
7734–7752 Nucleic Acids Research, 2019, Vol. 47, No. 15 Published online 27 July 2019
doi: 10.1093/nar/gkz634

SURVEY AND SUMMARY

DAXX in cancer: phenomena, processes, mechanisms
and regulation
Iqbal Mahmud and Daiqing Liao*

Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333
Center Drive, Gainesville, FL 32610-0235, USA

Received March 18, 2019; Revised July 05, 2019; Editorial Decision July 09, 2019; Accepted July 12, 2019

ABSTRACT

DAXX displays complex biological functions. Re-
markably, DAXX overexpression is a common feature
in diverse cancers, which correlates with tumorigen-
esis, disease progression and treatment resistance.
Structurally, DAXX is modular with an N-terminal heli-
cal bundle, a docking site for many DAXX interactors
(e.g. p53 and ATRX). DAXX’s central region folds with
the H3.3/H4 dimer, providing a H3.3-specific chaper-
oning function. DAXX has two functionally critical
SUMO-interacting motifs. These modules are con-
nected by disordered regions. DAXX’s structural fea-
tures provide a framework for deciphering how DAXX
mechanistically imparts its functions and how its
activity is regulated. DAXX modulates transcription
through binding to transcription factors, epigenetic
modifiers, and chromatin remodelers. DAXX’s local-
ization in the PML nuclear bodies also plays roles
in transcriptional regulation. DAXX-regulated genes
are likely important effectors of its biological func-
tions. Deposition of H3.3 and its interactions with
epigenetic modifiers are likely key events for DAXX
to regulate transcription, DNA repair, and viral infec-
tion. Interactions between DAXX and its partners di-
rectly impact apoptosis and cell signaling. DAXX’s
activity is regulated by posttranslational modifica-
tions and ubiquitin-dependent degradation. Notably,
the tumor suppressor SPOP promotes DAXX degra-
dation in phase-separated droplets. We summarize
here our current understanding of DAXX’s complex
functions with a focus on how it promotes oncogen-
esis.

INTRODUCTION

Oncogenic drivers promote tumorigenesis, cancer progres-
sion and resistance to therapy. This has been exemplified
by well-known oncogenes such as MYC, which activates
genes that control metabolism, cell proliferation and drug
resistance (1–3). Efforts to discover novel oncogenic drivers
can lead to new cancer therapy to improve patient out-
come. It emerges that DAXX (death domain-associated
protein) has potent oncogenic properties and a potential
novel therapeutic target. DAXX was discovered as a FAS
binding protein and a modulator of Jun N-terminal kinase
(JNK)-mediated cell death in 1997 (4,5). The DAXX or-
thologs are only found in the animal kingdom (6). It is
ubiquitously expressed in various human tissues and essen-
tial for embryonic development (7,8). It interacts with di-
verse proteins with functions in the cytoplasm and the nu-
cleus. Thus, DAXX has been shown to mediate apoptosis
through extrinsic death receptor pathway (4,5) as well as to
regulate gene expression as a transcriptional co-repressor
or co-activator by interacting with diverse DNA-binding
transcription factors (TFs), epigenetic regulators, core his-
tones and chromatin-associated proteins (9–13). The find-
ings that DAXX contains conserved SUMO-interacting
motifs (SIMs) (6,14) provide a molecular explanation for
the ‘promiscuous’ interactions of DAXX with diverse pro-
teins. As reviewed previously (15) and supported by NMR
spectroscopy-based experiments (16), the SUMO-SIM in-
teraction is an important determinant for DAXX to bind
a SUMOylated protein, which can be further stabilized by
additional molecular interactions. Of note, a recent pro-
teomic survey identified nearly 7000 SUMO-modified pro-
teins in human cells (17). Whereas conceptually DAXX
could confer pleiotropic effects through interacting with di-
verse SUMO-modified proteins, multivalent high affinity
interactions are likely important for DAXX’s specific bio-
logical functions and regulation, as exemplified by the ob-
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servations that multiple weak interactions are critical for the
DAXX/SPOP colocalization in the nucleus (18).

An important development was the discovery that
DAXX is a chaperone for histone variant H3.3 (encoded
by H3F3A and H3F3B) (19,20). This firmly places DAXX
as an important chromatin regulator. Biologically, more re-
cent studies have provided compelling evidence that DAXX
can function as a tumor suppressor or an oncogene. Tumor-
derived DAXX mutations have been detected in pancre-
atic neuroendocrine tumors (PanNETs) (21). DAXX mu-
tations more frequently occur in the regions that interact
with ATRX and the H3.3/H4 dimer (21,22), which impacts
chromosome stability and telomere maintenance (23,24).
Nonetheless, DAXX is rarely mutated in commonly diag-
nosed cancer types. As discussed below in details, increased
DAXX expression has been consistently observed in di-
verse epidemiologically prevalent cancer types. DAXX can
promote malignant phenotypes in vitro and tumor growth
and progression in vivo. During the past 20 years since the
cloning of the DAXX gene, there is a steady increase in our
understanding of the structure of DAXX and its context-
dependent functions ranging from the regulation of cell
survival/death, gene expression, DNA damage repair, viral
infection, to tumorigenesis. In this review, we start by sum-
marizing the structural features of DAXX, which provides a
foundation for elucidating mechanisms underlying DAXX’s
functions. We then review DAXX’s oncogenic properties,
followed by discussing DAXX-regulated processes and the
underpinning molecular mechanisms that may contribute
to oncogenesis. We conclude by an overview about how
DAXX’s cellular activity is regulated.

MODULAR STRUCTURES OF DAXX

The DAXX helical bundle (4HB)

DAXX consists of a modular structural arrangement with
two folded structures connected by intrinsically unfolded re-
gions (25,26) (Figure 1). A bundle of four helices spanning
amino acids (aa) 55–144 is highly conserved across different
species (6), which is known as DAXX helical bundle (DHB)
or 4HB (22,25). It contains a defined binding surface for a
number of DAXX-interacting proteins such as RASSF1C,
p53 and MDM2 (25). The 4HB also contains the binding
surface for ATRX, which partially overlaps the interface be-
tween DAXX and RASSF1C. The DAXX-binding domain
of ATRX forms a long �-helix with a number of hydropho-
bic residues directly contacting DAXX 4HB (22,27,28). The
DAXX–ATRX interaction is stronger than the interactions
between DAXX and RASSF1C, p53 or MDM2, appar-
ently due to additional electrostatic interactions between
positively charged residues in 4HB and negatively charged
residues in ATRX (22,25,27,28). Because of the overlapping
binding interface between DAXX and its binding partners
(ATRX, RASSF1C, p53 and MDM2), their interactions
are likely mutually exclusive. As such, a ‘partner switch’
mechanism for DAXX interaction may be involved under
different biological contexts (27). Intracellular membrane-
less bodies such as promyelocytic leukemia nuclear bodies
(PML-NBs) are enriched with specific proteins and exist in
a liquid-like phase that is separated from their surroundings.

