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Abstract: Cardiovascular disease, specifically heart failure, is a common complication for individuals
with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can
be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix
(ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of
AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate
within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can
bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering
ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small
GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream
outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses.
Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of
AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate
this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-
diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with
pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We
examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and
inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed
by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the
AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover,
Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well
as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally,
knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that
Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade.
These results demonstrated that Rap1a contributes to the myofibroblast population within the heart
via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new
potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular
complications attributed to AGE/RAGE signaling.

Keywords: diabetes; AGE/RAGE; Rap1a; inflammation; oxidative stress; heart; fibroblasts; myofi-
broblasts

1. Introduction

Cardiovascular disease, such as heart failure, is a common complication for patients
suffering from type 2 diabetes mellitus (T2DM). Heart failure can be attributed to left
ventricle (LV) hypertrophy, which results from increased oxidative stress, inflammation,
and cell-mediated remodeling of the extracellular matrix (ECM) [1,2]. A key cellular com-
ponent within the cardiac tissue contributing to these effects are cardiac fibroblasts, which
under healthy conditions, are primarily responsible for maintaining the ECM, and under
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pathological conditions can trigger cardiac fibroblast transition into myofibroblasts, as
indicated by increased alpha smooth muscle actin (α-SMA) expression [3–5]. In addition,
cardiac fibroblasts can contribute to inflammation and increased ROS (reactive oxygen
species) production within the cardiac tissue [6–9]. The combination of increased ECM pro-
duction, inflammation, and elevated ROS has been shown to exacerbate cardiac fibrosis, a
key causative factor in heart failure [4,6,7,9,10]. Furthermore, the generation and regulation
of both these mechanisms have been linked to the AGE/RAGE signaling cascade.

Advanced glycated end products (AGEs) exert influence on cellular signaling by bind-
ing and activating the receptor for advanced glycated end products (RAGEs). Overtime,
AGEs, formed through non-enzymatic reactions between a sugar and protein, accumulate
within the body, and this process is accelerated under diabetic conditions [11]. Within
the ECM, AGEs can form crosslinks between matrix proteins, impacting tissue rigidity
as well as stimulating intracellular signaling [12,13]. The signaling cascades elicited by
AGEs produce changes in expression of proteins associated with a wide range of effects
varying from oxidative stress/inflammation to ECM remodeling [13–16]. For example,
AGEs have been shown to increase the activity and expression of protein kinase C zeta
(PKC-ζ) and NADPH oxidase (NOX), which are major components of the nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidase complex [17–19]. The increase in NADPH
oxidase activity, triggered by AGE/RAGE, results in increased ROS production, which
can lead to increased expression of nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB), a transcription factor linked to inflammation [20,21]. NF-KB exhibits a
dynamic role within the RAGE signaling cascade, whereby phosphorylation of NF-KB can
be triggered directly by AGE/RAGE signaling or indirectly by ROS production as a prod-
uct of increased AGE/RAGE signaling, extracellular signal related-kinase 1/2 (ERK1/2)
activity, and/or tumor necrosis factor alpha (TNF-α) expression [15,21–24]. Increases in
AGE/RAGE mediated ROS and signaling proteins (NF-κB, PKC-ζ, and ERK1/2) have been
shown to alter the expression of superoxide dismutases (SODs), where SOD expression
has been linked to both PKC-ζ and ERK1/2 activity in neural cells [15,20,25–27]. Further-
more, many of these signaling and ROS proteins have been linked to impact expression
of proteins associated with ECM remodeling. For example, Lin et al., 2006 demonstrated
exposure to AGEs induced ROS production that further increased fibronectin synthesis, via
ERK activation, within rat mesangial cells and treatment with SODs appeared to reduce the
synthesis of fibronectin and ERK activaiton [14]. These studies highlight the complexity of
the AGE/RAGE signaling cascade and the numerous signaling molecules involved. To add
further complexity, we have identified a small GTPase, Rap1a, which we suspect overlaps
the AGE/RAGE signaling cascade to alter the expression of RAGE associated signaling
proteins to impact the downstream effect of the signaling cascade [28].

Repressor/activator protein 1a (Rap1a) is a small GTPase of the Ras superfamily
and is associated with multiple organ systems and signaling pathways [29]. Specifically,
within the cardiovascular system, Rap1a is involved in the development and function of
the heart, where it acts as a molecular switch linking extracellular signals to intracellular
responses [29,30]. Rap1a activation can be induced by the exchange protein activated by
cyclic AMP (EPAC) to elicit signaling cascades impacting effector proteins involved with
both the cardiovascular system and regulating oxidative stress [31,32]. In the cardiovascular
system, Rap1a has been documented to impact fibroblast migration and proliferation via
activation of ERK1/2 and PKC [28,33]. In addition, a study conducted by He et al.,
2010 showed that Rap1a in conjunction with ERK1/2 promoted hypertrophy in neonatal
ventricular myocytes [34]. Rap1a has also been verified to impact oxidative stress by
interacting and binding to p22phox, a subunit of the NADPH oxidase complex, which has
been linked to hypertrophy in vascular smooth muscle cells [35,36]. Additionally, Xia
et al., 2007 demonstrated that p22phox expression was increased by PKC-ζ activity under
hyperglycemic conditions [37]. Overall, these studies highlighted the link between Rap1a
and effector proteins, such as ERK1/2 and PKC, and their impact on oxidative stress and
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ECM remodeling in the cardiovascular system. Furthermore, these signaling proteins have
also been demonstrated to be activated by AGE/RAGE signaling [33,38,39].

There is very little information regarding the role of Rap1a in diabetes-induced
AGE/RAGE signaling. This study aims to better understand the effects of Rap1a on
signaling proteins associated with the AGE/RAGE cascade. Therefore, we hypothesized
that Rap1a crosses the AGE/RAGE cascade to alter expression of AGE/RAGE associated
signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To accomplish this, we
utilized isolated cardiac fibroblasts from genetically different mice and exposed the cells
to different pharmacological modifiers to manipulate AGE/RAGE signal cascade effector
proteins as well as Rap1a expression, and thus, affording us the ability to assess the impact
of Rap1a on the AGE/RAGE signaling cascade. These results determined that Rap1a
interacted with the AGE/RAGE cascade to modify signaling proteins that could affect
downstream mechanisms regulating oxidative stress and ECM remodeling within cardiac
fibroblasts.

2. Materials and Methods
2.1. Animal Models

Male Leprdb (db/db model) type 2 diabetes mellitus mice (BKS Cg-DOCK7m +/+
Leprdb/J, Jackson Labs; JAX# 00642) were utilized in this study. A point mutation in the lep-
tin receptor within the db/db mouse led to a nonfunctional leptin receptor. This mutation
resulted in obesity and insulin resistance to cause the development of hyperglycemia by 8
weeks of age and by 12 weeks of age overt diabetes. Heterozygous male mice (non-diabetic)
were used as lean controls. In addition, homozygous RAGE knockout (RKO) mice were
used for this study. Generation of RKO mice was achieved by flanking exons 2–7 with
two loxP sites in the same orientation and exposure to Cre recombinase, via breeding with
Cre deleter mice, resulted in the deletion of the loxP sites and exons 2–7 [40–43]. This
deletion results in a constitutive, global loss of RAGE mRNA expression and, in turn,
knocking out RAGE signaling within these mice. Furthermore, a reversely orientated
transcriptional EGFP reporter gene was inserted into intron 7 for confirmation of RAGE
exons 2–7 deletion. EGFP PCR genotyping reactions are performed as a positive control for
RAGE knockout mice. Documentation of loss of genomic RAGE and expression of EGFP
was presented in Burr et al. 2020 (https://doi.org/10.6084/m9.figshare.11299253, accessed
on 23 March 2020) [5]. RKO mice were crossbreed with heterozygous (non-diabetic) mice
to generate RAGE knockout non-diabetic (non-diabetic RKO) and diabetic (diabetic RKO)
mice [5,40,41]. Breeder RAGE knockout mice were a generous gift from Dr. Pamela Luc-
chesi and Dr. Angelika Bierhaus. Male Rap1a knockout mice (Rap1a KO) were utilized
within this study as well. The Rap1a mouse model was generated by inserting a neomycin
resistant gene downstream of exon 4 of RAP1A in the opposite (3′–5′) orientation. In order
to insert the resistance gene, a targeting vector (a 0.95 kb Pyull-Ndel fragment) was used to
disrupt Rap1a mRNA expression [44]. Breeder Rap1a mice were a generous gift from Dr.
Maqsood Chotani and Dr. Lawrence Quilliam.

2.2. Animal Care

Animals were housed under standard environmental conditions with 12 h/12 h
light/dark cycle and maintained on commercial mouse chow and tap water ad libitum.
All studies conducted followed the principles of the National Institutes of Health “Guide
for the Care and Use of Laboratory Animals,” (NIH publication No. 85–12, revised 1996).
The animal protocol was approved by the University of Mississippi Institutional Animal
Care and Use Committee (protocol #17-024). Anesthesia for euthanasia at the experimental
endpoint of 16 weeks of age was caused by CO2 inhalation followed by cervical dislocation,
which served as a secondary mechanism for euthanasia. Body weight and non-fasting
blood glucose levels were determined (Table 1), followed by opening the chest cavity and
quickly removing the heart for further cellular biochemical experiments.

https://doi.org/10.6084/m9.figshare.11299253
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Table 1. Physiology measurements of mice used within this study.

