of vital signs. This study 
identifies potential research recommendations as well as the general use 
of IoT technologies for evolution of edge computing services in 
healthcare. 

The health informatics sector is expected to benefit from the rapid 
development of big data analysis tools for the management of CD using 
clinical decision support, disease prediction and diagnosis. ML espe-
cially DL technology coupled with IoT based SHM framework promotes 
big data processing capabilities and proves to be extremely powerful. DL 
provides a subset of large deep computation models. But, it requires high 
processing capabilities to process such a huge amount of data and train 
the ML/DL model on top of it. Also, the exponential growth of health 
care data cannot be managed using traditional platforms and frame-
works. Therefore, the use of cloud environments has led to a paradigm 
shift in the storage, management, analysis and application of ML for 
knowledge discovery in the healthcare sector. Advanced cloud platforms 
with integrated ML capabilities including Microsoft Azure, Apache 
Spark, Amazon SageMaker capable of handling big data give great hope 
for developing SHMs for innovative medical applications. Hadoop is a 
software framework that has proven successful in tackling most of the 
challenges discussed above for medical applications. Building smart 
RPM models using cloud-based technologies will preserve the lives of 
patients, especially the elderly who live alone. 

4.2. Architecture and operational challenges 

SHM implementations in smart city applications are taking full 
advantage of existing synergies. We have already discussed the general 
architecture as well as the various components of SHM. It is clear that 
this intense research involves a fusion of many fields. 

SHM frameworks are designed to obtain a number of clinical data 
and context data from patients. The most common data is respiration 
rate, oxygen saturation, heartbeats, Electroencephalogram (EEG), 
Electrocardiogram (ECG), glucose level, blood pressure (BP), tempera-
ture and signals from the nervous system. Reference data is activity such 
as sleep, movement, activity level is usually collected. Various storage 
and computing technologies address the challenges of managing and 
processing big data arising from ubiquitous and SHM frameworks. 
However, the large number of stakeholders in the SHM framework 
ecosystem faces various challenges related to architecture and opera-
tion. In this section, we present the various architectural and operational 
challenges. 

4.2.1. Disease monitoring 
In disease monitoring, various sensors and devices with embedded 

sensors and wireless data transmission capability are involved. With the 
advancement of technology, sensors cannot be the only medical sensors; 
it can be a camera or a smartphone. The authors, Hernandez et al. [43] 
investigated that how wearable, mobile, and textile sensing technology 
has pervaded the healthcare industry by providing technological solu-
tions to difficult problems including continuous monitoring at home and 
personalized medicines. It is not possible to have all such data acquisi-
tion devices as wearables. In this context, the authors [37] examined 
both contact and non-contact techniques and outlined specific concerns 
that most systems have. The authors [71] examined the constraints and 
challenges of WPM solutions adopted by clinicians in acute, community 
and care settings. 

In addition to advances in sensor technology, many systems face the 
most common challenge of signal quality [83,84]. Also, the biosensors 
have specific requirements on body position and posture to provide 
accurate and reliable measurements. To solve the problem, authors [85] 
suggested textile integrated active sensors. 

4.2.2. Network communication and QoS 
In addition to providing appropriate health services for various 

human diseases, the SHM system aims to provide continuous real-time 
data for better disease management, timely treatment and minimiza-
tion of errors. Real-time monitoring comes with the challenge of con-
nectivity. The paper [86] has offered a broad analysis of current 
developments in three “RF-sensing” technologies for AAL in the field of 
healthcare. The article discussed the details concerning different sen-
sors, deployment, configuration, and performance evaluation and pre-
sented some challenges that usually encounters while deployment and 
that need to be addressed. Continuous device connectivity with Blue-
tooth or Zigbee, WiFi or 3G/4G networks can cause these issues. Con-
nectivity may cause delays in providing results and generating alerts due 
to data loss, buffering, network errors, monitoring or processing 
[87,88]. Such network communication and QoS issues can put the pa-
tient at risk. Various robust architectures have been developed to deal 
with such errors and risks. These architectures are multi-tiered [58] 
and/or cross-layered. Furthermore, various cloud-based as well as fog 
computing based architectures have recently been proposed for fault 
tolerance. The study [89] addresses the reliability concerns with existing 
healthcare on broadband communication infrastructure, and proposes a 
cloud-based mobile healthcare to improve QoS parameters such as delay 
and response time. Fog computing is therefore considered suitable for 
applications that require real-time, low latency, high scalability and 
high response times, especially in healthcare applications [90]. 

4.2.3. Architectural robustness 
Traditional SHM systems are not capable of handling big data and 

cannot be relied upon to monitor patients suffering from serious health 
ailments. AI, on the other hand, helps stakeholders address three key 
challenges: patient health, cost and quality of health care [91]. How-
ever, there is a need for an effective infrastructure for data sharing be-
tween patients, hospitals, pharmacies, insurance companies and 
emergency units. Cloud-based implementation is generally considered 
the natural choice in such scenarios. Big-data and computational chal-
lenges are also dealt with by the scalable and elastic nature of cloud 
platforms. Furthermore, MapReduce based models provide higher 
scalability and better performance with parallel processing. In remote 
areas, low signal strength, low transmission speed and poor battery life 
can cause connectivity problems. The QoS issues can put the patients at 
risk. In this context, various edge-based architectures have been pro-
posed in the literature to provide robustness. Edge devices are used at 
the local end to manage the risk of delayed alert generation due to 
network issues. These tools can run independently or in synchronization 
with cloud nodes and are also capable of running ML models to ascertain 
the health status of the patient. With 5G it is also possible to monitor 
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patients in real time with low latency 1–10 ms. This real-time experience 
will provide more information about the day-to-day health of the 
patients. 

4.2.4. Scalability and availability 
The challenge of scalability is associated with disaster situations such 

as the COVID-19 pandemic and an aging population where there is an 
increasing demand for health services. Widespread deployment of SHMs 
is not expected until around 2025, although the COVID-19 pandemic has 
probably accelerated this timeline significantly. Vendor hardware ex-
clusivity, problems with stake-holder interfaces, inadequate features, 
usability, scalability, interoperability, compatibility, unreasonable 
costs, and ineffective validation are among the identified limitations [1]. 
Cloud and fog computing provides scalability and availability in case of 
emergencies, in addition to storage and cost-effectiveness. In addition, 
hardware failure and system upgrades can create an availability chal-
lenge that needs to be addressed using quality hardware and software 
technologies. 

4.2.5. Interoperability 
The complex and heterogeneous nature of IoMT based infrastructure 

makes interoperability difficult. IoMT systems are designed to be highly 
interoperable these days [45]. These systems are capable of seamlessly 
moving data from WBAN and AAL devices to cloud and edge gateways 
for processing and analysis. The challenge is significant due to the 
growing manufacturing market for these devices. Various manufacturers 
confirm complete interoperability using the tools they offer [92]. 
Addressing interoperability is sophisticated work and is based on the 
standardization community. However the increasing complexity is bet-
ter dealt with by efficient and effective software design processes. In this 
context, Albahari et al. [20] presented a comprehensive study that 
reviewed all the major developments in the IoT-based telemedicine ar-
chitecture. The authors presented a classification-based analysis of the 
literature on IoT-based telemedicine and a crossover with different 
disease groups. 