In addition to residing in PML-NBs, DAXX forms a phase-
separated nuclear body with SPOP (18). Phase-separation
could in principle favor DAXX’s interaction with a specific
partner (18).

The DAXX histone-binding domain (HBD)

The central part of DAXX spanning aa 180–397 is another
highly conserved region and was termed DAXX core do-
main (6). This region was predicted to consist of mainly he-
lices that could fold into a defined structure (25). The crystal
structure of the core domain, also termed the histone bind-
ing domain (HBD), in complex with a H3.3/H4 dimer has
been determined (26). The six �-helices within HBD wraps
around the H3.3/H4 dimer, covering 40% of the surface-
accessible area of the histone dimer. Structural modeling
and biochemical assays show that residue G90 specific to
H3.3 is the key determinant for the binding specificity of
DAXX to the H3.3/H4 dimer rather than to the H3.1/H4
or H3.2/H4 dimer (26,29). Structural modeling also indi-
cates that the DAXX HBD could only form a stable struc-
ture with the H3.3/H4 dimer but not with the H3.3/H4
tetramer, and the DAXX HBD cannot bind to the H3.3/H4
dimer in a nucleosomal context, as the N-terminal helices of
the DAXX HBD in the H3.3/H4-DAXX ternary structure
would severely clash with the DNA wrapped around the his-
tone core (26). DAXX and PML enrich the H3.3/H4 dimer
and ATRX in PML-NBs for histone deposition, whereas
the chromatin loading of H3.3 by the histone chaperone
HIRA is not affected in the absence of PML (30,31). These
observations suggest that DAXX may bring H3.3/H4 to
chromatin sites in conjunction with PML-NBs, whereas
other parts of DAXX might mediate the dissociation of the
HBD from and the release of the H3.3/H4 dimer to facil-
itate chromatin assembly (19,20,26). Chromatin remodel-
ers such as ATRX and BRG1, both of which bind DAXX
(32,33), may be required for the assembly of the H3.3/H4
dimer into nucleosomes in the cellular environment (19,20).
Although H3.3 deposition is implicated in active transcrip-
tion (34,35), DAXX/ATRX has been shown to deposit
H3.3 into heterochromatin regions enriched with H3K9me3
and simple GT-rich nucleotide repeats (36).

Although the six �-helices in the DAXX HBD assemble
into a stable structure when complexed with the H3.3/H4
dimer, the HBD alone is largely disordered in solution. It
was shown that the formation of the H3.3/H4-DAXX HBD
ternary complex promotes folding and global stabilization
of all three subunits in the complex (37). Notably, a num-
ber of proteins (e.g. BRG1 and MENIN, see Figure 1) in-
teract with the HBD. It will be interesting to study whether
complex formation of the DAXX HBD with these proteins
would also affect the folding of the DAXX HBD, and sta-
bilize the corresponding complexes. Mechanistically, inter-
actions of the HBD with other proteins could facilitate the
release of histones for nucleosome assembly.

The SIMs

Two SIMs in DAXX, located at the N- and C-terminus
respectively (6,14) (Figure 1), are functionally important.
Both SIMs are biochemically similar with an identical hy-
drophobic core flanked by acidic resides or residues that can
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Figure 1. DAXX structure and interacting proteins. The modular structure arrangement of DAXX is depicted. SIM: SUMO-interacting motif, 4HB:
DAXX helix bundle, HBD: histone-binding domain, NLS: nuclear localization signal. Proteins that are known to interact with specific regions of DAXX
are shown. The 4HB is probably the major binding site for proteins that interact with the DAXX N-terminal region, while SIM2 likely plays a major role
in binding proteins that interact with the DAXX C-terminal region. The lines below or above each protein group are not meant to be precise. Readers are
referred to the original publications reporting a specific interaction (see Table 1).

be phosphorylated. SIM1 binds SUMOs predominantly in
a parallel orientation and exhibits ∼4-fold higher affinity to
SUMO1 and SUMO2 compared to SIM2 (16). SIM2 in the
context of the DAXX C-terminal 20 amino acids (aa 721–
740) also binds SUMO1 in parallel orientation (38). Of
note, a longer SIM2 peptide of the mouse Daxx (aa 718–
739) appears to bind SUMOs in both parallel and antipar-
allel orientations (16). Additionally, based on molecular dy-
namics simulations the antiparallel binding of a SIM with
SUMO results in a complex with higher stability compared
to the parallel orientation (39). The Nup358/RBP2 SIM
binds to SUMO antiparallelly in the context of the SUMO–
RanGAP1–UBC9–Nup358/RanBP2 complex (40). Inter-
estingly, a weak intramolecular interaction exists between
the DAXX N-terminal intrinsically disordered region (aa
1–56) and the DAXX 4HB. This intramolecular interac-
tion appears to interfere with the SIM1/SUMO interaction
as well as the binding of p53, MDM2 and RASSF1C to
4HB (16). Phosphorylation of two serines (Ser-737 and Ser-
739) in SIM2, mediated by casein kinase 2 (CK2), increases
the binding affinity of SIM2 to SUMO1 by ∼30-fold. The
phosphorylated SIM2 binds SUMO1 more tightly than
SUMO2, thus conferring SUMO paralog selectivity (38).
In general, phosphorylation in SIMs increases the num-
bers of negatively charged residues flanking the hydropho-
bic core and consequently enhances the binding affinity to
SUMOs through electrostatic interactions with positively
charged residues in SUMOs (38,41–43). These observations
indicate that the SUMO-SIM interactions can be regulated
by cell signaling-induced phosphorylation (42). Notably,
the DAXX SIM1 contains two evolutionarily conserved
phosphorylation sites (Thr-4 and Ser-7) amino terminal to
the hydrophobic core. Thus, the interaction between the
SIM1 of DAXX and SUMOs could also be regulated by

phosphorylation, which nonetheless must be experimen-
tally tested. Early studies show that DAXX’s localization to
PML-NBs requires PML SUMOylation (11,12). The sub-
sequent identification of SIM2 documents a critical role
of the SIM2-SUMO interaction for recruiting DAXX to
PML-NBs (14). In osteosarcoma Saos-2 cells, the colocal-
ization of a DAXX double SIM mutant and a PML mutant
lacking SUMOylation sites was severely impaired (6), fur-
ther supporting the importance of PML SUMOylation and
the SIM–SUMO interaction in tethering DAXX to PML-
NBs. Notably, SIM2 has been shown to play a dominant
role, while SIM1 appears dispensable, for DAXX’s recruit-
ment to PML-NBs in several cell lines such as COS-1 and
HeLa (14,44). The intramolecular SIM1–4HB interaction
in DAXX (16) could mask SIM1, which potentially renders
SIM1 unavailable for binding SUMOylated PML. Signif-
icantly, DAXX SIM2 mutations impair DAXX SUMOy-
lation. Likewise, SUMO mutations that weaken the SIM–
SUMO interaction also reduce DAXX SUMOylation (14).
Thus, SIM2 inactivation interferes with DAXX-PML inter-
action by (i) disrupting the SIM2-SUMO interaction and
(ii) reducing DAXX SUMOylation.