Body Weight (g)
Heart Weight (g) Blood Glucose

(mg/dL)Body Weight (g)

Non-Diabetic (n = 30) 28.87 ± 0.2489 0.0038 ± 4.640 × 10−5 195.1 ± 4.932
Diabetic (n = 16) 51.91 ± 0.7320 **** 0.0022 ± 5.594 × 10−5 **** 514.2 ± 20.71 ****

Non-Diabetic RKO (n = 24) 31.11 ± 0.4346 ** 0.0039 ± 7.490 × 10−5 189.9 ± 5.366
Diabetic RKO (n = 14) 54.81 ± 0.7934 **** 0.0024 ± 8.008 × 10−5 **** 448.9 ± 20.09 ****

Rap1a KO (n = 27) 27.50 ± 0.3493 0.0040 ± 6.563 × 10−5 197.0 ± 6.119

Heart weight, body weight, and non-fasting blood glucose levels were measured before isolation of cardiac
fibroblasts. Data presented consists of mean ± SEM. On average, each cardiac fibroblast isolation consisted of
2–3 hearts. Statistical analysis consisted of a one-way ANOVA followed by a Dunnett’s post hoc compared to
non-diabetic mice to determine significant differences (** p < 0.01, **** p < 0.0001).

2.3. Cardiac Fibroblast Isolation

Hearts were removed from mouse chest cavity, atria and great vessels were dissected
away, and the ventricles were weighed (Table 1). Under sterile conditions, hearts were cut
into approximately 5-mm sections and placed in a collagenase–trypsin enzymatic solution
(0.1% Trypsin, Gibco; 100 U/mL collagenase II, Worthington Biochemical, Lakewood, NJ,
USA) [4]. Fibroblasts were continually mixed until hearts were broken down into a single
cell suspension. The cell suspension was centrifuged and resuspended in high glucose
Dulbecco’s modified Eagles medium (DMEM) media (high glucose media) containing
4.5 g/L glucose, L-glutamine, sodium pyruvate, and supplemented with 14.9 mM HEPES,
14.2 mM NaHCO3, 1% L-glutamine, 0.02% Primocin™ (Thermo Fisher, Waltham, MA,
USA), and 15% heat-inactivated fetal bovine serum (FBS) for 24 h in an incubator (5%
CO2; 37 ◦C). After 24 h, fibroblasts were washed with appropriate media (non-diabetic
and Rap1a fibroblasts: low glucose; 1 g glucose/L and diabetic fibroblasts: high glucose;
4.5 g glucose/L) three times and then incubated at 37 ◦C. Two to three hearts were used
per one cardiac fibroblast isolation, where one isolation equals one sample (n = 1). Cardiac
fibroblasts isolated from specific mouse lines are referred to by their descriptor, for example
diabetic mice are referred to as diabetic fibroblasts.

2.4. Cell Culture and Treatment with Pharmacological Modifiers

Cells were passaged when 90–95% confluency was reached using a 0.25% trypsin/0.1%
ethylenediaminetetraacetic acid (trypsin/EDTA) solution (Life Technology). All experi-
ments were performed with passage 1 fibroblasts in order to ensure maintenance of cell
in vivo phenotype within the in vitro system. Once fibroblasts reached 90–95% confluency,
cells were rinsed with sterile 1X phosphate buffered saline solution (1× PBS), followed
by incubating fibroblasts in starving DMEM (0.01% FBS) for 24 h. After 24 h, cell media
was replaced with fresh low serum DMEM and incubated for 1 h. Next, pharmacological
modifiers were added to the fibroblasts. The following modifiers were utilized within this
study: EPAC (100 µM), exogenous AGEs (0.5 mg/mL; albumin, glycated human, Sigma
Aldrich A8301), PKC-ζ pseudosubstrate (1 µg/mL; ps-PKC-ζ), Rap1a siRNA (100 nM),
and scrambled control siRNA (100 nM). Cardiac fibroblasts and pharmacological modifiers
were placed in incubator for 24 h. After 24 h the cells were collected for protein isolation
and western blot analysis. Rap1a siRNA was utilized for the experimental study design
in order to reduce Rap1a expression in cells that are able to produce functional Rap1a
and allowed for examination of the impact temporal reduction of Rap1a has on cardiac
fibroblast protein expression. Exposing cells with Rap1a to Rap1a siRNA also served
as a secondary method to examine the impact of Rap1a on cardiac fibroblasts. Data for
scrambled control siRNA is presented here 10.6084/m9.figshare.12625409.
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2.5. Protein Isolation and Western Blot Analysis

Protein was isolated from cardiac fibroblasts using modified Hunter buffer (MHB:
75 mM NaCl, 0.5 mM orthovanadate, 5 mM Tris-Base, 0.5 mM ECTA, 0.5 mM EGTA, 1%
Triton X-100, 0.25% NP-40, pH 7.4) and freshly added Halt protease inhibitor cocktail
(100×; Thermo Fisher). Fibroblasts were incubated on ice with MHB for 10 min, followed
by probe-sonication. Cell lysates were centrifuged for 15 min at 32,000× g at 4 ◦C and
supernatant was removed and stored at−80 ◦C. Concentrations of protein were determined
using a bicinchoninic acid assay (BCA; Pierce Biotechnology, city, abbreviation of state if
USA, country) according to manufacturer’s directions; 10 µg of protein were loaded per
sample for western blot analysis. Primary antibodies used were as follows: monoclonal
alpha smooth muscle action (α-SMA, 42 kDa; 1:400; Sigma Aldrich #2547), phosphorylated
nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB, 65 kDa; 1:400;
Santa Cruz Biotechnology sc-136548), superoxide dismutase 1 (SOD-1, 23 kDa; 1:400; Santa
Cruz Biotechnology sc-101523), repressor activator protein 1a (Rap1a, 21 kDa; 1:400; abcam
ab96223), phosphorylated extracellular signal-regulated kinase (p-ERK1/2, 42 and 44kDa;
1:400; Santa Cruz Biotechnology sc-7383), extracellular signal-regulated kinase 1 and 2
(ERK1/2 44 and 42 kDa respectively; 1:400; Santa Cruz Biotechnology sc-271269 and sc-
1647), phosphorylated protein kinase C zeta (p-PKC-ζ, 72 kDa; 1:400; Abcam ab62372),
and beta tubulin (β-tubulin, 55 kDa; 1:400; Santa Cruz Biotechnology sc-398937). Brilliant
Blue Coomassie staining was used to label total protein. β-tubulin was used as a loading
control to normalize protein expression for all proteins except for p-ERK1/2. P-ERK1/2
was normalized to total ERK1/2 protein expression. β-tubulin was utilized as a loading
control for p-PKC-ζ and p-NF-κB due to the antibodies used to assess total protein for PKC-
ζ and NF-κB were not reliable on a consistent basis. Due to this limitation within our study
design, we refer to the results generated from p-NF-κB and p-PKC-ζ as changes in protein
expression and not as changes in activity. An Invitrogen iBRIGHT™ imaging system was
used to visualize western blots, and Image J was used for analysis. Representative western
blot images are depicted above each graph but are not presented as a continuous blot due
to running order not aligning with the graphical order of the samples. The original western
blot images are available at DOI:10.6084/m9.figshare.12625409.

2.6. Hydrogen Peroxide Assay

Protein lysates were used with OxiSelect hydrogen peroxide/peroxidase assay kit (Bi-
oLabs, STA-344) following manufacturer instructions, to assess concentration of hydrogen
peroxide. Briefly, protein samples were incubated for 30 min with hydrogen peroxide work-
ing solution at room temperature in the dark. The colorimetric assay was analyzed with
spectrometer at wavelength 540 nm. Concentration of hydrogen peroxide was determined
based off a standard curve.

2.7. Statistical Analysis

Graph Prism software, version 8.4.2 was used for statistical analysis. A two-way
ANOVA was conducted to determine significance for the data presented in Figure 1. A one-
way ANOVA was conducted for all figures except for Figure 1. A Fisher’s protected least
significant difference post hoc test was conducted to determine differences between groups.
Statistical p values indicated in the result section referred to the p value generated by the
ANOVA and are not indicating the p value for the post hoc analysis. The p value for the
post hoc analysis is indicated in the figures.
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Figure 1. Diabetic conditions and exogenous AGEs caused a shift in expression of proteins associated
with the RAGE signaling cascade. Cardiac fibroblasts were isolated from non-diabetic, diabetic, non-
diabetic RKO, and diabetic RKO mice hearts and were either untreated or treated with exogenous AGEs
(0.5 mg/mL). Protein expression was assessed for (A,B) α-SMA (42 kDA), (C,D) p-NF-κB (65 kDa), and
(E,F) SOD-1 (23 kDa) in cardiac fibroblasts. Expression data were normalized to β-tubulin (55 kDa)
protein expression and mean ± SEM are depicted on graph (n = 8–12). Representative western blot
images are shown above graphs, but are not displayed as a continuous blot due to running order
on the blot not aligning with graphical order of samples. However, original western blot images are
available at DOI:10.6084/m9.figshare.12625409. A two-way ANOVA followed by a Fisher’s protected
least significant difference post hoc determined significance. (* p < 0.05, ** p < 0.01, *** p < 0.001).