4.2.6. Energy constraints 
AAL devices and sensors must be active at all times for continuous 

monitoring and real-time feedback. Steady monitoring may be hindered 
by the limited battery power of these devices. Energy systems in a SHM 
environment are not directly connected to the patient. Therefore, bat-
teries in medical devices and equipment need to meet very high stan-
dards to ensure efficiency, reliability and safety. SHM needs efficient 
power management system and it should be developed to reduce power 
consumption. The challenge must be well addressed by developing en-
ergy efficient devices and sensors, or by increasing the power of the 
batteries attached to the devices. In that context good suggestions are 
given by the authors [93] to improve the power of IoT devices. 

4.2.7. Security and privacy 
Security can be defined as managing the validity and setting certain 

access rules for patient programs and information. The SHM framework 
uses IoMT with various computing platforms and communication net-
works. The increasing use of mobile and wearable technologies in IoMT 
poses a serious security concern that is no longer scrupulously investi-
gated. IoMT security is a significant challenge that is often addressed 
through weak or default protocols [94]. Also, stakeholders in healthcare 
are less aware of information security vulnerabilities and attacks. 
Medical data has become a popular target for ransomware and other 
attacks these days [94]. From a healthcare perspective, IoT privacy and 
security issues as well as potential threats, attack forms, and security 
configurations have been thoroughly investigated in [40]. The well- 
known existing security models have been analyzed to cope with secu-
rity threats. Finally, the article highlighted opportunities, trends and 
challenges for the future development in healthcare-IoT. 

‘Information Security’ provides for message integrity and data 

confidentiality. Integrity here means maintaining and ensuring the 
completeness and accuracy of data throughout its lifecycle. On the other 
hand, confidentiality is a privacy component that enforces restricted 
access to protect data from unauthorized users. 

Significant privacy and security issues, crowdsourcing for the rapid 
collection of large amounts of clinical data, open research barriers, and 
potential IoMT considerations have all been addressed by the authors 
[41]. The authors [95] proposed a privacy-preserving framework with a 
clustering-based distributed analysis approach for the analysis of bio- 
signal data. In our view, there are many aspects to a robust and effec-
tive cyber security and privacy strategy for modern health care net-
works. These aspects are 1. End-to-end security for software and devices; 
2. Information Security and Confidentiality; 3. Strong encryption for 
data on the network; 4. Patient privacy regulation by government and 
policymakers. 

4.3. Technical concerns and prospects in SHM 

There are many challenges and opportunities involved in this tech-
nological ecosystem amid monitoring through SHM. Furthermore, the 
major concerns in the adoption of these structures are affordability, 
patient safety and mobility. Disease monitoring itself is becoming a 
challenge in the presence of other health challenges including CDs, 
aging population, cost of hospitalization and risk of medical errors. 
Medical errors can be encountered through the data and computational 
challenges, and architectural and operational challenges discussed 
above. 

5G networks are capable of providing far better healthcare facilities 
including smart hospitals and assistive robotics. Further improvements 
in textile sensor design, signal quality and VLSI techniques are trying to 
meet these expectations. The technical constraints of IoT platforms (such 
as energy, processing and storage) are compensated by the cloud with 
their scalable nature. 5Vs of Healthcare Big Data are well addressed by 
cloud and edge based frameworks. Cloud platforms have now benefited 
from IoT and are expanding their scope to deal with things in the real 
world and provide many new services in a distributed and dynamic 
manner. The use of fog layer in the e-health care system improves the 
reliability and energy efficiency problems, and also supports the 
mobility of the user. The research article [96] discussed the emerging 
issues in M-Health, as well as research gaps, opportunities, and patterns. 

The energy systems in SHM are hindering the patient's mobility. 
Several concerns related to patient efficiency, reliability and safety need 
to be addressed with energy efficient devices and sensors or by 
increasing the battery power attached to the devices. 

Other technical challenges associated with surveillance that prevent 
clinical adoption of SHMs include reliability. 5G's technical specifica-
tions surpass other wireless protocols in terms of reducing latency, en-
ergy consumption, and improving reliability. In our view, there are 
many aspects to a robust and effective cyber security and privacy 
strategy for modern health care networks. There is a need for continuous 
and rigorous testing to identify safety deficiencies. 

While many SHM systems have been designed and implemented with 
great potential benefits, some parts of it are still in their primary stages, 
and many open concerns and challenges need to be carefully examined. 
This article identifies the main challenges and emphasizes the value of 
SHM systems that take advantage of novel technologies including AI, 
DL, IoT, and Big Data to provide reliable, cost-conscious, and completely 
connected systems. 

4.4. Comprehensive review of ubiquitous and SHM frameworks based on 
ML 

Several IoT based cloud-centric frameworks for disease monitoring 
and diagnosis have been proposed in the literature. This work includes a 
survey of research articles related to the monitoring of: Elderly patients, 
wellness and chronic diseases. In Table 2 (see Fig. 8), an interesting 
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taxonomy of research articles surveyed for this work has been presented. 
The symbol (✓) indicates that the research article employed the marked 
concept in their research. The previous research work on SHM systems is 
briefly discussed in the remainder of this section. 

In this section, we present a chronological and architectural over-
view of the proposed SHM systems during 2016–2021 which is sum-
marized in Table 4 from the ML perspective. 

This intensive research involves fusion of several domains. To realize 
the scale of the issues and the recent approaches to face it, the review is 
primarily focuses on the ubiquitous, smart and remote HMS utilizing IoT 
and ML approaches. To show the rigorousness and range of research in 
this area only representative works published during 2016–2021 have 
been discussed. Of the 50 selected articles, 25 are research articles (50.0 
%). The latter text of this section expresses the view of some recently 
published research articles. 

Hassan et al. [44] proposed an intelligent hybrid model for remote 
monitoring of patient. The model is context-aware and adopts hybrid 
architecture with both cloud-based and local components. This model is 
used to monitor patients in the home environment, particularly the 
elderly suffering from chronic diseases (CDs). The model [44] predicts 
the patient's real-time health status by combining physiological signals, 
environmental conditions, and patient contexts. The model is designed 
for detecting emergencies for patients suffering from blood pressure 

(BP) disorders and its effectiveness is validated through results of ex-
periments. The major drawback of model is that it is downloading and 
copying the ML model from the cloud. The combination of tree based 
classifiers and sampling techniques used in the model performed well, 
but this model has its own drawbacks such as over-fitting. 

The authors [52] proposed a context aware framework “Hybrid Real- 
time Remote Monitoring” (HRRM) for monitoring the patient remotely. 
The framework utilizes the edge computing for categorization of the 
patient's real health status at the local/patient side. To achieve higher 
accuracy and faster classification, the framework utilized the Naïve 
Bayes with Whale Optimization algorithm. This framework is working in 
both online and offline mode. A study on patients with chronic BP dis-
order has been done. 