Interestingly, at least one functional SIM of DAXX is re-
quired for the interaction between DAXX and the SUMO
E2 conjugating enzyme UBC9 (6). The UBC9 C93A mu-
tant, a catalytic mutant that blocks the SUMO-UBC9 con-
jugation, still binds DAXX. However, mutation of His-20 in
UBC9, a key residue for the high affinity noncovalent bind-
ing of SUMO to the backside of UBC9 (43,45), disrupts
the DAXX-UBC9 interaction (6). Thus, DAXX appears
to bind UBC9 via the high-affinity SUMO-binding site in
the backside of UBC9 (6,43,45,46). These observations sug-
gest that the SIMs in DAXX, and perhaps more generally
in some SUMOylation substrates, mediate the substrate-
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SUMO-UBC9 ternary interaction, presumably to facilitate
substrate SUMOylation and SUMO chain synthesis. The
structural basis of the SIM-facilitated SUMOylation and
chain formation was recently reviewed (46). Notably, SIM2
is critical for targeting DAXX to heterochromatin sites for
depositing H3.3, which, interestingly, depends on UBC9,
while SIM1 appears to strengthen DAXX’s recruitment to
chromatin sites (44). Shastrula et al. proposed that UBC9-
mediated SUMOylation of unknown heterochromatin pro-
teins mediates DAXX recruitment (44). However, the for-
mation of DAXX SIM–SUMO-UBC9 ternary complex
might be sufficient for DAXX recruitment to heterochro-
matins.

The DAXX acidic domain

DAXX contains a long stretch of about 50 consecutive
acidic residues immediately C-terminal to the HBD (Fig-
ure 1). This acidic domain is important for interacting with
the C-terminal regulatory domain (CTD) of p53 enriched
with lysine residues (47). The DAXX acidic domain plays
an important role in DAXX-mediated gene repression, and
the acetylation of the p53 CTD weakens its interaction with
transcription repressors containing acidic domains such as
DAXX (48). Notably, although diverse histone chaperones
share little sequence identity, they commonly contain in-
trinsically disordered regions and acidic domains (49). The
DAXX acidic domain appears to increase the binding affin-
ity to the H3.3/H4 dimer (20,49). Nonetheless, precisely
how the DAXX acidic domain contributes to its histone
chaperone activity and other functions requires further in-
vestigation.

DAXX OVEREXPRESSION IN TUMORIGENESIS,
PROGRESSION AND TREATMENT RESISTANCE

The availability of gene expression data from diverse can-
cer types along with corresponding clinical parameters has
greatly facilitated the identification of potential oncogenes.
Our analyses of a large number of clinical samples from The
Cancer Genome Atlas (TCGA) datasets along with other
datasets of clinical cancer samples revealed markedly in-
creased expression of DAXX in a variety of cancers com-
pared to corresponding normal controls (Figure 2A). Sig-
nificantly, DAXX levels are further increased in metastases
compared to primary tumors in breast, prostate and colon
cancers (Figure 2B). Additionally, immunohistochemistry
analysis of tumor specimens has documented increased
DAXX expression levels in several cancer types including
prostate (50,51), ovarian (52), oral squamous cell carcinoma
(53), and gastric cancer (54). In addition to the observed
upregulation of DAXX in clinical cancer datasets, preclin-
ical studies have provided compelling evidence supporting
an oncogenic role for DAXX. DAXX’s activities in several
biological processes, including cell death, cell survival, chro-
matin remodeling, gene regulation and DNA repair, may
contribute to its oncogenic functions.

In ovarian cancer, DAXX was studied as a potential reg-
ulator of cell proliferation, metastasis, and drug resistance.
Immunohistochemistry analysis indicates that DAXX lev-
els are higher in different subtypes of ovarian cancer com-
pared to normal control (52). Using cell lines and in vivo

xenograft models, ovarian cancer cells with DAXX over-
expression displayed enhanced tumorigenesis and metasta-
sis in vivo, whereas DAXX depletion inhibited tumor de-
velopment (52,55). Increased DAXX expression also re-
sulted in heightened cell migration, invasion, resistance to
chemotherapeutic agents and X-ray irradiation. In response
to DNA-damaging agents, DAXX overexpression reduced,
while its depletion increased, the number of �H2AX foci,
suggesting that DAXX promotes DNA repair to protect
cancer cells from DNA damage-induced cell death. In this
context, DAXX and PML appear to work in concert to pro-
mote DNA repair. Recently, DAXX was shown to confer
chemoresistance in ovarian cancer using both in vitro and
in vivo models (56). Notably, the expression of adenovirus
type 12 E1B-55 kDa protein, which interacts with DAXX
(57,58), induces DAXX degradation, resulting in sensitiza-
tion of ovarian cancer cells to cisplatin (56). Our analysis
of a TCGA ovarian cancer dataset (59) shows that DAXX
is highly upregulated in ovarian cancer samples compared
with normal tissues (Figure 2A). Overall, these results sug-
gest that DAXX upregulation might be a key step in ovarian
tumorigenesis and disease progression and could be used as
a diagnostic marker for ovarian cancers.

An interesting recent study reported that DAXX de-
pletion in PTEN-null glioblastoma (GBM) cells impaired
growth of orthotopically implanted tumors (60). DAXX
interacts with PTEN and appears to antagonize PTEN-
mediated repression of oncogenes. There is also an inverse
correlation between DAXX and PTEN expression levels
(60). It was suggested that altered H3.3 deposition in GBM
cells deficient of PTEN but with high levels of DAXX re-
sults in oncogene expression (60). Interestingly, DAXX’s
oncogenic property seems to be independent of ATRX in
this setting (60). Consistent with an oncogenic function for
DAXX in GBMs, our analyses of several GBM clinical
datasets, including a TCGA GBM dataset (61), show that
DAXX is significantly upregulated in GBMs (Figure 2A
and data not shown).