3. Results
3.1. Diabetic Conditions and Exogenous AGEs Caused a Shift in Expression of Proteins Associated
with the RAGE Signaling Cascade

To assess the impact of RAGE signaling on cardiac fibroblasts, protein expression
in untreated and AGE treated fibroblasts was examined. Protein expression analysis
found that untreated non-diabetic and diabetic fibroblasts with functional RAGE had
significantly more α-SMA expression compared to cells treated with exogenous AGEs
(Figure 1A; two-way ANOVA, treatment p = 0.0002). Cardiac fibroblasts, both non-diabetic
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and diabetic, lacking functional RAGE (RAGE knockout; RKO) did not have a change in
α-SMA expression between untreated and exogenous AGE treatment groups (Figure 1B;
two-way ANOVA, treatment p = 0.9649). However, α-SMA expression was impacted
by diabetic conditions in RKO cells where diabetic RKO fibroblasts had significantly
more α-SMA compared to non-diabetic RKO (two-way ANOVA, genotype p = 0.0182).
Exogenous AGE treatment resulted in significantly higher expression of p-NF-κB in non-
diabetic and diabetic fibroblasts with functional RAGE, whereas p-NF-κB expression in
RKO fibroblasts was not altered with exogenous AGE exposure (Figure 1C,D; two-way
ANOVA treatment p < 0.0001 and p = 0.6929, respectively). Oxidative stress indicator,
SOD-1 was significantly higher in diabetic cells treated with exogenous AGEs but not in
non-diabetic cells (Figure 1E; two-way ANOVA, treatment p = 0.0522). RKO cells did not
exhibit any changes in SOD-1 expression when treated with exogenous AGEs (Figure 1F;
two-way ANOVA, treatment p = 0.9671). These results indicate AGE treatment decreased
α-SMA and increased p-NF-κB expression in fibroblasts with functional RAGE.

3.2. Treatment with Exogenous AGEs and EPAC Resulted in an Increase in Rap1a Protein Expression

Examination of the relationship between Rap1a and the AGE/RAGE cascade was
conducted by assessing the impact of AGE/RAGE signaling on Rap1a protein expression.
Treatment of non-diabetic fibroblasts with exogenous AGEs and EPAC + exogenous AGEs
caused an increase in Rap1a expression compared to untreated cells, but this change in
Rap1a expression remained the same in diabetic cells (Figure 2A,B; one-way ANOVA
p = 0.0002 and p = 0.0017, respectively). Treatment with Rap1a siRNA caused a significant
decrease in Rap1a expression in non-diabetic and diabetic cells compared untreated cells.
This decrease was attenuated, in both non-diabetic and diabetic cells, when cells were
treated with Rap1a siRNA and exogenous AGEs. However, the expression of Rap1a in cells
treated with Rap1a siRNA + exogenous AGEs did not reach the levels of Rap1a expression
noted in untreated cells. The data indicates Rap1a expression can be modified by both
exogenous AGEs and Rap1a siRNA.
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Figure 2. Treatment with exogenous AGEs and EPAC induced an increase in Rap1a protein expres-
sion. Cardiac fibroblasts were isolated from non-diabetic and diabetic mice hearts. Fibroblasts were
either untreated, treated with a single pharmacological modifier, or treated in combination with
EPAC (100 µM), EPAC+AGE (100 µM and 0.5 mg/mL, respectively), Rap1a siRNA (100 nM), or
Rap1a siRNA + AGE (100 nM and 0.5 mg/mL, respectively). Rap1a (21 kDa) protein expression was
assessed in (A) non-diabetic and (B) diabetic fibroblasts. Expression of Rap1a was normalized to
β-tubulin (55 kDa) and mean ± SEM are depicted (n = 5–11). Representative western blot images are
shown above graphs but are not displayed as a continuous blot due to running order on the blot not
aligning with graphical order of samples. However, original western blot images are available at
DOI:10.6084/m9.figshare.12625409. Statistical analysis consisted of one-way ANOVA followed by a
Fisher’s protected least significant difference post hoc (* p < 0.5, ** p < 0.01, *** p < 0.001).



Cells 2021, 10, 557 8 of 23

3.3. Increased AGE/RAGE Signaling and Reduced Rap1a Expression Resulted in a Decrease in
α-SMA Expression

To determine the impact of AGE/RAGE signaling on fibroblast differentiation, changes
in α-SMA expression were assessed in non-diabetic, diabetic, and Rap1a KO fibroblasts.
Treatment with EPAC did not alter α-SMA expression in non-diabetic, diabetic, or Rap1a
KO fibroblasts (Figure 3A–C). Treatment with exogenous AGEs caused significant decrease
in α-SMA expression in non-diabetic, diabetic, and Rap1a KO fibroblasts (Figure 3A–C;
one-way ANOVA, p = 0.0307, p < 0.0001, and p = 0.0362, respectively). While α-SMA
expression in cells treated with exogenous AGEs + EPAC was less than in untreated cells
(significantly less only in diabetic cells), it did not differ from cells treated solely with
exogenous AGEs. Both non-diabetic and diabetic cells exhibited a decrease in α-SMA
protein expression when treated with Rap1a siRNA; however, the decrease displayed by
diabetic cells was significantly different compared to untreated diabetic cells. Rap1a KO
cells did not exhibit any changes in α-SMA expression when treated with Rap1a siRNA.
Treatment with Rap1a siRNA and exogenous AGEs resulted in significantly less α-SMA
expression in non-diabetic, diabetic, and Rap1a KO cells. Both non-diabetic and diabetic
RKO cardiac fibroblasts did not display any significant changes in α-SMA expression in the
different treatment groups (Supplementary Figure S1A,B; one-way ANOVA p = 0.9639 and
p = 0.3769, respectively). These results suggested that exogenous AGEs led to a decrease in
α-SMA expression which further loss was prevented by the presence of Rap1a.

Cells 2021, 10, x FOR PEER REVIEW 8 of 23 
 

 

Rap1a siRNA + AGE (100 nM and 0.5 mg/mL, respectively). Rap1a (21 kDa) protein expression was 

assessed in (A) non-diabetic and (B) diabetic fibroblasts. Expression of Rap1a was normalized to β-

tubulin (55 kDa) and mean ± SEM are depicted (n = 5–11). Representative western blot images are 

shown above graphs but are not displayed as a continuous blot due to running order on the blot not 

aligning with graphical order of samples. However, original western blot images are available at 

DOI:10.6084/m9.figshare.12625409. Statistical analysis consisted of one-way ANOVA followed by a 

Fisher’s protected least significant difference post hoc (* p < 0.5, ** p < 0.01, *** p < 0.001). 

3.3. Increased AGE/RAGE Signaling and Reduced Rap1a Expression Resulted in a Decrease in 

α-SMA Expression 

To determine the impact of AGE/RAGE signaling on fibroblast differentiation, 

changes in α-SMA expression were assessed in non-diabetic, diabetic, and Rap1a KO fi-

broblasts. Treatment with EPAC did not alter α-SMA expression in non-diabetic, diabetic, 

or Rap1a KO fibroblasts (Figure 3A–C). Treatment with exogenous AGEs caused signifi-

cant decrease in α-SMA expression in non-diabetic, diabetic, and Rap1a KO fibroblasts 

(Figure 3A–C; one-way ANOVA, p = 0.0307, p < 0.0001, and p = 0.0362, respectively). While 

α-SMA expression in cells treated with exogenous AGEs + EPAC was less than in un-

treated cells (significantly less only in diabetic cells), it did not differ from cells treated 

solely with exogenous AGEs. Both non-diabetic and diabetic cells exhibited a decrease in 

α-SMA protein expression when treated with Rap1a siRNA; however, the decrease dis-

played by diabetic cells was significantly different compared to untreated diabetic cells. 

Rap1a KO cells did not exhibit any changes in α-SMA expression when treated with Rap1a 

siRNA. Treatment with Rap1a siRNA and exogenous AGEs resulted in significantly less 

α-SMA expression in non-diabetic, diabetic, and Rap1a KO cells. Both non-diabetic and 

diabetic RKO cardiac fibroblasts did not display any significant changes in α-SMA expres-

sion in the different treatment groups (Supplementary Figure S1A,B; one-way ANOVA p 

= 0.9639 and p = 0.3769, respectively). These results suggested that exogenous AGEs led to 

a decrease in α-SMA expression which further loss was prevented by the presence of 

Rap1a. 

 

Figure 3. Increased AGE/RAGE signaling and reduced Rap1a expression induced a decrease in α-

SMA expression. Cardiac fibroblasts were isolated from (A) non-diabetic, (B) diabetic, and (C) 

Rap1a KO mice hearts. Fibroblasts were either untreated, treated with a single pharmacological 

modifier, or treated in combination with EPAC (100 µM), EPAC + AGE (100 µM and 0.5 mg/mL, 

respectively), Rap1a siRNA (100 nM), or Rap1a siRNA + AGE (100 nM and 0.5 mg/mL, respectively). 