Syed et al. [45] proposed a SHM architecture for AAL which utilized 
the ML algorithms to monitor and analyze the physical activities of 
elderly people, and IoMT for decision making and recommendations. 
The data has been collected through various wearable sensors connected 
to various parts of the subject's body. The collected data transferred to 
the cloud and data analysis layer. Map-Reduce platform with Naïve 
Bayes has been utilized for experiencing body motion. With an aggre-
gate accuracy of 97.1 %, the framework monitors and estimates 12 
physical tasks. 

Bhatia and Sood [46] proposed a framework based on Healthcare- 
IoT, to assist smart workouts. The framework analyzed current health 
status during workouts and forecasted potential health vulnerabilities 
using the ANN model. Framework employed numerous smart sensors to 
monitor 5 subjects. The system performed well in comparison to the 
well-known models. 

Esposito et al. [66] offered a framework for rapid prototyping of 
individual health monitoring. The architecture has been deployed in 
Android-based mobile devices. The build mobile application has been 
employed in a case study of monitoring and managing cardiac 
arrhythmias. 

Pham et al. [53] proposed a dynamic neural network (DeepCare) 
model for prediction and determining progression of disease in patients 
with chronic illness. The proposed model utilized LSTM with timed 
events during the course of illness for disease progression modeling, 
prediction and recommendation. The model demonstrated improved 
accuracy over diabetes and mental health data. 

Moghadas et al. [54] proposed a system for monitoring and classi-
fying the health of individuals with cardiac disease. The system com-
bined an Arduino board with a sensor module to monitor cardiac rhythm 
and undertake electrocardiography. FC has been employed for diag-
nostic information rather than cloud computing to optimize data 
transmission delays. Finally, the k-Nearest Neighbor (k-NN) data mining 
algorithm has been used to classify and validate the type of cardiac 
arrhythmia. 

Chatrati et al. [67] proposed a ‘smart home health monitoring 

Table 2 
A taxonomy of surveyed research articles based on various criteria.  

Author/reference & YOP Taxonomy 

Elderly and/or emergency 
healthcare 

Chronic or other disease monitoring Wellness/ 
monitoring 

Edge/fog/local 
computing 

Cloud computing 

[44,49,50] ✓ ✓ ✓  ✓ 
[52,58–60,64,65] ✓ ✓ ✓ ✓ ✓ 
[45,46,51]   ✓  ✓ 
[68]  ✓ ✓   
[55]  ✓  ✓ ✓ 
[66] ✓ ✓ ✓ ✓  
[53,56,61–63]  ✓ ✓ ✓ ✓ 
[47]  ✓   ✓ 
[54,57] ✓ ✓  ✓ ✓ 
[67]  ✓  ✓  
[48] ✓  ✓  ✓ 
This study ✓ ✓ ✓ ✓ ✓  

Fig. 8. Taxonomy of research articles surveyed.  
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system’ that alerts the caregiver after detecting any abnormality while 
analyzing the patient's BP and glucose levels at home. Hypertension and 
diabetes status are predicted with the help of conditional decision- 
making and ML approaches, respectively. The primary objective is to 
determine the status of high-BP and diabetes using a supervised ML 
classification algorithm by monitoring and analyzing the patient's 
glucose and BP readings. The SVM was found to be most suitable and 
accurate in the system. 

In [55] an intelligent system is proposed for early identification and 
control the ‘mosquito-borne’ diseases. WBAN and IoT sensors were used 
to collect the necessary data, which included symptoms. Further the FC 
has been utilized for analyzing, categorizing and sharing the medical 
information between user and healthcare service. To segregate diverse 
mosquito-borne diseases and categorize individuals into the uninfected 
and infected classes, the suggested system used similarity coefficients 
and fuzzy k-NNs respectively. Further, the outbreak of mosquito-borne 
diseases has been represented and the chances of the user to acquire 
or spread the disease have been measured by PDO (‘Probability of Dis-
ease Outbreak’). 

For ECG monitoring, S. Krishnan et al. [47] presented an IoT cloud 
architecture. The architecture is two tier with client and cloud tier. The 
article suggested the Elman Neural Network (ENN) classifier for data 
protection which forms cryptography and authentication while trans-
ferring medical data over cloud is suggested in this work. The model 
classifies the data as abnormal or normal. The work has been validated 
with OCSVM. 

To foresee the possible disease along with the severity level, Verma 
and Sood [56] have proposed a ‘Cloud-centric IoT based M-healthcare’ 
framework. For application scenario, the authors designed the prototype 
for monitoring and diagnosing student healthcare and tested using the 
datasets of infectious diseases and heart disease. The diagnosis is done 
with well-known classification algorithms: SVM, k-NN, DT and Naïve 
Bayes (NB), and comparison results has been shown for different 
diseases. 

Rahmani, et al. [57], in their research presented a Fog-assisted sys-
tem architecture with ‘Smart e-Health Gateway’ at the edge of the 
network. Numerous characteristics of the gateway include local storage 
and data processing in real-time, and embedded data mining, among 
others. Many growing concerns in ubiquitous healthcare systems, 
including as scalability, energy efficiency, mobility, and robustness, can 
be addressed using this architecture. Lastly, the IoT-based ‘Early 
Warning Score’ (EWS) and some other features are described with help 
of a prototype in this article. 

In a very interesting work, Motwani et al. [58] first presented a broad 
survey of ubiquitous, smart and networked healthcare systems for 
monitoring the health of elderly patients suffering from CDs in real time. 
Ahead in the article, the authors proposed “Smart Patient Monitoring 
and Recommendation” (SPMR) framework for classification and pre-
diction of the real-time health status of patients with CDs. The model is 
based on cloud analytics and ‘DL with novel loss optimization’. The 
framework is robust enough to work in both online and offline mode 
with recommendation facility. The framework has been tested with AAL, 
vitals and symptom data of patients with BP disorder. The higher value 
of accuracy and F-score has been achieved even for most imbalanced 
data by the employed DL model. 

In another work [59], the authors proposed a three-tier Smart pre-
dictive healthcare framework for elderly patients who are under 
observation at home and suffering from CDs. The model exploits 
ambient sensors and medical sensors at the acquisition layer to collect 
the patient data. The novel DL algorithm at second layer has been used 
to achieve highly accurate classification of emergency cases in real time. 
The AAL framework has been tested with imbalanced, context aware, 
multi-class big data obtained through monitoring of blood pressure 
disorders. 

For monitoring older patients with chronic conditions, the authors 
[60] proposed a hybrid AAL framework using the Nave Bayes–firefly 

algorithm. This architecture takes advantage of IoT advancements to 
collect data from elderly patients and context situations to anticipate the 
patient's health status in real time. In essence, the authors suggested a 
classification framework for classifying a patient's health condition 
based on the minimum features that provide the maximum accuracy. 

Bhatia and Sood [61] proposed a Fog-Cloud architecture, based on 
IoT, to observe and examine several health attributes of a person during 
the office hours. The authors defined a probabilistic measure to estimate 
the adversarial effects of various activities on personal health. 