In prostate cancer (PCa), DAXX promotes tumorigene-
sis and disease progression. DAXX is frequently elevated in
PCa tissues, and the DAXX expression levels positively cor-
relate with the Gleason scores and PCa metastasis (50,51).
Interestingly, strong DAXX expression correlates with both
TMPRSS2/ERG gene rearrangement and ERG expression
(50). DAXX knockdown reduces xenograft tumor growth in
vivo, apparently as a result of increased autophagy (62,63).
DAXX interacts with the androgen receptor (AR) (64).
Nonetheless, the functional ramifications of the DAXX-
AR interaction in terms of AR-mediated transcription and
prostatic oncogenesis remain unclear. Interestingly, DAXX
interacts with the substrate recognition subunits (CDC20
and CDH1) of the E3 ubiquitin ligase anaphase promot-
ing complex/cyclosome APC/C, which appears to inhibit
the timely degradation of APC/C substrates, thereby poten-
tially promoting chromosomal instability during PCa de-
velopment (51). Nuclear exclusion of the tumor suppressor
PTEN is linked to cancer progression. Monoubiquitination
of PTEN is required for PTEN nuclear translocation (65).
Interestingly, DAXX promotes USP7-mediated PTEN deu-
biquitination, resulting in its nuclear exclusion (66). Thus,
increased expression of DAXX could interfere with PTEN
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Figure 2. DAXX mRNA expression in cancer. (A) Boxplots depicting DAXX mRNA expression levels across multiple cancer types along with corre-
sponding normal controls (data from the TCGA portal or other published datasets of clinical cancer samples as indicated). (B) DAXX mRNA levels are
further elevated in metastases compared to primary tumors. BCa: breast cancer, mBCa: metastatic breast cancer, PCa: prostate cancer, mPCa: metastatic
prostate cancer, CCa: colon cancer, mCCa: metastatic colon cancer.

nuclear localization, providing a mechanism for DAXX’s
oncogenic function in PCa. As noted above, DAXX was
shown to antagonize PTEN-mediated suppression of onco-
gene expression in GMB (60). Whether DAXX also opposes
PTEN’s tumor suppression function in the nucleus in addi-
tion to blocking its nuclear import in PCa cells has not yet
been examined. Our analysis of clinical PCa datasets (67,68)
indicate that DAXX expression is elevated in PCa with fur-
ther increase in metastases (Figure 2).

Notably, frequent mutations of the H3F3A gene encod-
ing H3.3, and to a less extent, the HIST1H3B gene en-
coding the canonical histone H3.1 were identified in pedi-

atric gliomas (69–71). The mutations most frequently oc-
cur at codons for K27 and G34 (69,71). Pediatric patients
with diffuse intrinsic pontine glioma (DIPG) harboring the
K27M mutation exhibits poor prognosis (72). Cells express-
ing H3.3K27M mutant display a global downregulation of
H3K27me3 but upregulation of H3K27ac (73–75). How-
ever, although DAXX is a chaperone for H3.3, DAXX mu-
tation is relatively rare compared to H3F3A and ATRX
(69). Thus, whether and how DAXX is involved in tumori-
genesis due to H3F3A mutations remains to be established.
Interestingly, frequent mRNA upregulation of H3F3A and
H3F3B (both encoding H3.3) is observed in diverse can-
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cer types; gene amplification of both H3F3A and H3F3B is
also common in some cancer types (our unpublished anal-
yses). A recent study shows that H3.3 appears to metaboli-
cally stabilize DAXX (22). Therefore, increased H3.3 levels
in cancer cells may augment DAXX’s oncogenic function
through protein stabilization.

PanNETs are heterogeneous pancreatic neoplasms (76).
Approximately 43% of PanNET cases have inactivating
DAXX or ATRX mutations (21,77). DAXX/ATRX loss
correlates with tumor stage, metastasis, and decreased sur-
vival (77–79). Several groups also reported that mutations
of ATRX and DAXX in PanNETs impair the heterochro-
matic state of the telomeres, with reduced levels of his-
tone variant H3.3 (23,24). Abnormal telomeres due to al-
ternative lengthening of telomeres (ALT) independent of
telomerase activity in PanNETs were observed frequently
and can be attributed to the loss-of-function mutations of
DAXX and/or ATRX (23,24,80). Interestingly, as noted
above, DAXX mutations in PanNETs frequently occur to
regions encoding the folded 4HB and HBD domains (Fig-
ure 1) (22), suggesting that the loss of DAXX’s H3.3 chap-
erone function may lead to abnormal chromatin structures,
epigenetic dysregulation and chromosome instability. Re-
current mutations (frameshift and nonsense) of DAXX are
observed in Hürthle cell carcinoma of the thyroid (81).
SPOP was shown to promote kidney cancer, and SPOP-
mediated DAXX degradation was proposed to contribute
to kidney tumorigenesis (82). Nonetheless, DAXX mRNA
levels are markedly elevated in kidney cancer (Figure 2).
Therefore, further studies will be needed to determine how
DAXX is involved in kidney tumorigenesis. Of note, active
telomere maintenance mechanisms appear to correlate with
worse prognosis for neuroblastomas, in which ATRX loss-
of-function mutations may play a role in ALT. However,
DAXX mutations were not detected in neuroblastomas.
DAXX gene expression is also not significantly changed in
ALT-positive neuroblastomas (83). Notably, SUMOylation
of shelterin subunits (TRF1 and TRF2) and the recruitment
of telomeres to PML-NBs are critical for telomere mainte-
nance in ALT-positive cancer cells (84). Interestingly, in the
osteosarcoma cell line G292, a chromosome translocation
results in an in-frame fusion of DAXX with KIFC3. The
DAXX exon 8 encoding SIM2 is lost. The fusion product
is expressed in G292 cells but fails to localize in PML-NBs
and to suppress ALT. The expression of wt DAXX in G292
cells inhibits ALT (85,86). These observations indicate that
DAXX blocks ALT via PML-NBs.

Lin et al. reported that DAXX inhibits EMT, inva-
sive growth phenotypes and metastasis through interfering
with Slug-mediated repression of epithelial markers (87).
These authors further showed that under hypoxia, hypoxia-
inducible factor (HIF)-1� inhibits DAXX expression, re-
sulting in increased invasion in vitro and metastasis to the
lungs in vivo (87). Nonetheless, using a TCGA dataset based
on clinical lung carcinoma samples, we found that DAXX
expression is significantly higher in lung cancer compared
with normal control tissues (88) (Figure 2). Our analyses
of several other clinical data analyses also show upregula-
tion of DAXX expression in different clinical types of lung
cancer (data not shown). Further studies will be required

to clarify roles of DAXX in lung cancer tumorigenesis vs.
metastatic progression.

Overall, our data analyses described here indicate that
DAXX is highly upregulated in diverse cancer types. Al-
though somatic DAXX mutations are frequently observed
in PanNETs (a rare cancer type), cancer-derived muta-
tions in epidemiologically prevalent cancers are very rare.
While published studies have documented an oncogenic role
for DAXX, we still do not fully understand the molecu-
lar mechanisms underlying DAXX-mediated tumorigene-
sis and cancer progression. As discussed below, DAXX-
mediated biological processes including transcription may
contribute to DAXX’s oncogenic function. Given the preva-
lence of DAXX upregulation in cancer (Figure 2), a clear
mechanistic understanding of DAXX’s oncogenic function
may lead to widely applicable therapeutic strategies for
treating many patients with cancer.