α-SMA (42 kDa) expression was assessed in cardiac fibroblasts. Expression of α-SMA was normal-

ized to β-tubulin (55 kDa) and mean ± SEM are depicted on graphs (n = 5–11). Data depicted for 

Figure 3. Increased AGE/RAGE signaling and reduced Rap1a expression induced a decrease in α-
SMA expression. Cardiac fibroblasts were isolated from (A) non-diabetic, (B) diabetic, and (C) Rap1a
KO mice hearts. Fibroblasts were either untreated, treated with a single pharmacological modifier, or
treated in combination with EPAC (100 µM), EPAC + AGE (100 µM and 0.5 mg/mL, respectively),
Rap1a siRNA (100 nM), or Rap1a siRNA + AGE (100 nM and 0.5 mg/mL, respectively). α-SMA
(42 kDa) expression was assessed in cardiac fibroblasts. Expression of α-SMA was normalized to
β-tubulin (55 kDa) and mean ± SEM are depicted on graphs (n = 5–11). Data depicted for exogenous
AGE treatment group for non-diabetic and diabetic fibroblasts were previously presented Figure 1.
Representative western blot images are shown above graphs but are not displayed as a continuous
blot due to running order on the blot not aligning with graphical order of samples. However, original
western blot images are available at DOI:10.6084/m9.figshare.12625409. Statistical analysis consisted
of a one-way ANOVA followed by a Fisher’s protected least significant difference post hoc (* p < 0.5,
** p < 0.01, *** p < 0.001, **** p < 0.0001).
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3.4. The Presence of Rap1a Mediated an AGE/RAGE Induced Increase in Inflammation Mediator
p-NF-κB Expression

Inflammation is a well-described outcome of AGE/RAGE signaling and in order
to determine the impact of Rap1a and AGE/RAGE signaling on inflammation, we ex-
amined changes in p-NF-κB expression. Treatment with EPAC alone did not cause a
significant change in p-NF-κB expression while treatment with exogenous AGEs resulted
in a significant increase in p-NF-κB expression in both non-diabetic and diabetic fibroblasts
compared to untreated cells (Figure 4A,B; one-way ANOVA p = 0.0009 and p ≤ 0.0001,
respectively). Furthermore, the combined exposure of exogenous AGE and EPAC caused
significantly more p-NF-κB expression in non-diabetic and diabetic cells; however, ex-
pression of p-NF-κB was not greater than exogenous AGE treatment alone. Reduction of
Rap1a expression via Rap1a siRNA did not produce a change in p-NF-κB in non-diabetic
and diabetic cells compared to untreated cells. However, expression of p-NF-κB in siRNA
treated non-diabetic and diabetic cells was significant less than exogenous AGE treated
non-diabetic and diabetic fibroblasts. Non-diabetic and diabetic cells treated with exoge-
nous AGEs + Rap1a siRNA displayed significantly less p-NF-κB expression compared to
cells treated with exogenous AGE alone. Rap1a KO cells did not display any changes in
p-NF-κB protein expression when exposure to the pharmacological modifiers (Figure 4C;
one-way ANOVA p = 0.9134). Similarly, non-diabetic and diabetic RKO fibroblasts did
not exhibit any changes in p-NF-κB expression between the different treatment groups
(Supplementary Figure S1C,D; one-way ANOVA p = 0.9897 and p = 0.9936, respectively).
The data indicates that exogenous AGEs with Rap1a produced an increase in p-NF-κB
expression.
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Figure 4. The presence of Rap1a mediated an AGE/RAGE induced increase in p-NF-κB expression.
Cardiac fibroblasts isolated from (A) non-diabetic, (B) diabetic, and (C) Rap1a KO hearts were either
untreated or treated with pharmacological modifiers, either solo or in combination: EPAC (100 µM),
EPAC + AGE (100 µM and 0.5 mg/mL, respectively), Rap1a siRNA (100 nM), or Rap1a siRNA +
AGE (100 nM and 0.5 mg/mL, respectively). Phosphorylation of NF-κB (65 kDa) was assessed and
protein expression was normalized to β-tubulin (55 kDa) expression. Data depicted for exogenous
AGE treatment group for non-diabetic and diabetic fibroblasts were previously presented Figure 1.
Representative western blot images are shown above graphs but are not displayed as a continuous
blot due to running order on the blot not aligning with graphical order of samples. However, original
western blot images are available at DOI:10.6084/m9.figshare.12625409. Graph depicts mean ± SEM
with n = 5–9 and statistical analysis consisted of one-way ANOVA followed by a Fisher’s protected
least significant difference post hoc (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

3.5. Reduced Rap1a Expression Caused Increased SOD-1 Expression

Examination of SOD-1 expression was conducted to assess the effects of Rap1a activity
and AGE/RAGE signaling have on mediating changes in proteins associated with oxidative
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stress within cardiac fibroblasts. Non-diabetic and diabetic fibroblasts did not exhibit any
changes in SOD-1 expression when treated with EPAC, exogenous AGEs, or exogenous
AGEs + EPAC compared to untreated controls (Figure 5A,B; one-way ANOVA p = 0.0868
and p = 0.0003, respectively). However, treatment with Rap1a siRNA resulted in an increase
in SOD-1 expression in non-diabetic and diabetic fibroblasts, and there was a significant
increase in SOD-1 expression in diabetic cells. Non-diabetic and diabetic fibroblasts treated
with exogenous AGEs + Rap1a siRNA saw a slight increase in SOD-1 expression, but it
was only significantly different in diabetic cells compared to untreated control. A similar
pattern was noted in non-diabetic and diabetic RKO fibroblasts with regard to Rap1a
siRNA treatment. RKO cells treated with Rap1a siRNA and exogenous AGEs + Rap1a
siRNA displayed significantly more SOD-1 expression compared to untreated RKO cells
(Supplementary Figure S1E,F; one-way ANOVA p = 0.0019 and p < 0.0001, respectively).
Treatment groups that did not contain Rap1a siRNA showed no change in SOD-1 expression
compared to the untreated control in both non-diabetic and diabetic RKO fibroblasts. In
contrast, Rap1a KO fibroblasts did not exhibit any changes in SOD-1 expression when
exposed to the different treatment groups (Figure 5C; one-way ANOVA p = 0.8942). The
results indicate that SOD-1 expression was increased when Rap1a expression was reduced.
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Figure 5. Reduced Rap1a expression caused increased SOD-1 expression. (A) Non-diabetic, (B)
diabetic, and (C) Rap1a KO cardiac fibroblasts were isolated and treated with different combinations
of EPAC (100 µM), AGE (0.5 mg/mL), and Rap1a siRNA (100 nM). SOD-1 (23 kDa) protein expres-
sion was normalized to β-tubulin (55 kDa) protein expression. Data depicted for exogenous AGE
treatment group for non-diabetic and diabetic fibroblasts were previously presented Figure 1. Repre-
sentative western blot images are shown above graphs but are not displayed as a continuous blot due
to running order on the blot not aligning with graphical order of samples. However, original western
blot images are available at DOI:10.6084/m9.figshare.12625409. Mean ± SEM are depicted in graphs
(n = 7–9) with significance determined by one-way ANOVA followed by a Fisher’s protected least
significant difference post hoc (* p < 0.05, *** p < 0.001, **** p < 0.0001).

3.6. AGE/RAGE Signaling Induced Elevated Levels of Hydrogen Peroxide in Non-Diabetic and
Rap1a KO Cardiac Fibroblasts

Due to the impact AGE/RAGE signaling on the expression of proteins associated
with inflammation/oxidative stress, hydrogen peroxide concentration was assessed in
cardiac fibroblasts. Non-diabetic fibroblasts treated with exogenous AGEs as well as exoge-
nous AGEs + EPAC displayed a significant increase in hydrogen peroxide concentration
compared to untreated cells (Figure 6A; one-way ANOVA p = 0.0430). While exposure to
Rap1a siRNA did not cause a significant change in hydrogen peroxide concentration, the
levels of hydrogen peroxide were higher than untreated cells but lower than exogenous
AGE+EPAC treated cell levels. Diabetic fibroblasts did not exhibit any changes in hydro-
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gen peroxide concentration between the different treatment groups (Figure 6B; one-way
ANOVA p = 0.9290). Treatment groups containing exogenous AGEs produced a significant
increase in hydrogen peroxide concentration in Rap1a KO fibroblasts (Figure 6C; one-way
ANOVA p = 0.0204). Non-diabetic and diabetic RKO fibroblasts did not show any changes
in hydrogen peroxide levels between the different treatment groups and the untreated cells
(Supplementary Figure S2A,B; one-way ANOVA p = 0.3684 and p = 0.9980, respectively).
In addition, diabetic fibroblasts displayed significantly more hydrogen peroxide concen-
tration compared to non-diabetic, Rap1a KO, non-diabetic RKO, and diabetic RKO cells
(Supplementary Figure S3; one-way ANOVA p = 0.0012). The data suggests that increased
AGE activation of RAGE produced an increase in hydrogen peroxide concentration in
non-diabetic and Rap1a KO fibroblasts.
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Figure 6. AGE/RAGE signaling induced elevated levels of hydrogen peroxide in non-diabetic and
Rap1a KO cardiac fibroblasts. Cardiac fibroblasts isolated from (A) non-diabetic, (B) diabetic, and
(C) Rap1a KO mice were treated with different combinations of pharmacological modifiers: EPAC
(100 µM), exogenous AGEs (0.5 mg/mL), and Rap1a siRNA (100 nM). Cell lysates were collected
and assessed for concentration of hydrogen peroxide. Values graphed are mean ± SEM (n = 4–13)
and a one-way ANOVA followed by a Fisher’s protected least significant difference post hoc was
conducted to determine significance (* p < 0.05 and ** p < 0.01).