Sahil and Sood [62] proposed a ‘Fog-Cloud centric IoT-based cyber 
physical framework’ that provide medical support and helps in the 
evacuation of the panicked stranded persons from catastrophic envi-
ronment. The proposed framework's fog layer classifies stranded per-
sons' ‘panic health status’ (PHS) in real time. After diagnosing PHS, to 
track the panic health susceptibility of the trapped panicked persons the 
system utilizes Bayesian Belief Network (BBN) at the cloud layer. 

In a broader work [63] a new tri-fog health architecture has been 
proposed for physiological factor detection and resolving overloading in 
fog environment. In this 3 – tier architecture, layer 1 with “Rapid Kernel- 
PCA” is responsible for detecting the fault in data that is captured 
through the patient's WBAN; Layer 2 is responsible for predicting health 
status timely using “Two-level health hidden Markov model” (2 L- 
2HMM) by the help of temporal variations in data; Finally, layer 3 (Fog 
layer) detects the patient's health status using hybrid ML model SpikQ- 
Net. The model architecture utilizes biomedical, environment and 
context data for operation. Also, for timely service and lower response 
time a multi-objective spotted hyena optimization (MoSHO) algorithm 
has also been used. This work also shown a comparative analysis with 
prior HMS. 

Tao et al. [68] proposed an RPM using RFID for early identification 
of suicidal and self-harm behaviour within a hospital based psychiatric 
facility. The model in RPM analyzes the patient's vital-signs and subtle 
motions in hospital. An ensemble model based on ML algorithms such as 
LR, DT, XGBoost, and Random Forest to determine the optimum position 
of RFID readers has been proposed. 

Jung [48] proposed a hybrid awareness model for personalized 
elderly healthcare service for classifying the health status into positive 
or negative in a smart home environment. The model also proposed a 
hybrid inspection service middleware for the safety of elderly that 
classifies the status into safe and emergency. Based on activities and 
location of elderly patients, the middleware service assesses the health 
risk. The model acquires the vital and context data with wearable and 
motion sensors then analyzes with various ML algorithms. 

The authors [64] proposed a three tier architecture for RPM based on 
smart home. The architecture utilized techniques like disseminated 
storage, mining and warning service along with the concept of fog as 
smart gateway. The patient's data has been processed at the fog layer in 
real-time. The notion of temporal mining, which involves calculating the 
patient's “temporal health index” (THI), was utilized to assess the 
complexity of the events. 

In an interesting article, the authors Chen et al. [49] recognizes the 
importance of important physiological indicators such as physical ex-
ercise data and dietary information are extremely important in effective 
prevention of diabetes and post-hospitalization treatment. So, for better 
care and treatment of diabetes, they proposed a “5G-Smart Diabetes” 
system with personalized data analytics. The system has been tested 
with SVM, ANN and DT. Further the social networking service (SNS) in 
the system is facilitating the care and treatment for diabetic patients in a 
better way. 

Abawajy and Hassan [50] presented a pervasive patient health 
monitoring (PPHM) system architecture with IoT and CC technologies. 
The use of ECG for real-time monitoring of patients with congestive 
heart failure has been demonstrated. The system is evaluated for QoS 
parameters such as scalability, flexibility and energy efficiency. The 
framework also utilizes the classification and clustering techniques to 
enable patient care. Through this article, the authors tried to address the 
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answer that how the patient can be remotely monitored and his health 
status can be evaluated. 

The authors [65] proposed a hierarchical computing architecture 
(HiCH), utilizing fog as well as cloud. It uses ML-based intelligence and a 
‘closed-loop management’ methodology at the network's edge to make 
autonomous system adjustments based on the patient's state. A case 
study concentrating on arrhythmia identification in patients with CVDs 
confirmed the model's efficacy. The work performed classification of 
normal and abnormal ECG cycles. To manage the system resources, the 
work has extended the map IBM's MAPE-K model. 

4.5. SHM framework challenges: comparison 

SHM frameworks are designed to obtain patients' clinical and context 
data. The most critical data are respiration rate, oxygen saturation, 
heartbeats, EEG, ECG, glucose level, BP, temperature and signals from 
the nervous system. Also, Real-time monitoring comes with the chal-
lenge of connectivity. At the same time, continuous device connectivity 
with networks can cause QoS issues also. Connectivity may cause delays 
in providing results and generating alerts due to data loss, buffering, 
network errors, monitoring or processing. Low signal strength, low 
transmission speed and poor battery life can cause connectivity prob-
lems in remote areas. The network communication also suffers from QoS 
issues and can put the patient at risk. 

Therefore, there is a need for fault-tolerant, robust, multi-tiered ar-
chitecture with edge/fog computing to deal with the risks associated 
with connectivity and QoS. Thus the, frameworks: [44–47,49–51,56,60] 
are the most challenging, while frameworks: [48,52–55,57–59,61–68] 
are comparatively more robust and less challenging. 

The common challenge is to manage and process big data arising 
from the ubiquitous SHM framework that can be tackled by efficient 
computing with cloud and edge computing. 

5. ML implementation challenges in smart healthcare 
monitoring frameworks 

The SHM framework enables patient emergency monitoring and 
diagnosis through advances in big data, sensor technologies and AI/ML. 
There is growing expectation that ML and DL models will help improve 
diagnostic procedures. However, there are many implementation chal-
lenges associated with the collection and processing of massive amounts 
of data to understand patients' problems and then diagnose them 
through sophisticated AI and ML algorithms. In this section we discuss 
the ML implementation challenges in the SHM framework. Some of the 
major implementation challenges are represented in Fig. 9. 

5.1. ML implementation challenges 

5.1.1. Data preparation for ML algorithms 
Depending on the specific health issue, images, medical IoT, EHR, 

genomic data and central medical repositories are the primary data 
sources for the ML model. Medical data collected through various 
sources is often in a non-structured, structured and semi-structured 
format and is incapable of producing knowledge through ML models, 
whereas pre-processing techniques result in accurate data for ML 
methods. Data pre-processing methods are mainly divided into the 
following four categories: 1) Integration of data obtained through 
different sources. 2) Data cleaning by handling outliers, noisy, missing 
and inconsistent data. 3) Data transformation for ML algorithms by 
consolidating the data into a single standard format. 4) Data reduction 
by dimensionality reduction and sampling. 

Data preprocessing can also be employed for the purpose of reducing 
storage requirements and maintaining mining quality [97]. The authors 
[97] applied 3 instance selection algorithms for data preprocessing 
including genetic algorithms and evaluated using ML models: CART 
decision trees, K-NN, and SVM. Irrelevant or redundant features in 

health care data seriously affect subsequent model training and classi-
fication accuracy. However choosing relevant or removing irrelevant 
features greatly improves the performance of ML models. In this context, 
Zhang and Cao [98] proposed a filter feature selection based on rele-
vance and mutual information, and evaluated based on 3 classifiers. 
Thus performance of state-of-the-art models depends on data modalities 
and data curation and preparation is a challenge. 