DAXX-REGULATED PROCESSES

DAXX in cell death and cell survival

Proapoptotic function of DAXX in the cytosol via the
ASK1/JNK signaling pathway. DAXX is a pro-apoptotic
protein associated with the death receptor FAS in the cy-
tosol (4), and mediates apoptosis through the FAS-DAXX-
ASK1-MAP2K axis to activate JNK and p38 mitogen-
activated protein kinase (MAPK) cascades (5,89,90) (Fig-
ure 3A). A positive feedback loop between DAXX and
ASK1 (apoptosis signal-regulating kinase 1) was observed,
such that DAXX activates ASK1, which in turn phospho-
rylates DAXX (91) (Figure 3B). Cellular stress, such as glu-
cose deprivation, activates the ASK1–MEK–MAPK sig-
naling cascade via an association of DAXX and TRAF2
with ASK1 (92,93) (Figure 3B). JNK-driven HIPK1 acti-
vation is involved in the relocalization of DAXX from the
nucleus to the cytoplasm, activating the DAXX–ASK1–
JNK cell death pathway during glucose deprivation (92–
94) (Figure 3B). Notably, AKT1 was reported to counteract
the ASK1–JNK cell death pathway in a negative feedback
loop (Figure 3D). By contrast, c-FLIPL, an inhibitor of cas-
pase 8, binds to DAXX through interaction between the C-
terminal domain of c-FLIPL and the FAS-binding domain
of DAXX to inhibit JNK activation by interfering with the
interaction of DAXX and FAS (95) (Figure 3A).

A proapoptotic role for DAXX via the ASK1–JNK sig-
naling pathway in the cytosol has been supported by mul-
tiple lines of evidence. In these studies, apoptotic stimula-
tion triggers DAXX’s nuclear export to activate the ASK1–
JNK axis (96); inhibiting this translocation by catalase
(97), HSP27 (98–100), and DJ-1 (encoded by the PARK7
gene) (101,102) blocks apoptosis (Figure 3K). Interestingly,
peptidyl-prolyl isomerase (PIN1) inhibits DAXX-mediated
apoptosis by promoting DAXX degradation (103) (Figure
3A and B). Studies with transgenic mice expressing the
DAXX C-terminal domain implicate a proapoptotic role in
vivo for DAXX in T-cells (104) and cardiomyocytes (105).
Notably, the expression of a full-length Daxx transgene in B
cells impairs B cell proliferation but does not trigger apop-
tosis (106). Also, as discussed blow, specific Daxx knock-
out in T-cells compromises cell survival (107). Thus, how
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Figure 3. DAXX in cell death. Several ways in which apoptosis is induced by DAXX are shown. Induction of cell death by interacting with the death
domain of Fas and other associated proteins, resulting in the activation of ASK1–JNK cell death signaling (A and B), and by TGF� signaling, which
mediates non-SMAD pathway activation (C). AKT1 blocks a cell death pathway mediated by DAXX through a negative-feedback loop (D). During
necrosis in retinal ganglion cells, RIPK3 interacts with and phosphorylates DAXX (E). In the nucleus, DAXX-mediated cell death appears to be mediated
by the PML-NBs, presumably by interacting with other proteins within PML-NBs (F). In the nucleus, DAXX can repress the expression of anti-apoptotic
genes such as Survivin (BBC3) (G). DAXX activates the ASK1–JNK cascade in the nucleus upon UV exposure (H). DAXX can activate proapoptotic
genes, for example, via p53 activation (I). In this case, the localization of DAXX and AXIN in PML-NBs may be important. DAXX seems to potentiate
UV-induced apoptosis through modulating the SUMO E3 ligase PIAS1 activity (J). In general, cytoplasmic localization of DAXX has been described as
a proapoptotic event, which can be induced by cellular proteins, viral infection and metabolites (e.g., 4-HNE), and blocked by cytoprotective factors (K).
DAXX represses the expression of several components of autophagy machinery such as ULK1, DAPK1 and DAPK3, ultimately suppressing autophagic
cell death (L). Cellular stresses such as the presence of interferons (IFNs), UV irradiation, and oxidative stress can trigger DAXX-mediated cell death
events originated from cell surface receptors or regulation of gene expression in the nucleus.

DAXX affects cell fates in the immune system requires fur-
ther study.

DAXX in TGFβ-mediated apoptosis. DAXX interacts
with the cytoplasmic domain of the type II TGF� recep-
tor (TGFBR2) and mediates TGF�-induced apoptosis via
JNK activation in the mouse hepatocyte cell line AML12
(108) (Figure 3C). TGF� did not appear to increase DAXX
phosphorylation but increased DAXX metabolic stabil-
ity (108). Subsequently, homeodomain-interacting protein
kinase 2 (HIPK2), involved in transcriptional regulation
and apoptosis, was shown to activate JNK via DAXX
and the mitogen-activated protein kinase kinases MKK4
(MAP2K4) and MKK7 (MAP2K7). HIPK2 colocalizes
with DAXX in PML-NBs and induces DAXX’s release
from PML-NBs. HIPK2 directly phosphorylates DAXX,
which promotes TGF�-mediated cell death (109). It is

worth noting in this context that HIPK2 appears critical
to glucose deprivation-mediated cell death via JNK acti-
vation (110). Given that DAXX cytoplasmic translocation
and JNK activation are involved in inducing cell death dur-
ing glucose deprivation (92,93), it will be interesting to as-
sess whether HIPK2-mediated effects on DAXX is func-
tionally linked to cell death upon metabolic stress. SMAD4
is a key mediator of the TGF� signaling pathway. DAXX
interacts with SUMOylated SMAD4 and represses SMAD-
mediated transcription (111). SMAD4 activation induces
growth arrest and apoptosis and its loss potentiates tumori-
genesis (112). These observations suggest that DAXX could
also block the tumor suppressive effect of TGF� signal-
ing by repressing SMAD4. Of note, RIPK3 phosphory-
lates DAXX, resulting in its cytoplasmic localization and
necroptosis (113) (Figure 3E).
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The proapoptotic function of DAXX in the nucleus. In
the nucleus, DAXX can potentiate apoptosis through re-
pressing the expression of antiapoptotic genes, activating
proapoptotic genes and other less-well defined mechanisms
(Figure 3F–J). DAXX has been shown to mediate cell death
in response to oxidative stress (e.g. induced by arsenic tri-
oxide), cytokines (TNF� and IFN� ) and osmotic stress,
likely through repressing antiapoptotic genes (38,114) (Fig-
ure 3F and G). In the nucleus, DAXX was shown to ac-
tivate the ASK1–JNK proapoptotic signaling in primary
fibroblasts upon UV exposure (115) (Figure 3H). DAXX
promotes p53-mediated apoptosis by repressing p21 expres-
sion in response to cisplatin treatment (116), and by acti-
vating the proapoptotic BCL2 family genes such as PUMA
(encoded by BBC3) under UV irradiation (117) (Figure 3I).
In the latter case, DAXX forms a complex with AXIN and
HIPK2 to promote p53 phosphorylation at Ser-46, enhanc-
ing PUMA expression and apoptosis (117) (Figure 3I). Of
note, a recent study showed that the mouse embryonic lethal
phenotype due to homozygous Daxx knockout is unrelated
to p53 activation (8). This suggests that the functional link
between DAXX and p53 depends on cell types and bio-
logical contexts. PDCD4 interacts with DAXX and pro-
motes DAXX degradation, resulting in reduced p53 Ser-
46 phosphorylation in the absence of DNA damage. UV
triggers PDCD4 downregulation, thereby restoring p53 Ser-
46 phosphorylation (118). Of note, PDCD4 is an inhibitor
of the translation initiation factor eIF4A, an RNA heli-
case that catalyzes the unwinding of secondary structure at
the 5′ untranslated region (5′UTR) of mRNAs, thereby in-
hibiting cap-dependent protein translation (119). A poten-
tial broader functional link between DAXX and PDCD4
remains to be explored. DAXX interacts with substrates
SUMOylated by PIAS1, and such interactions lead to UV
irradiation-mediated apoptosis (120) (Figure 3J), although
the mediators(s) of apoptosis in this context remains to be
identified.