3.7. Rap1a Mediated AGE/RAGE Induced ERK1/2 Activation in Cardiac Fibroblasts

In order to assess downstream AGE/RAGE signaling proteins, the expression of
p-ERK1/2 was examined. EPAC treated non-diabetic and diabetic fibroblasts did not have
significant changes in p-ERK1/2 expression compared to untreated cells (Figure 7A,B).
Treatment with exogenous AGEs caused an increase in p-ERK1/2 expression in non-
diabetic cells, and a significant increase in diabetic fibroblasts compared to untreated
control (Figure 7A,B; one-way ANOVA p = 0.0061 and p = 0.0004, respectively). Rap1a
KO fibroblasts did not exhibit an increase in p-ERK expression with EPAC treatment but
did show a slight yet non-significant change when exposed to exogenous AGEs when
compared to Rap1a untreated cells (Figure 7C; one-way ANOVA p = 0.8755). Treatment
with exogenous AGEs + EPAC produced a significant increase in p-ERK1/2 in non-diabetic
and diabetic fibroblasts and no change in Rap1a KO cells. Rap1a siRNA treatment caused
a significant decrease in p-ERK1/2 expression compared to exogenous AGE treated cells in
both non-diabetic and diabetic cells. However, expression of p-ERK1/2 in Rap1a siRNA
treated non-diabetic and diabetic cells did not significantly differ from the untreated cells.
Rap1a KO cells showed no change in expression levels of p-ERK1/2 in untreated and
Rap1a siRNA treated groups. The decrease in p-ERK1/2 expression was attenuated in
both non-diabetic and diabetic fibroblasts with combined exposure of both exogenous
AGEs and Rap1a siRNA. The level of p-ERK1/2 expression was not restored to AGE or
AGE+EPAC levels. Non-diabetic RKO cells did not display any changes in p-ERK1/2
expression within any of the different treatment groups (Supplementary Figure S4A; one-
way ANOVA p = 0.9808). However, some changes in p-ERK1/2 expression did occur with
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diabetic RKO fibroblasts when Rap1a activity was altered where treatment with Rap1a
siRNA to cause a significant decrease in p-ERK1/2 expression compared to untreated
cells (Supplementary Figure S4B; one-way ANOVA p = 0.0025). These results suggest that
exogenous AGEs with EPAC activation of Rap1a led to an increase in ERK1/2 activity in
fibroblasts with functional RAGE and Rap1a.
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Figure 7. Rap1a mediated AGE/RAGE induced ERK1/2 activation in cardiac fibroblasts. Cardiac
fibroblasts isolated from (A) non-diabetic, (B) diabetic, and (C) Rap1a KO mouse hearts were treated
with pharmacological modifiers either solo or in combination: EPAC (100 µM), exogenous AGEs
(0.5 mg/mL), and Rap1a siRNA (100 nM). Protein expression of p-ERK1/2 (42 and 44 kDa) was
normalized to total ERK1/2 (44 and 42 kDa, respectively) expression. Representative western blot
images are shown above graphs but are not displayed as a continuous blot due to running order on
the blot not aligning with graphical order of samples. However, original western blot images are
available at DOI:10.6084/m9.figshare.12625409. Values graphed represent mean ± SEM (n = 6–10)
with an one-way ANOVA followed by a Fisher’s protected least significant difference post hoc
determining significance (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

3.8. Rap1a Modified p-PKC-ζ Expression Both Dependently and Independently of AGE/RAGE
Signaling

In order to better understand the AGE/RAGE signaling cascade and the impact of
Rap1a, we examined changes in p-PKC-ζ expression. Non-diabetic fibroblasts treated with
EPAC or exogenous AGEs did not display any significant changes in p-PKC-ζ expression
(Figure 8A; one-way ANOVA p = 0.0021). However, reduction in Rap1a expression through
Rap1a siRNA resulted in a significant increase in p-PKC-ζ expression in non-diabetic
cells compared to untreated non-diabetic fibroblasts. The increase in p-PKC-ζ was not
exhibited when non-diabetic cells were treated with Rap1a siRNA + exogenous AGEs.
The same trend occurred with diabetic fibroblasts with slight modifications. Diabetic cells
treated with exogenous AGEs as well as EPAC + exogenous AGEs exhibited a significant
decrease in p-PKC-ζ expression compared to untreated diabetic cells (Figure 8B; one-way
ANOVA p = 0.0052), while treatment with Rap1a siRNA caused significantly more p-PKC-ζ
expression to occur compared to EPAC, exogenous AGE, and EPAC + exogenous AGE
treated cells. In contrast, Rap1a KO fibroblasts did not show any changes in p-PKC-ζ
expression within the different treatment groups (Figure 8C; one-way ANOVA p = 0.9982).
Both non-diabetic and diabetic RKO cardiac fibroblasts did not exhibit any changes in
p-PKC-ζ expression within the different treatment groups (Supplementary Figure S4C,D;
one-way ANOVA p = 0.9380 and p = 0.8907, respectively). The data indicates that reduced
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Rap1a expression resulted in a significant increase in p-PKC- expression in fibroblasts with
functional RAGE and Rap1a.
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Figure 8. Rap1a modified p-PKC-ζ expression both dependently and independently of AGE/RAGE
signaling. Total protein was isolated from (A) non-diabetic, (B) diabetic, and (C) Rap1a KO cardiac
fibroblasts. Pharmacological modifiers EPAC (100 µM), exogenous AGEs (0.5 mg/mL), and Rap1a
siRNA (100 nM) were added to fibroblasts either solo or in combination. p-PKC-ζ (72 kDa) protein
expression was normalized to β-tubulin (55 kDa) protein expression. Representative western blot
images are shown above graphs but are not displayed as a continuous blot due to running order on
the blot not aligning with graphical order of samples. However, original western blot images are
available at DOI:10.6084/m9.figshare.12625409. Mean ± SEM are displayed in the graphs (n = 5–10)
and significance was determined with a one-way ANOVA followed by a Fisher’s protected least
significant difference post hoc (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

3.9. Inhibition of p-PKC-ζ Caused a Slight Decrease in RAGE Associated Proteins Which Was
Further Attenuated with Rap1a siRNA Treatment

Determining the intersection of Rap1a on the AGE/RAGE signaling cascade was
accomplished by treating cardiac fibroblasts with ps PKC-ζ in the presence of increased or
decreased Rap1a activity/expression. EPAC treatment did not cause a change in α-SMA
expression in non-diabetic, diabetic, or Rap1a KO cardiac fibroblasts compared to untreated
cells (Figure 9A–C; the one-way ANOVA indicated significance [non-diabetic p = 0.0454,
diabetic p < 0.0001, and Rap1a KO p = 0.9988]; however, the post hoc analysis did not).
Treatment with EPAC + ps PKC-ζ did not cause a change in α-SMA expression compared
to untreated treated cells in all cell types except for Rap1a KO fibroblasts. Non-diabetic
and diabetic cells exposed to Rap1a siRNA displayed a significant decrease in α-SMA
expression, which was further attenuated with Rap1a siRNA + ps PKC-ζ treatment. Rap1a
KO cells did not display a decrease in α-SMA expression with Rap1a siRNA or Rap1a
siRNA + ps PKC-ζ treatments (Figure 9C).
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Figure 9. Inhibition of p-PKC-ζ caused a decreased in RAGE associated proteins which was further
attenuated with Rap1a siRNA treatment. Cardiac fibroblasts were isolated from non-diabetic, diabetic,
and Rap1a KO mice. Cells were treated either with EPAC (100 µM), EPAC + ps PKC-ζ (100 µM
and 1 µg/mL, respectively), Rap1a siRNA (100 nM), or Rap1a siRNA + ps PKC-ζ (100 nM and
1 µg/mL, respectively), followed by collection of total protein. (A–C) α-SMA (42 kDa), (D–F) p-
NF-κB (65 kDa), and (G–I) SOD-1 (23 kDa) protein expression was assessed. Protein expression
was normalized to β-tubulin (55 kDa) protein expression and mean ± SEM were depicted in graph
(n = 6–9). Representative western blot images are shown above graphs but are not displayed as
a continuous blot due to running order on the blot not aligning with graphical order of samples.
However, original western blot images are available at DOI:10.6084/m9.figshare.12625409. Data
depicted for EPAC and Rap1a siRNA treatment groups were previously presented Figures 3–5.
Significance was assessed using a one-way ANOVA followed by a Fisher’s protected least significant
difference post hoc (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