5.1.2. Data imbalance 
A data set is said to be class-imbalanced if the number of record- 

tuples for one class is significantly greater than the number of record- 
tuples for the other. In the above definition the former shall be called 
the majority class and the latter shall be called the minority class. As 
studied, most of the classifiers used in the SHM framework are perfor-
mance driven which is based on overall accuracy and minimization of 
overall error. ML models assume a normal distribution of classes and 
received errors, so they are biased toward the majority classes rather 
than the minority. Thus it is misleading to consider accuracy to prove 
model efficiency. A small number of records—tuples in medical datasets 
represent a patient's emergency state and a focus on overall accuracy can 
generate false-alarms. Class imbalance can be handled using kernel and 

Fig. 9. ML implementation challenges in SHM frameworks.  
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cost based methods and sampling. To deal with class imbalance, the 
authors [52] used sampling methods to process data chunks on Hadoop 
clusters. Rule based and tree based classifiers are used along with 
SMOTE and CB sampling to determine the status of patients suffering 
from BP disorder. In another work the authors [58,59] proposed a novel 
categorical cross entropy (CCE) loss optimization to deal with class 
imbalance. The authors used DL with CCE optimization to determine the 
health status patient with BP disorder. The framework harnesses the 
power of the cloud to store, process, and train classifiers on large 
imbalanced datasets. The effectiveness of the model in the presence of 
data imbalance can be proved with class wise F1-scores. 

5.1.3. High dimensionality and size of training data 
Medical data obtained through various sources like gene data, data 

collected through sensors eventually results in higher dimensions. 
However, many features in high dimensional data are not relevant to 
effectively detect patient status. In such a case, dimension reduction 
helps to improve the overall performance of ML and DL algorithms. The 
authors [99], used feature selection (‘Fuzzy Backward Feature Elimi-
nation’ - FBFE) and extraction (‘Independent Component Analysis’ - 
ICA) techniques to improve ML performance on cancer datasets. In 
another work the authors [100] used RFE to identify the minimum 
number of optimal features to effectively predict CKD. The authors [60] 
used fire-fly optimization to select minimum features and improve ML 
performance in SHM framework. 

The size of medical data which is often viewed as big data is a 
challenge for training an ML model. Adequate data is needed to develop 
a performing ML model and to evaluate the model with high confidence. 
For example image analysis using DL algorithm requires large amount of 
valid data and its availability is a challenge [101]. Furthermore, any 
increase in the training data will increase the complexity and memory 
requirements of the model. On the other hand, DL models require more 
training data. DL algorithms for medical imaging have a high depen-
dence on the quality and quantity of the training set [102]. Thus, 
improving the quality of the training dataset and the application of 
feature engineering certainly improves accuracy and patient- 
centeredness. 

5.1.4. Continuous learning 
Capturing a patient's vital signs and behavioral data through multi-

ple sensors, social interaction and communication requires real-time 
data handling and learning. Continuous learning in healthcare brings 
with it a new set of opportunities and challenges. Continuous learning, 
or online ML, is a fundamental idea in which models continually learn 
and develop based on the input of ever-increasing amounts of data, 
while retaining previously learned knowledge [103,104]. The authors 
[105] discuss the main concepts and requirements for implementing 
continuous AI in radiology and illustrate them with examples of 
emerging applications. In healthcare, a pre-trained ML model will 
ideally assist the clinician in making diagnosis or management de-
cisions. This will certainly pose a challenge to any new patient with 
unexpected symptoms. 

New patient data and results from previous actions (actual diagnosis 
or treatment results) will be introduced into the pre-trained model for 
continual improvement. The model then transfers its previous knowl-
edge to new data, hyper-tune its current result, or even takes on new 
functions. Although continuous ML systems seem ideal for medical 
reasons in practice, several challenges exist in implementing them. One 
of the main constraints of continuous ML models is catastrophic 
forgetfulness [106] (or an overwriting of previous knowledge) which 
can lead to a sudden decrease in performance with previously learned 
cases. 

5.1.5. Model synchronization between cloud and edge 
In SHM system the data is collected through sensors and AAL system 

which is transmitted to a centralized database using wireless 

technology. However, due to the heterogeneity of each sensor's internal 
clock structure, the acquired data values are not synchronized for effi-
cient evaluation. Hence, it becomes imperative to synchronize the data 
using smart gateways on temporal basis. The synchronized data is then 
transmitted over the network and stored in a cloud database and/or edge 
device. Here it is used for model training and prediction after pre- 
processing. If the SHM Framework does not have an edge device, the 
model is built on the cloud. This model sends updates, alerts and rec-
ommendations to the patient or caregiver's device. Non-availability of 
network and cloud service can pose a challenge and put the life of the 
patient at risk. Therefore, arrangements have been made to load/syn-
chronize the model data on the local device/server. Hassan et al. [44] 
proposed a hybrid model where the major drawback of the model is that 
it is downloading and copying the ML model from the cloud to use on a 
local device. In contrast, the authors [58] applied an effective DL model 
for efficient classification of patient health, both at the cloud and locally, 
when dealing with heavily imbalanced data. It is still challenging to 
store, process, train and predict through ML on edge devices. This is a 
significant challenge for SHM frameworks with limited capabilities to 
drive modern data mining and ML techniques such as deep learning on 
big data. 

5.1.6. Performance of ML models 
ML ultimately improves patient care by enabling better diagnosis, 

reparation and clinical decisions [101]. However, developing and vali-
dating efficient models is a global challenge. The performance of state- 
of-the-art models depends on data modalities and low performance is a 
challenge. For example CNNs are suitable for images and RNNs are 
suitable for waveform analysis. The data in SHM is collected through 
various sources and application of a particular model may lead to poor 
performance of the model. In addition, there are many factors that affect 
the performance of ML models, including data curation, outliers, 
imbalance, training and validation sets, and performance parameters. 
The flip side of improved performance is the number of dimensions and 
attributes in the data. A larger number of features can lead to better 
predictive performance, but these models usually require more mathe-
matical operations, and thus a longer model convergence time. However 
reducing the dimension or choosing relevant features can improve the 
performance and convergence time of the model. On the other hand, 
selection of a suitable validation set determined from clinical trials can 
be helpful for model validation. In order to evaluate ML models for 
health care, assessment metrics need to be tailored to those in the 
community concerned. The performance of ML models should be 
compared to baseline. 

5.1.7. Ethical guidelines for adaption of ML 
Any raw medical data is insufficient to make the right decisions. At 

each stage of model building, the involvement of a medical professional 
is critical to understand the characterization of the medical data [107]. 
There are many ethical and legal issues regarding the use of ML in 
healthcare. It is often difficult to logically explain the results of DL 
techniques [108]. In other words, every data feature, intermediate and 
final results must be confirmed by involving a medical professional. 
Ethical and legal issues related to the use of ML in health care should be 
handled by creating a better understanding of the data collected, pro-
cessed and used in model building. Therefore, data exploration that 
involves statistical visualization of the data is also important for better 
understanding. Even though AI-powered systems have been shown to 
outperform humans in some analytical tasks, the lack of interpretability 
continues to be criticized. Nevertheless, interpretability is not a purely 
technical issue, instead it invites a host of medical, legal, ethical and 
social questions that require in-depth exploration. 