Induction of apoptosis by DAXX in the nucleus cor-
relates with the localization of DAXX to the PML-NBs
(114,121–123) (Figure 3F). SUMO modification is a prereq-
uisite for PML to recruit DAXX to the PML-NBs (11,124).
As discussed above, DAXX’s localization to PML-NBs may
relieve its repression of proapoptotic genes (10,12,125), re-
sulting in cell death. Notably, overexpression of SUMO-1
contributes to resistance to FAS-induced apoptosis through
increased PML SUMOylation and increased recruitment of
DAXX to PML-NBs. By contrast, the SUMO-specific pro-
tease SENP1 promotes the release of DAXX from PML-
NBs (126). Thus, in this context, the localization of DAXX
in PML-NBs plays a role in cell survival. These observa-
tions suggest that the effects of DAXX’s recruitment to
PML-NBs on cell survival or death may depend on cell-type
and biological contexts. Nonetheless, it remains to be de-
termined precisely how the localization of DAXX in PML-
NBs regulates apoptosis vs cell survival.

DAXX in cell survival. Genetic inactivation of Daxx re-
sults in embryonic lethality in mice (7,8). Increased levels of
apoptosis were observed in Daxx−/− cell lines, indicating
that Daxx is an essential gene for mouse embryonic devel-
opment and plays a role directly or indirectly in preventing

apoptosis (7,127). DAXX downregulation in human can-
cer cells sensitizes cells to apoptosis through the activation
of JNK and caspases (128,129). In primary mouse ovarian
epithelial cells, DAXX depletion accelerated senescence in
a p53/p21-dependent manner and promoted DNA dam-
age signaling (55). In p53-null osteosarcoma Saos-2 cells,
DAXX downregulation correlates with caspase-3 activation
and apoptosis (130,131). The lipid peroxidation (LPO) end-
product 4-hydroxy-2-nonenal (4-HNE) induces a marked
increase of DAXX in the cytoplasm, indicating that 4-HNE
may facilitate the export of DAXX from the nucleus to the
cytoplasm (Figure 3K). In this context, DAXX depletion
seems to potentiate apoptosis (132). Interestingly, DAXX it-
self appears to be covalently modified by 4-HNE, although
the functional consequence of this modification remains un-
known.

Interestingly, DAXX is downregulated by HDAC in-
hibitors (133) and Berberine (134), whereas doxorubicin
did not affect DAXX expression levels (134). In acute lym-
phoblastic leukemia (ALL) cells, Berberine appears to re-
duce DAXX mRNA levels, resulting in MDM2 degra-
dation, and p53 activation (134,135). This indicates that
DAXX-mediated p53 inhibition confers a cell survival ad-
vantage, in agreement with a previous study (47). In HeLa
cells, DAXX sequesters RASSF1C in the PML-NBs. Upon
DNA damage signaling, DAXX undergoes ubiquitin-
dependent degradation, which releases RASSF1C from the
nucleus to promote SAPK/JNK activation and cell death
(136). In human TF-1 cells (a myeloid progenitor-derived
cell line), overexpression of DAXX inhibits cell-extrinsic
apoptosis, apparently through repressing AP-1-mediated
transcription (137). Daxx down-regulation promotes, while
its overexpression inhibits, apoptosis in cardiomyocyte-like
cells exposed to H2O2 or hypoxia, indicating a cytoprotec-
tive role for DAXX (138). In addition to its role in regu-
lating apoptotic cell death, DAXX represses the expression
of several autophagy regulators to block autophagy (62,63)
(Figure 3K). In vivo, Daxx knockout in T-cells results in in-
creased apoptotic cell death upon T-cell receptor stimula-
tion, while Fas-induced apoptosis appears unaffected, indi-
cating that Daxx is important for T-cell survival (107).

DAXX in transcriptional regulation

DAXX has a well-documented role in transcriptional regu-
lation. In most cell types, DAXX predominantly localizes to
the nucleus and functions there as a transcriptional coreg-
ulator through its interactions with a growing number of
transcription factors and other nuclear proteins (Figure 1
and Table 1). DAXX-mediated transcriptional repression
of diverse target genes has been reported (9,38,64,111,139–
141). Likewise, studies have also shown that DAXX is in-
volved in the activation of transcription (6,53,142–146).
DAXX-regulated genes are probably important effectors in
cell death, survival, and tumorigenesis.