A similar pattern occurred with p-NF-κB protein expression in isolated cardiac fi-
broblasts (Figure 9D–F). Non-diabetic and diabetic cells treated with EPAC exhibited a
slight non-significant change in p-NF-κB expression compared to untreated cells, which
did not occur with combined treatment of EPAC + ps PKC-ζ (Figure 9D,E; the one-way
ANOVA indicated significance [p = 0.0224 and p = 0.0444, respectively] however, the post
hoc analysis did not). Rap1a siRNA and Rap1a siRNA + ps PKC-ζ exposure caused a sig-
nificant decrease in p-NF-κB expression in non-diabetic and diabetic fibroblasts compared
to EPAC treated cells and a non-significant change compared to untreated cells. Rap1a KO
fibroblasts only displayed a non-significant increase in p-NF-κB expression when exposed
to treatment groups containing ps PKC-ζ (Figure 9F; one-way ANOVA p = 0.4748).
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Changes in SOD-1 expression were affected by decreasing Rap1a and/or PKC-ζ
activity. Exposure to EPAC treatment did not cause a change in SOD-1 expression in non-
diabetic, diabetic, or Rap1a KO fibroblasts compared to untreated cells (Figure 9G–I; the
one-way ANOVA indicated significance [non-diabetic p = 0.0452, diabetic p = 0.0010, and
Rap1a KO p = 0.0348] however, the post hoc analysis did not). While SOD-1 expression did
not respond to treatment with EPAC + ps PKC-ζ in non-diabetic and diabetic cells; Rap1a
KO cells did show a significant decrease in SOD-1 expression compared to untreated cells.
Non-diabetic and diabetic fibroblasts treated with Rap1a siRNA exhibited a significant
increase in SOD-1 expression compared to untreated cells, this same pattern was not noted
in Rap1a KO cells. Lastly, the combined treatment of Rap1a siRNA + ps PKC-ζ caused a
significant decrease in SOD-1 expression only in Rap1a KO fibroblasts. This data suggests
that Rap1a may impact AGE/RAGE signaling at the point of PKC-ζ.

4. Discussion

The objective of this study was to assess the impact of Rap1a activity on down-
stream AGE/RAGE signaling outcomes in cardiac fibroblasts, and the role of Rap1a as a
potential modulator in the AGE/RAGE signaling cascade in diabetic cardiovascular com-
plications. We hypothesized that Rap1a crosses the AGE/RAGE cascade to alter expression
of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice.
The results of this study indicated Rap1a crosses the AGE/RAGE signaling cascade and
caused changes in signaling protein expression known to be associated with increased
RAGE activation. Rap1a appeared to attenuate α-SMA expression, even with increased
exogenous AGE exposure. Additionally, when cells expressed Rap1a in combination with
increased AGE/RAGE signaling it resulted in an increase in p-NF-κB expression, which
correlated with an increase in hydrogen peroxide concentration, an indicator of possible
oxidative stress. Lastly, we observed that the presence of Rap1a was able to reduce SOD-1
expression independently of AGE/RAGE signaling.

Individuals with diabetes have an increased risk for heart failure due to cardiac
hypertrophy, which results in part to increased ECM remodeling by myofibroblasts. Studies
have shown that increased ECM remodeling correlates with elevated levels of AGEs and
α-SMA expression in cardiac fibroblasts [5,28,45]. α-SMA has been used extensively in
research to assess both the myofibroblast population and possible ECM remodeling that
occurs with cardiac fibrosis [46–48]. While AGE activation of RAGE has been shown
to directly stimulate α-SMA expression, little research has been conducted to examine
the impact modulators have on the AGE/RAGE cascade. Our findings demonstrated
that acute exogenous AGE exposure caused a decrease in α-SMA expression, and this
decrease was further extended when Rap1a expression was reduced by siRNA knockdown.
These results suggested Rap1a may maintain or promote α-SMA expression in cardiac
fibroblasts because when Rap1a expression is reduced, via siRNA, there was a decrease
in expression. Furthermore, when cells were treated with exogenous AGEs and Rap1a
siRNA, there was a greater decrease in α-SMA expression compared to when fibroblasts
were treated solely with exogenous AGEs. Therefore, it appears that Rap1a helps promote
α-SMA even when expression is being reduced by exogenous AGE treatment. Initially, it
appeared the data presented in this study conflicted with findings previously published in
the literature by demonstrating AGE treatment caused α-SMA expression to be reduced.
A study by Simard et al. 2015 showed aortic vascular smooth muscle cells treated for
24 h with AGEs led to a decrease in α-SMA protein expression, whereas longer AGE
exposure resulted in an increase in α-SMA expression [49]. Similar results have been noted
in other studies that showed acute versus chronic AGE exposure can have different impacts
on α-SMA expression in fibroblasts [2,45]. Therefore, it is important to investigate this
relationship further. The data presented within this manuscript and in combination with
data in the literature and previously published by our lab suggested that the length of
AGE exposure, whether acute (hours) versus chronic (days to weeks) could explain the
contradictory findings in this study regarding α-SMA expression. Our study provides
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an initial insight into the impact of exogenous AGEs and Rap1a on α-SMA expression
and the possible implications these changes could have on ECM remodeling in cardiac
fibroblasts. However, additional studies are necessary to determine the direct impact
changes in α-SMA have on proteins associated with ECM remodeling. Overall, it appeared
that acute AGE exposure shifted the RAGE signaling cascade away from promoting α-SMA,
ECM remodeling indicator, expression and towards other downstream signaling proteins
normally associated with inflammation and oxidative stress.

To determine the point of crossing of Rap1a and the AGE/RAGE cascade, changes in
expression of RAGE-associated signaling proteins were assessed when PKC-ζ phosphory-
lation was inhibited with pseudosubstrate PKC. It was noted that inhibition of p-PKC-ζ
combined with Rap1a silencing resulted in a greater loss of α-SMA expression. These
findings could indicate either PKC-ζ inhibition decreased AGE/RAGE signaling outcomes,
which led to either a reduction of α-SMA expression, or p-PKC-ζ inhibition blocked Rap1a
from stimulating α-SMA expression. Our findings from Rap1a KO cells lends credence
to the latter theory due to the lack of change in these cells. Conversely, should p-PKC-
ζ inhibition have prevented AGE/RAGE signaling, there would be a predicted lack of
change in α-SMA expression. Since a decrease in α-SMA protein expression was observed
in Rap1a siRNA + ps PKC-ζ treated cells, it would appear that inhibition of p-PKC-ζ had
a greater impact on preventing Rap1a activity than the AGE/RAGE signaling cascade. A
similar pattern occurred when examining changes in p-NF-κB and SOD-1 expression with
inhibition of PKC-ζ phosphorylation. These results indicated that Rap1a and PKC-ζ were
both involved with regulating p-NF-κB, and SOD-1 expression. PKC-ζ could possibly act as
a point of intersection for Rap1a to modify the AGE/RAGE signaling cascade. Previously,
it has been demonstrated that Rap1a can influence PKC activity, which provides further
support for the results presented within this manuscript [50]. However, additional studies
would need to be conducted to provide additional support for this idea.

Acute AGE exposure appeared to decrease myofibroblast marker α-SMA expression,
yet at the same time an increase in p-NF-κB expression, a signaling protein associated
with inflammation and oxidative stress, was observed. Cardiac fibroblasts treated with
exogenous AGEs had increased p-NF-κB expression, and protein expression was further
increased when Rap1a was activated by EPAC stimulation. Elevated p-NF-κB expression
was diminished when fibroblasts were treated with exogenous AGEs+Rap1a siRNA. Rap1a
siRNA treatment alone reduced p-NF-κB levels to levels lower than untreated cells. These
results, in combination with those observed in RKO fibroblasts in which no changes in
p-NF-κB expression occurred, suggested Rap1a may be involved with AGE-mediated
increases in NF-κB protein expression. Our results corresponded to previously conducted
studies demonstrating treatment with exogenous AGEs triggered a RAGE specific increase
in p-NF-κB expression [15,26,51]. In addition to AGEs, increased Rap1a activity has also
been shown to increase p-NF-κB activity in a variety of cell types, such as mesenchymal
stem cells, hepatocytes, and neutrophils [52,53]. This data provided further evidence that
Rap1a possibly played a role in the AGE/RAGE signaling pathway by redirecting acute
changes in AGE-exposed fibroblasts to increased p-NF-κB expression. Furthermore, the
impact of Rap1a and AGE/RAGE mediated increased p-NF-κB could suggest Rap1a’s
involvement in promoting RAGE mediated inflammation and oxidative stress. Multiple
studies have shown RAGE activation utilizes NF-κB for inflammatory and oxidative stress
responses [9,20,54]. However, due to the complex role NF-κB plays within the AGE/RAGE
signaling cascade, it was necessary to further examine the function of NF-κB in mediating
either RAGE induced inflammation and/or oxidative stress.

Increases in p-NF-κB could indicate the cells are undergoing either an inflammatory
response or an increase in oxidative stress. Due to limitations within our study design, we
were only able to examine changes in oxidative stress by measuring the concentration of
hydrogen peroxide. These results showed changes in hydrogen peroxide concentration
between the different treatment groups, which mirrored the changes observed in p-NF-κB
protein expression. Therefore, indicating AGE/RAGE signaling may have utilized the
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NF-κB pathway to increase oxidative stress within the cardiac fibroblasts. Studies have
shown increased AGE/RAGE signaling can cause increased NF-κB activity resulting in
increased cytokine levels, such as raised TNF-α expression, which has been documented
to induce elevated free radical (O2

−) production [15,55,56]. Furthermore, a positive
feedback loop exists that can upregulate both RAGE and TNF-α expression as a result of
increased NF-κB activity [15,22]. Based on these studies, the increase we noted in p-NF-κB
expression and hydrogen peroxide was most likely due to a combinatorial effect whereby
each component promoted an increase in the other. Overall, the results suggested that
AGE/RAGE signaling and Rap1a triggered an increase in oxidative stress, and NF-κB
expression was possibly involved in this change.