5.1.8. Change management and training requirements 
Change management is defined as the process of continuously 

renewing the infrastructure, and capabilities of healthcare facilities, to 
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meet the ever-changing needs of patients. However in the healthcare 
context, once the ML model is implemented, a major issue is whether it 
will continue to apply the same prediction logic as it was originally 
intended [109]. Following the worldwide adoption of such systems, 
interpretability of intelligent systems has become a necessity to explain 
and justify the decisions made by these systems, especially in the health 
sector [110]. Also, the quality of interpretable ML techniques for various 
health care applications depends on the training and validation of 
models [111]. In this regard, reinforcement learning (RL) has attracted 
significant attention in the medical community because of its potential 
to support the development of personalized treatments in line with the 
more general precision medicine vision [91]. The authors [6] have 
considered common heuristic approaches such as weighted early 
warning scoring systems and analyzed the possibility of employing 
intelligent algorithms. 

5.2. ML concerns and prospects in SHM frameworks 

There are many challenges and opportunities involved in the use of 
ML in the technological ecosystem amid monitoring through SHM. Data 
preparation, imbalance, size, dimension are posing new challenges. All 
of these pose a significant challenge to modern data mining and ML 
techniques, such as deep learning. For example, medical imaging today 
is largely manual because it requires a health professional to examine 
images to determine abnormalities [112]. However, DL algorithms can 
be used to automate this process and enhance the accuracy of the im-
aging process. The authors [25] highlighted the progress of the six DL 
techniques: Auto-encoder, RBM, DBN, RNN, CNN, and GAN with case 
studies. The paper explored some of the most basic and contemporary 
applications, and issues of DL approaches in the medical healthcare 
system. 

Preparing data before they are fed into a ML algorithm remains a 
challenging task. Additionally, it is difficult to incorporate patient- 
specific factors in ML models. Data aggregators can be deployed at the 
edge of the network for this task. 

The size of medical data which is often viewed as big data is a 
challenge for training an ML model. Big data and computational chal-
lenges are tackled with the help of scalable and elastic cloud computing 
platforms. Furthermore, MapReduce based models provide higher 
scalability and better performance with parallel processing. The Map- 
Reduce platform with Naïve Bayes has been used to classify body 
movements or bodily functions in [45]. 

Dimensionality is also a challenge that can affect model convergence 
and inference time. The dimensions can be reduced with some statistical 
and optimization techniques to improve the overall accuracy of the 
model. But due to data imbalance (aka bias-variance tradeoff) most ML 
models can be biased to majority class and hence generate wrong pre-
diction and low performance. This trade-off can be optimized by care-
fully selecting the model architecture, training and validation process. 

Under-fitting typically occurs when a model with a low capacity 
relative to the complexity of the problem and the dataset size is used. 
Under-fitting can be controlled by using a more parameter-rich model or 
weak regularization during training. Overfitting signifies surprisingly 
low performance on the validation set compared to the training set. 
Overfitting is usually prevented by cross validation and the use of 
multiple regularization techniques. 

Furthermore, continuous learning, model synchronization, perfor-
mance and interpretability ultimately lead to further challenges in SHM 
development for clinical implementation. Here is a need to develop ML 
algorithms capable for continual learning from clinical data [113]. 
Although continuous ML systems seem ideal for medical reasons in 
practice, several challenges exist in implementing them. Although 
continuous ML systems seem ideal for medical reasons in practice, 
several challenges in implementing them such as catastrophic oblivion 
exist. Thus human brain-like dynamics can improve the reliability of 
continuous learning. 

To solve the problem of ML model synchronization, various Fog- 
Computing based models [54,55,57,63,64] have been proposed for 
storage, analysis, classification, diagnosis, medical information sharing, 
and optimization of data transmission delays. 

The performance of predictive models can be improved by address-
ing various concerns with the help of efficient implementation of various 
good practices in ML knowledge. Although complex ML models such as 
CNNs are generally outperforming traditional and simple explanatory 
models, in the health care field, clinicians find it difficult to understand 
and rely on these complex models due to the lack of understanding and 
interpretation of their predictions. Nevertheless, interpretability is not a 
purely technical issue, instead it invites a host of medical, legal, ethical 
and social questions that require in-depth exploration [114]. In that 
context, open and interpretable AI [115] aims to determine the rationale 
for machine-made decisions, introduce trust, and reduce bias to improve 
human understanding. Open and Interpretable AI will certainly enhance 
the service delivery experience, traceability and confidence in the use of 
AI and ML tools in healthcare by addressing various challenges and is-
sues. Therefore, interpretability and explanatory techniques for ML 
models in the SHM framework are an area of research. 

5.3. Comprehensive review of ubiquitous and SHM frameworks: ML 
perspective 

In this section, we present a chronological and architectural over-
view of the proposed SHM systems during 2016–2021 which is sum-
marized in Table 4 from the ML perspective. The following attributes 
have been presented for each system: architecture type, usage of local 
and remote (edge and cloud intelligence), the application domain of the 
system, ML Method or algorithm used/proposed, the dataset utilized 
with features, and metrics based outcomes. 

6. Lessons learned and future research directions 

There are various diverse surveys of SHM are presented in the 
literature. The key objective of survey and review articles on SHM is to 
examine the systems in a specific context such as Architecture, appli-
cations, disease, issues and challenges. Those reviews targets SHM sys-
tems in a specific context. This survey looks at the field from a different 
standpoint, where all of these technologies are being used for RPM, to 
demonstrate the need for future study in the field. Here in this section, 
we have conferred the themes of existing surveys conducted earlier and 
have laid the basis for conducting the comprehensive review for this 
research work. This review proposes insights in order to offer valuable 
knowledge in this field of study. Of the 50 selected articles, 25 are re-
view and survey articles (50.0 %). 

This paper presented a comprehensive and systematic review based 
on PRISMA. The SHM papers which focus on ML are selected since the 
year 2016 to March-2021. In this survey, 50 articles out of the 146 ar-
ticles are analyzed for comprehensive review. From this, 40 % of articles 
are selected from Elsevier, 32 % of articles are selected from springer, 
14 % of articles are selected from MDPI, 12 % articles are selected from 
the IEEE journals, and 1 article from is chosen from ACM journal. The 
most standard publishing sites are Elsevier Journals (40.0 %), Springer 
Journals (32.0 %) and other prestigious journals (28.0 %). Finally, the 
highest number of articles is taken from the Elsevier journals. 

As studied that most of the articles either includes discussion or 
survey on architecture, application, intelligence involved, advances, 
challenges, issues and future path or mix of few of these topics. How-
ever, this research involves all of the topics mentioned above. In Table 3, 
a taxonomy of state-of-art surveys/review articles based on various 
criteria is presented. The symbol (✓) indicates that the article surveyed 
the checked topic. Table 3 attempts to convey the perception of some of 
the recently published review articles. 

In a surge of COVID-19, SHM systems have become an exigent need. 
An AutoTriage strategy based on real-time DL approaches deployed at 
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the edge layer was proposed in a study [117]. An infrared camera was 
utilized to assess temperature, and DL was used to detect the forehead 
area. The multimodal DL system [118,119] has been proposed that 
employs smartphone sensors for determining the location of user and 
providing warning about risk-prone zones. 