DAXX in DNA damage response (DDR)

DAXX is implicated in DDR in several ways. First,
DAXX is involved in DNA-damage-induced p53 acti-
vation. RASSF1A, a DAXX-binding protein, destabi-
lizes MDM2 by disrupting the MDM2–DAXX–USP7
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Table 1. DAXX interacting proteins

DAXX-binding proteins Method of study Functions References

FAS Y2H, Co-IP Apoptosis (4)
CENP-C Y2H, IF Centromere maintenance and cell

death
(197)

CENP-B Co-IP, IF H3.3 deposition at the
centromeres

(198)

ATRX Co-IP, IF, gel filtration
chromatography, crystallography

Chromatin remodeling,
transcription repression, H3.3
deposition

(22,27,28,32,199)

ASK1 (MAP3K5) Co-IP ASK1 activation and apoptosis (5,176)
RIPK3 Co-IP DAXX phosphorylation at

Ser-668 and cell death
(113)

HIPK1 Co-IP, GST pulldown, IF DAXX phosphorylation, DAXX
nuclear export, apoptosis

(92,178)

HIPK2 Co-IP, GST pulldown, IF DAXX phosphorylation, JNK
activation, apoptosis

(109)

HIPK3 Co-IP DAXX phosphorylation (200)
PML Co-IP, Y2H, IF Apoptosis, transcriptional

regulation
(11,12,121,122)

SUMOs Y2H, IF, Co-IP, GST pull-down DAXX localization to PML body,
transcriptional regulation

(6,11,14,38,201)

UBC9 (UBE2I) Y2H, Co-IP, GST pulldown Not determined (6,201)
TGF�RII Y2H, GST pulldown, Co-IP TGF�-induced apoptosis (108)
DAPK3 (ZIPK) Co-IP Apoptosis through PML-NBs (114)
AXIN Y2H, Co-IP p53 activation and apoptosis (117)
HSP27 Y2H, Co-IP, GST pulldown Cell survival (202)
TOLLIP Y2H, IF, GST pulldown Not determined (203)
DJ-1 (PARK7) Y2H, Co-IP, GST pulldown Inhibits DAXX export to the

cytoplasm, protects against
DAXX/ASK1-induced cell death

(101)

PIN1 GST pull-down, Co-IP, IF Cell survival, DAXX degradation (103)
cFLIPL Co-IP Inhibits JNK activation (95)
FTH1 Y2H, Co-IP, GST pull-down Inhibits apoptosis (204)
CRM1 Co-IP DAXX nuclear export (94)
TSG101 Co-IP Transcription repression (205)
PDCD4 Co-IP, GST pulldown DAXX degradation (118)
PIAS1 IF Promotes ultraviolet

(UV)-induced apoptosis
(120)

PTEN Co-IP Represses oncogene expression (60)
p53, p73, p63 Y2H, Co-IP, GST pulldown,

NMR
Cell death/survival (116,117,25,47,206)

ETS1 Y2H, GST pulldown, IF Transcription repression (139)
Pax3 Y2H, Co-IP Represses PAX3-mediated

transcription
(9)

Pax7 Y2H Not determined (9)
Pax5 Y2H, Co-IP, GST pulldown Transcription repression or

activation
(142)

RELB (NF-�B) Co-IP Transcription repression (207)
RELA (p65) (NF-�B) Co-IP, GST pulldown Inhibits p65 acetylation and

transactivation
(141)

HSF1 Y2H, Co-IP Activates HSF1-mediated
transcription

(143)

SMAD4 Y2H, Co-IP SUMOylation-dependent
transcription repression

(111)

SNAI2 (Slug) Co-IP Suppresses SNAI2-mediated gene
repression and inhibits metastasis

(87)

AIRE Y2H, Co-IP, IF Represses AIRE-mediated
transcription

(208)

DNMT1 Y2H, Co-IP Transcription repression,
promoter methylation

(170,205)

DNMT3a Co-IP Not determined (170)
DMAP1 Y2H, Co-IP, IF Transcription repression (205)
HDAC1, HDAC2, HDAC3 Co-IP, GST pulldown Transcription repression (12,13)
CBP Co-IP Represses or activates

CBP-dependent transcription
(140,142)

AR Y2H, Co-IP, GST pulldown Inhibits AR-mediated
transcription

(64)

GR Y2H, GST pulldown Transcription repression (209,210)
MR Y2H Transcription repression (210)
TCF7L2 (TCF4) Y2H, Co-IP Transcription repression or

activation
(145,53,144)
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Table 1. Continued

DAXX-binding proteins Method of study Functions References

STAT3 GST pulldown Represses STAT3-mediated
transcription

(211)

Histone H3.3/core histones Co-IP, GST pulldown,
crystallography

Histone chaperone (13,19,20,26,212)

DEK Co-IP Not determined (13)
BRG1 Co-IP Not determined (33)
MENIN Co-IP Gene repression and tumor

suppression
(213)

MSP58 (MCRS1) Y2H, GST pulldown, Co-IP, IF DAXX nucleolar localization,
reversal of DAXX-mediated gene
repression

(214)

MDM2 Co-IP, NMR Promotes p53 ubiquitination and
degradation

(25,47,148)

RASSF1A Co-IP Disrupts DAXX-MDM2-USP7
complex and promotes MDM2
degradation

(66)

RASSF1C Co-IP, NMR RASSF1C nuclear sequestration (25,136)
CDC20 Co-IP Inhibits mitotic progression (51)
CDH1 Co-IP Inhibits mitotic progression (51)
MAD2 Co-IP Not determined (51)
BUBR1 Co-IP Not determined (51)
CHIP (STUB1) Co-IP DAXX ubiquitination; inhibition

of p53-mediated apoptosis
(184)

TRIM21 (Ro52) Y2H, Co-IP, IF DAXX cytoplasmic localization (215)
GLUT4 Y2H, Co-IP Not determined (216)

Viral proteins that interact with
DAXX
E1B 55-kDa (HAdV) Y2H, Co-IP, IF Relocation of DAXX from

PML-NBs
(57)

Protein VI (HAdV) Co-IP, IF Inhibits DAXX-mediated
repression of viral gene expression

(217)

LANA (KSHV) Co-IP, IF, GST pulldown Inhibits DAXX-mediated
transcriptional repression

(218)

BNRF1 (EBV) Co-IP, gel filtration
chromatography

Reverses DAXX/ATRX-mediated
repression of viral gene
expression; promotes latent viral
gene expression

(169,219,220)

pp71 (HCMV) Y2H, Co-IP, IF Inhibits DAXX-mediated
repression of viral gene expression

(221,222)

L2 (HPV) Co-IP, IF Blocks PML-NB-mediated
repression of viral gene expression

(223,224)

Integrase (ASV, HIV) Y2H, Co-IP, IF, GST pulldown Represses viral gene expression (159,162)
DENVC (Dengue virus) Co-IP Induces apoptosis (166)
PUUV-N (Hantavirus) Y2H, Co-IP, IF, GST pulldown Not determined (225)

Abbreviations: ASV: avian sarcoma virus; Co-IP: co-immunoprecipitation; EBV: Epstein Barr virus; GST: glutathione S transferase; HAdV: human aden-
ovirus; HCMV: human cytomegalovirus; HPV: human papillomavirus; IF: immunofluorescence; KSHV: Kaposi’s sarcoma-associated herpesvirus; LANA:
latency-associated nuclear antigen; NMR: nuclear magnetic resonance; Y2H: yeast two-hybrid assay

(HAUSP) interactions, contributing to DNA damage-
induced p53 activation (147). Ataxia telangiectasia mu-
tated (ATM) regulates the DAXX-MDM2-p53-USP7 inter-
actions (148). ATM phosphorylates DAXX at Ser-564 upon
DNA damage (149,150). As noted above, DAXX may be in-
volved in promoting DNA repair in ovarian cancer cells in
response to genotoxic insults (52). These findings provide
evidence to support a role for DAXX in DDR. Interest-
ingly, the p53-regulated phosphatase WIP1 (PPM1D) de-
phosphorylates pSer-564 of DAXX (150). Notably, DNA
damage-induced DAXX Ser-564 phosphorylation does not
seem to affect p53 stability or the expression of p53 tar-
get genes in the human osteosarcoma cell line U2OS and
primary human BJ fibroblasts (150). However, it is impor-
tant to note that the U2OS cell line is deficient of ATRX. It

will be interesting to assess whether ATRX plays a role in
DAXX-mediated regulation of p53 in DDR.