The transcription factors, ERK1/2, participate in numerous intracellular signaling
cascades, and they have been linked to the RAGE signaling cascade [24,57]. Therefore,
p-ERK1/2 expression was assessed to determine if AGE activation of RAGE utilized
ERK1/2 as an intermediate signaling molecule to increase p-NF-κB expression. It was
found that p-ERK1/2 protein expression mirrored changes noted in p-NF-κB expression
with each of the different treatment groups. These results indicated ERK1/2 may act
downstream of AGE-mediated RAGE activation to induce the observed acute changes in
p-NF-κB expression. Furthermore, we were able to delineate that Rap1a may act upstream
of ERK1/2 to elicit changes in expression of p-ERK1/2, which possibly promoted p-NF-
κB expression. These findings were supported by decreased p-ERK1/2 and p-NF-κB
expression when a global knockout and a cell-specific knockdown of Rap1a expression
occurred. This proposed mechanism aligns with data documented in the literature as
it has been shown activation of RAGE led to increased p-ERK1/2 expression resulting
in increased NF-κB activation [24,57]. A similar outcome was noted in vascular smooth
muscle cells when cultured in hyperglycemic conditons [58]. Additional evidence showed
Rap1 can produce an increase in p-ERK expression [59,60]. Dorn et al. 2012 showed
similar results where Rap1 caused an increase in p-ERK1/2 expression, which prompted
increased pro-inflammatory cytokine production [61]. This study also noted that Rap1 may
not directly activate ERK1/2, but Rap1 may use another mediator such as Raf to initiate
downstream changes [61]. Our study when combined with data presented in the literature
indicated Rap1a may affect AGE/RAGE mediated increased ERK1/2 activity, it is worth
noting that future studies are needed to determine the sequential cascade. Overall, our
findings suggest that AGE activation of RAGE stimulates p-ERK1/2 to promote increased
p-NF-κB expression and Rap1a stimulus by EPAC further exacerbated this outcome.

Rap1a is not the only factor capable of exerting influence on the AGE/RAGE signaling
cascade. In this study, cells under diabetic conditions exhibited either a higher degree
of protein expression and/or change in protein expression, specifically Rap1a, α-SMA,
p-NF-κB, SOD-1, p-ERK1/2, and p-PKC-ζ as compared to untreated cells. These larger
changes could be a result of increased basal levels of RAGE expression as noted in di-
abetics [5,62,63]. Pre-existing elevated levels of RAGE could prime the cells and allow
for faster, greater, and more sustainable changes in protein expression as compared to
their non-diabetic counterparts. However, there are specific proteins within cardiac fi-
broblasts that exhibit changes in expression due to diabetic conditions and are not solely
impacted by AGE/RAGE signaling. For example, significant changes in p-ERK1/2 ex-
pression occurred within RKO diabetic cells while no changes were noted in non-diabetic
RKO cells. Therefore, it would be reasonable to suggest that differences in p-ERK1/2
expression within diabetic RKO was due to diabetic conditions. Previous studies have
shown multiple instances in which diabetic conditions and not RAGE signaling increased
p-ERK1/2 expression [14,64]. Furthermore, it has been shown that Rap1 can influence
p-ERK1/2 expression via activation of angiotensin II type 1 receptor (AT1R), which has
been documented as a major observance in hearts from diabetic patients [65,66]. These
studies provided a possible explanation for the changes in p-ERK1/2 expression within
diabetic RKO fibroblast. Overall, it appeared that diabetic conditions could prime cardiac
fibroblasts to respond to AGE/RAGE signaling more readily and result in acute changes.
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The expression of RAGE signaling proteins have been shown to effect as well as be
affected by increased oxidative stress [17,61]. Oxidative stress can be regulated by the
expression of SOD which are involved with converting harmful superoxide radicals into
hydrogen peroxide [67]. According to literature, exogenous AGEs can induce an increase
in ROS, which in turn, increases SOD expression [14,26]. In contrast, increased RAGE
activation has also been demonstrated to lead to SOD-2 inhibition in angiogenic progenitor
cells via miR-21 [68]. In our study, we found exogenous AGE treatment did not change
SOD-1 expression despite an increase in hydrogen peroxide production.

These findings suggested either RAGE activation prevented changes in SOD-1 expres-
sion, or RAGE signaling did not directly impact SOD-1 expression in cardiac fibroblasts.
Considering the lack of change in SOD-1 expression in RKO fibroblasts, our results lend
support to the latter idea. In that, acute exogenous AGE exposure in cardiac fibroblasts
failed to impact SOD-1 protein expression. Further examination of the data showed SOD-1
expression increased when Rap1a expression was reduced; however, this increase in SOD-1
expression did not correlate with an overall change in hydrogen peroxide concentrations.
While it would be anticipated that hydrogen peroxide levels would decrease with Rap1a
silencing, this may not have occurred due to active RAGE signaling within these cells
promoting hydrogen peroxide production via activation of NF-κB. This idea was supported
by the lack of increased hydrogen peroxide in non-diabetic and diabetic RKO fibroblasts.

Rap1a has also been documented to modify oxidative stress through regulation of
NADPH oxidase activity. Rap1a will co-localize, co-translocate, and co-immunoprecipitate
with the NADPH p22PHOX subunit [35,69]. Furthermore, reduction of Rap1a in macrophages
resulted in slower production of superoxides [44]. Combining both literature findings and
data presented in this study, there is a correlative trend that indicates Rap1a affected SOD-1
expression and hydrogen peroxide concentration by altering NADPH oxidase activity. To
determine if Rap1a impacted SOD-1 expression either independently or in association
with RAGE cascade signaling proteins, we examined p-PKC-ζ expression as it relates to
AGE/RAGE signaling and its role in assembly of NADPH oxidase [19,20,70]. PKC-ζ phos-
phorylates the NADPH p47PHOX subunit, leading to translocation of the NADPH cytosolic
unit to the NADPH plasma membrane unit [70]. Assembly of NADPH oxidase allows
for the generation of superoxide radicals, which contributes to production of oxidative
stress [71,72]. We found that p-PKC-ζ expression was increased when cells were treated
with Rap1a siRNA and the increase of p-PKC-ζ corresponded with higher levels of SOD-1
expression in cardiac fibroblasts. Therefore, it appeared when Rap1a levels were elevated it
caused a preventative increase in p-PKC-ζ expression, which in turn led to lower levels of
SOD-1. These results suggest Rap1a may influence PKC-ζ regulation of SOD-1 by altering
activity of NADPH oxidase. A study by Fontayne et al., 2002 indicated that p47PHOX

interacted with p22PHOX only when p47PHOX was phosphorylated by a PKC isoform [70].
Therefore, Rap1a interacting with p22PHOX could be the mechanism by which Rap1a regu-
lates PKC-ζ effects on NADPH oxidase, and in turn, reduced SOD-1 expression [35]. While
initial data suggested that this was a possible mechanism, additional studies would need
to be conducted to determine if this trend continues.

The aim of this study was to provide initial insight into the impact of Rap1a on
AGE/RAGE signaling proteins in cardiac fibroblasts. In summary, it appears that Rap1a
possibly interacts with the AGE/RAGE signaling cascade to alter protein expression
in cardiac fibroblasts. Acute exogenous AGE exposure in cardiac fibroblasts caused a
decrease in α-SMA expression while inducing an increase in p-NF-κB expression. Within
this paradigm, Rap1a appears to promote an AGE/RAGE-mediated increase in p-NF-κB
expression as well as possibly maintain a basal level of expression of α-SMA in cardiac
fibroblasts. These results suggest that Rap1a in combination with acute AGE exposure shifts
cardiac fibroblasts away from myofibroblast differentiation and towards an oxidative stress
response. However, more in-depth analysis would need to be conducted to determine if this
was the case. The point of intersection of Rap1a to the AGE/RAGE cascade appears to be
at the level of PKC-ζ. Rap1a may utilize PKC-ζ to influence downstream targets (α-SMA, p-
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ERK1/2, and p-NF-κB), as well as affect the ability of PKC-ζ to promote SOD-1 expression.
Figure 10 provides a visual representation of the effects of Rap1a and AGE/RAGE signaling
on cardiac fibroblasts. The data presented within this manuscript highlight the impact of
Rap1a with acute AGE exposure on RAGE signaling proteins but does not address the
impact of chronic AGE exposure, which is a characteristic of those with diabetes. Further
studies will need to be conducted to assess how Rap1a with chronic AGE exposure will
affect the AGE/RAGE signaling proteins in cardiac fibroblasts. This initial study provides,
for the first time, the effect that Rap1a has on regulating the expression of AGE/RAGE
associated signaling proteins and the possible implications that these results could mean
for those at risk for developing diabetic cardiovascular complications.
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Figure 10. Diagram depicting the relationship between Rap1a and the AGE/RAGE signaling cascade.
Potential interactions between proteins are shown with arrows with directionality of impact being
denoted with arrow orientation. Solid line arrows indicate connections that are supported by evidence
presented within this manuscript, while dash line arrows show connections that are supported within
the literature.
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9/10/3/557/s1, Figure S1: AGE activation of RAGE did not induce changes in protein expression in
RKO cardiac fibroblasts, Figure S2: RKO cardiac fibroblasts did not displayed changes in hydrogen
peroxide concentrations with increase AGE/RAGE signaling, Figure S3: Diabetic cardiac fibroblasts
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with functional RAGE exhibited significantly higher concentration of hydrogen peroxide compared
to non-diabetic, RKO, and Rap1a KO cells, Figure S4: Under diabetic conditions, Rap1a activity
induced changes in p-ERK1/2 but not p-PKC-ζ protein expression levels.