The SHM systems involve IoT networks generating massive amount 
of data every moment, which is being need to be processed. Wearable, 
wireless and ambient IoT sensors are continuously tracking a patient's 
vital signs and other contexts like sleep, exercise, and room temperature, 
etc. Hence, intensive processing capabilities are required for the huge 
amount of data. Thus, a business intelligence and analytics platform 
have been needed to gather, manage and analyze the complex big data 
generated through these devices. The integrated Machine and DL tech-
niques with these architectures boost their performance and processing 
ability. The innovative DL models are particularly dominant for 
analyzing and diagnosing such a huge medical data. 

Several analysis and diagnostic methods have been proposed in the 
research works for real-time RPM frameworks [120], although the 
requirement for QoS has not been appropriately dealt. 

Like IoT, the CC is not new paradigm that offers virtually accessible 
unlimited storage and computing potential at a very low cost enabling 
effective analytics. Since, vast cloud DCs are spread across the globe, 
edge intelligence is also necessary to gain more information at the edge 
node in real-time. Edge intelligence attempts to combine AI and cogni-
tive techniques for efficient processing of data. 

Mobility is a necessity nowadays and connectivity is ubiquitous as 
both mobile and wearable devices become increasingly common, safe 
and popular among staff members and patients, thus opening up new 
avenues for user involvement and empowerment. 

In this study, we have reviewed several ubiquitous and SHM 
frameworks that are using either cloud, fog or edge computing or 
combinations. The studies discussed here involve several AI, ML and DL 
techniques for chronic illness and health diagnosis. Although, the arti-
cles studied are based on wellness, elderly healthcare and patient 
suffering from CDs. In majority of the research works, the primary 
analysis and processing operations have been performed on the cloud 
layer. Despite the fact that Fog/Edge devices have constrained power, 
capacity, and resources, several recent research studies have begun to 
merge the Cloud, Fog, and Edge layers in order to improve overall 

performance in terms of disease detection, resource management, and 
latency reduction. Many current studies have applied DL and ML models 
to diagnose/classify a patient's health status at local edge nodes that are 
close to sensors or devices that are generating data. This helped reduce 
data transfer time and resource consumption, and increased real-time 
execution capability. 

7. Conclusion 

The current state of COVID-19 has drastically changed the global 
landscape of the SHM Framework and the need for such systems in this 
difficult time. Recently, several smart healthcare architecture has been 
proposed for accurate screening, fever, cough and diagnosis of symp-
toms such as body aches and maintaining social distance. Applications 
based on ML, DL and big data analytics in the healthcare framework 
have modernized statistical analysis, live tracking of patient health 
status, and efficient diagnosis and treatment. This paper presented a 
comprehensive review of real-time SHM frameworks that are powered 
by cognitive computing, ML, cloud, and analytics. This study has also 
analyzed the AI and ubiquitous computing advances in SHM frameworks 
for RPM. 

AI systems can be implemented at the edge using newer platforms 
such as Healthcare 2.0 and Industry 4.0 and integrated into SHM plat-
forms to provide disease detection and prevention, treatment and real- 
time diagnostic support to patients. These architectures may also need 
the collaboration of cloud and fog layer. Intelligent edge nodes can be 
deployed in homes as well as in smart hospitals to facilitate remote 
interaction. Healthcare 4.0 uses CC, FC, IoT and tele-healthcare tech-
nologies [27]. Blockchain technology can be implemented in the 
framework to maintain information confidentiality and protect patient 
interests. However, the benefits of blockchain for completing the IoT- 
health system have not been realized [121]. All technologies are now 
elements of the well-known ubiquitous and smart healthcare architec-
ture, which aims to operate with greater intelligence, reliability, privacy 
and efficiency. As a result, all these technologies can aid in the accel-
erated progress of the smart healthcare industry. 

According to forecasts, the existing hospital-centric health system 
will shift to a ‘hospital-home-balanced’ model in 2021, then to a ‘home- 
centric’ model in 2030. The article [122] explained the “hospital of the 

Table 3 
Taxonomy of state-of-art surveys/review articles based on various criteria.  

Author/reference & YOP Architecture Applications Integrated ML/DL Advances Challenges Issues Future path 

[37]    ✓  ✓  
[70]  ✓      
[24] ✓ ✓   ✓ ✓ ✓ 
[69] ✓ ✓   ✓   
[43]        
[71]     ✓   
[25]        
[38]        
[30]  ✓   ✓ ✓  
[39]  ✓   ✓ ✓  
[17]  ✓   ✓   
[18]        
[82]     ✓   
[20] ✓   ✓    
[21]        
[22]   ✓     
[23]        
[1]   ✓     
[96]     ✓   
[4]   ✓     
[16] ✓  ✓     
[86]    ✓ ✓   
[40]  ✓   ✓ ✓  
[116]     ✓   
[41]  ✓   ✓   
This Study ✓ ✓ ✓ ✓ ✓ ✓ ✓  
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Table 4 
Comparison of current state-of-art of ubiquitous and SHM frameworks.  

Authors/ 
reference 

Architecture Methods/algorithm 
employed 

Dataset/sensors Data features Applicability domain Outcomes (Metrics and 
Results) 

[44] 3 – tier ML classifiers, Sampling 
techniques 

Chronic BP data with vital 
signs, symptoms, context and 
AAL data 

Context aware, Multi- 
class and imbalanced 
data 

Elderly and emergency 
healthcare 

Accuracy = 76–99 % 
F-score = 0.26–0.99 

[52] 4 – tier NB and Whale Optimization Chronic BP data with vital signs 
and symptoms. 

Multi-class and 
imbalanced data 

Elderly and emergency 
healthcare 

Accuracy = 91.1–96.8 % 
Minimum features 
selected = 5 

[45] 3 – tier Multinomial NB and Map- 
Reduce 

UCI-M-HEALTH Wearable 
sensor data 

Multi-class data Physical activity 
monitoring, Elderly care 
delivery. 

Accuracy = 97.1 % 

[66] 4 – tier Rule based classifier Cardiac disorder Context aware sensor 
data 
Binary (two-label) data 

Personal health 
monitoring 

Monitoring and Alerting 

[47] 2 – tier OCSVM ECG data Binary data Health data classification Accuracy = 92.5 % 
[54] 3 – tier k-NN UCI dataset of 

Electrocardiogram (ECG) data 
Small, Multi-class Disease data 

classification  
[67] 3 – tier ML algorithms: SVM, k-NN, 

DT, LR, DA 
Pima Indians Diabetes 
Database. 

Multivariate, Time 
series. 

Health monitoring in 
smart home perspective. 

SVM model Accuracy =
75 % 
AUC = 0.7 (approx.) 

[46] 4 – tier ANN model, Probabilistic 
state of vulnerability 
(PSoV) 

Smart sensor data collected for 
5 subjects. 

Multi-class data Wellness based 
Healthcare 

MSE = 0.26, 
MAE = 0.29, 
Correlation = 0.87. 

[53] 3 – tier LSTM (Deep Neural 
Network) 

Mental health and Diabetes data 
of patients from Australian 
Hospital. 

Real EHR and current 
data of patient. 

Healthcare and 
monitoring 

Maximum F-score(%) =
79 % for Diabetes 
Maximum F-score(%) =
75.4 % for Mental health 

[55] 3 – tier Similarity coefficient, Fuzzy 
k-NN, J48, Random 
decision tree, Naïve Bayes 

Adult Dataset https://archive. 
ics.uci.edu/ml/datasets/Adult 

Multivariate data Disease data 
classification 

Accuracy = 89 %–95.9 
%, Recall = 81.7–94.5, 
Precision = 89.2–92.4, F- 
measure = 85.1–93.4 

[56] 3 – tier DT, SVM, NB and k-NN Health datasets from UCI: 
Infectious disease and Heart 
disease. 

Multivariate data Smart student Healthcare 
monitoring, Multiple 
Disease data 
classification 

Results for Heart disease 
dataset using k-NN: 
Accuracy = 94.3, 
Sensitivity = 96.2, 
Specificity = 94.2, & F- 
measure = 96.7. 

[57] 3 – tier Data analysis Medical (ECG, Vital signs), 
Environmental and Context 
data 

Binary Emergency and Elderly 
healthcare. 

Focussed on Network 
QoS 

[58] 4 - Tier Deep Learning, Cloud 
Analytics, Novel Loss 
function. 

Vital signs, Symptoms and AAL 
data. 

Imbalanced, Context 
aware, Multi-class Big 
data 

Elderly and emergency 
healthcare, Chronic 
illness, RPM and 
recommendation 

Accuracy = 84–99 % 
F-Score = 0.84–0.99 

[59] 3 - Tier Deep Learning Vital signs, Symptoms and AAL 
data. 

Imbalanced, Context 
aware, Multi-class 
Big data 

Patient monitoring, 
Elderly and emergency 
healthcare, Chronic 
illness 

Accuracy = 99.97 % 
F-Score = 0.91–0.99 
Precision = 0.84–1 
Recall = 0.79–0.89 

[60] 4 – tier NB and Firefly algorithm Vital signs, Symptoms Context aware AAL 
data, Multi-class data 

Elderly and emergency 
healthcare 

Accuracy = 90.6–99 % 
F-score = 0.27–0.98 % 

[62] 3 – tier SVM, Data Novelty 
Analysis, Bayesian Belief 
Network 

Environmental and health 
dataset. 

Heterogeneous data Healthcare in Smart 
cities 

Accuracy = 99.8 % 
F-measure = 0.998 
Specificity = 0.99 

[51] 3 – tier SVM, NB, k-NN and DT. K- 
fold cross validation. 

Waterborne disease related 
dataset of 182 students 
including EHR, sensor, and 
environment and Context data. 

Multivariate data Smart student healthcare 
system 

DT Accuracy = 91.66 % 
Sensitivity = 0.9512 

[61] 4 – tier Severity Index, Bayesian 
classifier, k-NN, ANN and 
SVM 

Health, Environmental and AAL 
data. 

Heterogeneous data Healthcare in smart 
office environment. 

(Bayesian classifier) 
Accuracy = 96.5 % 
Sensitivity = 93.6 % 
F-measure = 94.3 % 

[64] 3 – tier Bayesian Belief Network 
(BBN) and Temporal Health 
Index (THI), 

Health data and Environmental 
data from UCI repository 

Temporal data of 67 
patients for 30 days. 

Patient monitoring, 
Elderly and emergency 
healthcare, Chronic 
illness. 

ROC = 0.948–0.984, 
F-Measure =
0.848–0.911, 
Precision = 0.857–0.928, 
Recall = 0.84–0.896 

[49] 3 – tier DT, ANN, SVM and 
Ensemble. 

Physiological, food 
consumption, and exercise data. 

Data of 12,366 people 
with 757,732 
dataItems. Two-class 
(Binary) data. 

Chronic disease 
monitoring, diagnosis 
and management 

Accuracy = 90 % approx. 

[50] 3 – tier Consensus clustering, 
“Sequential Minimal 
Optimization” (SMO), 
Bayes Net, NB Rank 
correlation coefficient. 

ECG data of 15 subjects. Binary, High 
dimensional. 

Real time monitoring of 
cardiac health 

Accuracy = 89.7 %–98.9 
%; 
Other QoS and Energy 
based metrics 

(continued on next page) 
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future” (HoF) and considers the wireless and mobile communications as 
a key requirement of the HoF. New technologies, system designs, and 
computing paradigms are required to accomplish such evolution, pre-
dominantly in the smart e-health domains. The paradigm for smart 
ubiquitous healthcare systems is the result of new issues to meet mul-
tiple system needs such as dependency, low latency, mobility, energy 
efficiency, responsiveness, security, and more. 

We believe that prospective RPM and medical care will build upon 
effective and reasonable implementation of ML in SHM. Application of 
complex algorithms for data analysis in SHM is possible, thus improving 
recommendations that prevent or reduce the likelihood of developing 
complications and enable early diagnosis of acute complications of 
chronic and other diseases. The vision of this research is to plan and 
develop ML and DL based tools for healthcare that use analytics, 
knowledge-driven learning, and logic-based examination to address 
data-to-knowledge gaps. IoT-driven tracking of everyday activities can 
also help healthy and active people for their well-being. In addition, the 
use of a cloud-based ML platform definitely improves the ability to 
handle Big Data. The authors [58,123] used a cloud-based ML platform 
(Azure) for disease classification. 

This work is a part of the revolution that provides endways pro-
cessing and intelligence for IoT-driven health care inventions for the 
prevention of CDs worldwide. The vision is to develop an understanding 
of “Knowledge Systems for Healthcare Applications” based on cognitive 
science. This comprehensive review is working to set the standard for 
healthcare IoT and accelerate innovation for physicians, patients, and 
hospitals willing to realize the feature of Analytics in SHM frameworks. 
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Table 4 (continued ) 

Authors/ 
reference 

Architecture Methods/algorithm 
employed 

Dataset/sensors Data features Applicability domain Outcomes (Metrics and 
Results) 

[65] 3 – tier Closed loop management. 
k-NN 

ECG – data Temporal data Patient monitoring, 
Elderly and emergency 
healthcare, Chronic 
illness. 

Accuracy = 93.6 % 

[63] 3 – tier RK-PCA, FaMOORA, 2 L- 
2HMM, SpikQ-Net and 
MoSHO 

Biomedical, environment and 
behavioral (context) data. 

Heterogeneous sensor 
data of 50 users. 
Binary 

Health monitoring Detection accuracy 
improvement = 97 % 
Latency reduction = 3 
ms. 
Execution time 
reduction = 1.7 ms. 

[68] 2 – tier Ensemble, LR, DT, Random 
Forest and XGBoost 

Vital signs and motion data Signal sensor data from 
RFID readers. 

Mental health (suicidal 
behaviour) 

Decision Tree: 
MAE = 0.01, 
MSE = 0.003. 

[48] 2 – tier SVM, Bayesian 
classification, Neural 
network. 

Biomedical data with WBAN, 
Environmental data, Location 
and Context data with Motion 
sensors 

Heterogeneous data, 
two-class data. 

Elderly care in Smart 
Home 

Helps as CDSS (Clinical 
Decision Support 
System).  
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