Author Contributions: All authors contributed to experimental design, data analysis, and manuscript
preparation. Experiments were conducted by S.D.B. and funding was obtained by J.A.S.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the US Army Medical Research Award #81XWH-16-1-0171,
the National Institutes of Health NIH R15HL129174, and the University of Mississippi School of
Pharmacy and the Department of BioMolecular Sciences.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the University of Mississippi Institutional Animal Care and Use Committee (protocol #17-024), and
followed the principles of the National Institutes of Health “Guide for the Care and Use of Laboratory
Animals,” (NIH publication No. 85-12, revised 1996).

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are included within the manuscript. Supplemental
and original blot images are available at: https://figshare.com/s/46773d03689e77f0b35b.

Acknowledgments: We would like to thank the University of Mississippi School of Pharmacy and
the Department of BioMolecular Sciences for their support.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Nakamura, K.; Fushimi, K.; Kouchi, H.; Mihara, K.; Miyazaki, M.; Ohe, T.; Namba, M. Inhibitory Effects of Antioxidants on

Neonatal Rat Cardiac Myocyte Hypertrophy Induced by Tumor Necrosis Factor- α and Angiotensin II. Circulation 1998, 98,
794–799. [CrossRef]

2. Fowlkes, V.; Clark, J.; Fix, C.; Law, B.A.; Morales, M.O.; Qiao, X.; Ako-Asare, K.; Goldsmith, J.G.; Carver, W.; Murray, D.B.; et al.
Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sci. 2013, 92, 669–676. [CrossRef]

3. Lerman, O.Z.; Galiano, R.D.; Armour, M.; Levine, J.P.; Gurtner, G.C. Cellular dysfunction in the diabetic fibroblast: Impairment in
migration, vascular endothelial growth factor production, and response to hypoxia. Am. J. Pathol. 2003, 162, 303–312. [CrossRef]

4. Hutchinson, K.R.; Lord, C.K.; West, T.A.; Stewart, J.A. Cardiac Fibroblast-Dependent Extracellular Matrix Accumulation Is
Associated with Diastolic Stiffness in Type 2 Diabetes. PLoS ONE 2013, 8, e0072080. [CrossRef] [PubMed]

5. Burr, S.D.; Stewart, J.A. Extracellular matrix components isolated from diabetic mice alter cardiac fibroblast function through the
AGE/RAGE signaling cascade. Life Sci. 2020, 250. [CrossRef] [PubMed]

6. Cheng, T.H.; Cheng, P.Y.; Shih, N.L.; Chen, I.B.; Wang, D.L.; Chen, J.J. Involvement of Reactive Oxygen Species in Angiotensin
II-Induced Endothelin-1 Gene Expression in Rat Cardiac Fibroblasts. J. Am. Coll. Cardiol. 2003, 42, 1845–1854. [CrossRef]
[PubMed]

7. Sano, M.; Fukuda, K.; Sato, T.; Kawaguchi, H.; Suematsu, M.; Matsuda, S.; Koyasu, S.; Matsui, H.; Yamauchi-Takihara, K.; Harada,
M.; et al. ERK and p38 MAPK, but not NF-KB, Are Critically Involved in Reactive Oxygen Species-Mediated Induction of IL-6 by
Angiotensin II in Cardiac Fibroblasts. Circ. Res. 2001, 89, 661–669. [CrossRef] [PubMed]

8. Wu, Y.; Li, Y.; Zhang, C.; Xi, A.; Wang, Y.; Cui, W.; Li, H.; Du, J. S100a8/a9 released by CD11b + Gr1 + neutrophils activates
cardiac fibroblasts to initiate angiotensin II-induced cardiac inflammation and injury. Hypertension 2014, 63, 1241–1250. [CrossRef]

9. Volz, H.C.; Seidel, C.; Laohachewin, D.; Kaya, Z.; Müller, O.J.; Pleger, S.T.; Lasitschka, F.; Bianchi, M.E.; Remppis, A.; Bierhaus, A.;
et al. HMGB1: The missing link between diabetes mellitus and heart failure. Basic Res. Cardiol. 2010, 105, 805–820. [CrossRef]

10. Shang, Y.; Zhang, X.; Leng, W.; Lei, X.; Chen, L.; Zhou, X.; Chow, K.; Shi, Y.; Dong, J.; Liang, Z.; et al. Increased fractal dimension
of left ventricular trabeculations is associated with subclinical diastolic dysfunction in patients with type-2 diabetes mellitus. Int.
J. Cardiovasc. Imaging 2018, 1–9. [CrossRef] [PubMed]

11. Hegab, Z.; Gibbons, S.; Neyses, L.; Mamas, M.A. Role of advanced glycation end products in cardiovascular disease. World J.
Cardiol. 2012, 4, 90–102. [CrossRef] [PubMed]

12. Ramasamy, R.; Yan, S.F.; Schmidt, A.M. Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its
complications. Ann. N. Y. Acad. Sci. 2011, 1243, 88–102. [CrossRef]

13. Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE,
the receptor for advanced glycation end products. J. Mol. Med. 2005, 83, 876–886. [CrossRef] [PubMed]

14. Lin, C.L.; Wang, F.S.; Kuo, Y.R.; Huang, Y.T.; Huang, H.C.; Sun, Y.C.; Kuo, Y.H. Ras modulation of superoxide activates
ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney Int. 2006, 69, 1593–1600. [CrossRef] [PubMed]

https://figshare.com/s/46773d03689e77f0b35b
http://doi.org/10.1161/01.CIR.98.8.794
http://doi.org/10.1016/j.lfs.2013.01.003
http://doi.org/10.1016/S0002-9440(10)63821-7
http://doi.org/10.1371/journal.pone.0072080
http://www.ncbi.nlm.nih.gov/pubmed/23991045
http://doi.org/10.1016/j.lfs.2020.117569
http://www.ncbi.nlm.nih.gov/pubmed/32201277
http://doi.org/10.1016/j.jacc.2003.06.010
http://www.ncbi.nlm.nih.gov/pubmed/14642698
http://doi.org/10.1161/hh2001.098873
http://www.ncbi.nlm.nih.gov/pubmed/11597988
http://doi.org/10.1161/HYPERTENSIONAHA.113.02843
http://doi.org/10.1007/s00395-010-0114-3
http://doi.org/10.1007/s10554-018-1492-0
http://www.ncbi.nlm.nih.gov/pubmed/30430327
http://doi.org/10.4330/wjc.v4.i4.90
http://www.ncbi.nlm.nih.gov/pubmed/22558488
http://doi.org/10.1111/j.1749-6632.2011.06320.x
http://doi.org/10.1007/s00109-005-0688-7
http://www.ncbi.nlm.nih.gov/pubmed/16133426
http://doi.org/10.1038/sj.ki.5000329
http://www.ncbi.nlm.nih.gov/pubmed/16572112


Cells 2021, 10, 557 21 of 23

15. Piperi, C.; Goumenos, A.; Adamopoulos, C.; Papavassiliou, A.G. AGE/RAGE signalling regulation by miRNAs: Associations
with diabetic complications and therapeutic potential. Int. J. Biochem. Cell Biol. 2015, 60, 197–201. [CrossRef]

16. Serban, A.I.; Stanca, L.; Geicu, O.I.; Munteanu, M.C.; Dinischiotu, A. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix
Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells. PLoS ONE 2016, 11, e0152376. [CrossRef]

17. Oliveira Volpe, C.M.; Henrique Villar-Delfino, P.; Ferreira Dos Anjos, P.M.; Nogueira-Machado, J.A. Cellular death, reactive
oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018, 9, 1–9. [CrossRef]

18. Nitti, M.; Furfaro, A.L.; Traverso, N.; Odetti, P.; Storace, D.; Cottalasso, D.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. PKC
delta and NADPH oxidase in AGE-induced neuronal death. Neurosci. Lett. 2007, 416, 261–265. [CrossRef]

19. Cai, W.; Torreggiani, M.; Zhu, L.; Chen, X.; Cijiang He, J.; Striker, G.E.; Vlassara, H. AGER1 regulates endothelial cell NADPH
oxidase-dependent oxidant stress via PKC-δ: Implications for vascular disease. Am. J. Physiol. Cell Physiol. 2010, 298, 624–634.
[CrossRef]
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