Second, DAXX and ATRX protect DNA replication
fork. Earlier studies show that inactivation of Atrx in mice
results in p53 activation and neuronal cell death (151). Pro-
liferating cells lacking Atrx exhibit delayed S-phase progres-
sion along with elevated DNA-damage stress, followed by
cell death in rapidly expanding progenitors of several tis-
sue types including the central nervous system (CNS) (151–
154). Nonetheless, whether DAXX works together with
ATRX in these settings remains to be investigated. Experi-
ments using HeLa cells depleted of ATRX or DAXX indi-
cate that ATRX/DAXX functions to protect stalled replica-
tion fork by limiting MRE11-mediated DNA degradation
(154).
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Third, DAXX deposits H3.3 at sites of new DNA syn-
thesis in repairing double-strand breaks (DSBs) via ho-
mologous recombination. Recently, Juhasz et al. showed
that cells depleted of ATRX, DAXX, or H3.3 exhibit iden-
tical defects in homologous recombination. DAXX to-
gether with ATRX acts to deposit H3.3 during repair DNA
synthesis (155). Thus, the histone chaperone function of
DAXX is directly linked to DNA repair. It will be inter-
esting to investigate whether DNA damage-induced DAXX
phosphorylation (e.g. at Ser-564) regulates its histone chap-
erone activity, thereby impacting DNA repair.

DAXX in viral infection

Through interacting with viral proteins, DAXX represses
viral gene expression, which is thought as an innate host an-
tiviral response (57,156–162). Viral factors in infected cells
counteract this antiviral mechanism by targeting DAXX
for proteasomal degradation (58,161) or by disrupting the
PML-NBs (57,163,164). DAXX can also confer antiviral
immunity through triggering cell death of infected wells
(164). For example, Daxx expression is markedly increased
in the reovirus-infected mouse brain tissues through the
type I interferon system, which triggers Daxx-Fas colocal-
ization in plasma membranes, suggesting that Daxx medi-
ates Fas-induced cell death (165) (Figure 3A). Surprisingly,
endogenous Daxx also appears to repress caspase 3 expres-
sion to inhibit apoptosis in the reovirus-infected cells (165).
These findings suggest that the cytoplasmic localization of
Daxx is critical for Daxx to trigger apoptosis, while nuclear
Daxx inhibits cell death through repressing proapoptotic
genes to protect cells. There is also evidence that viral fac-
tors inhibit DAXX-mediated cytoprotection, which could
facilitate the release of viral progenies (166,167). DAXX has
also been shown to promote viral gene expression (168,169).
The Epstein-Barr virus (EBV) tegument BNRF1 interacts
with the DAXX–H3.3/H4 complex via directly contacting
all three subunits of the DAXX–H3.3–H4 complex, which
promotes viral latency and host cell immortalization (169).

MECHANISMS UNDERLYING DAXX-MEDIATED PRO-
CESSES

Mechanisms underlying DAXX-mediated transcriptional
regulation

A ChIP-seq study revealed DAXX’s chromatin-binding
sites in promoters of actively transcribed genes, intronic
and intergenic regions. The binding motifs of AP-1, nu-
clear receptors (NR), and FOXA1 are highly enriched in
DAXX-associated chromatins (62). Consistent with previ-
ous studies (170), DNMT1 co-occupies a small subset of the
DAXX-binding sites, which correlates with gene repression
(62). The AP-1 motif is also enriched in sites co-bound by
DAXX and DNMT1. Along with findings that DAXX pro-
motes c-JUN-mediated transcription (6), these data indi-
cate that c-JUN may play a major role in DAXX-mediated
transcriptional regulation. As noted above, DAXX inhibits
autophagy by repressing genes involved in this process,
thereby promoting prostatic tumorigenesis (62,63).

Mechanistically, DAXX represses transcription through
several distinct mechanisms. Daxx in concert with Atrx

deposits H3.3 to certain endogenous retroviral elements.
This leads to H3K9 methylation and transcription silenc-
ing (171) (Figure 4A). In hypomethylated genome, Daxx
and Atrx were shown to occupy repetitive DNAs including
telomeres to repress transcription by recruiting SUV39H1
to catalyze H3K9 trimethylation (172). As noted above,
DAXX can tether DNMT1 to gene regulatory elements, re-
sulting in increased DNA methylation and gene repression
(62,170) (Figure 4B). Through interacting with HDACs
(12,13), DAXX can mediate histone deacetylation at spe-
cific chromatin sites by binding to TFs (Figure 4B). Inter-
estingly, DAXX, via the DAXX–SETDB1–KAP1–HDAC1
complex, represses endogenous retroviral elements, which
does not involve ATRX and H3.3 deposition (22). No-
tably, DAXX interacts with the DNA-binding domain of
several TFs including TCF4 (145), CREB (173), and Slug
(SNAI2) (87), which interferes with DNA-binding of these
TFs, thereby indirectly affecting gene expression. The in-
teractions of DAXX with TCF4 or CREB result in reduced
gene expression probably due to reduced chromatin binding
of both TFs. However, DAXX forms a complex with Slug
and HDAC1, which presumably is released from chromatin,
thereby relieving gene repression by the Slug–HDAC1 com-
plex (87).

DAXX can activate gene expression. As noted above, the
AP-1 binding motif is highly enriched in DAXX-associated
chromatin sites (62) and DAXX markedly activates c-
JUN-mediated transcription in a SIM-dependent but PML-
independent manner (6). DAXX depletion by an shRNA re-
sults in many downregulated genes along with upregulated
ones (62). Mechanistically, H3.3 deposition was shown
to activate certain genes (146). Interestingly, calcineurin-
mediated dephosphorylation of the mouse Daxx at Ser-
669 correlates with its chromatin association, H3.3 load-
ing and transcriptional activation (146). Whether or not
ATRX is involved in H3.3 loading at the gene regulatory
regions was not examined in this study, although previous
studies show that H3.3 deposition at those sites may be
partly ATRX-independent (174). It will be important to
identify factors (e.g., the histone chaperone DEK, as hy-
pothesized previously (175)) that work with DAXX to de-
posit H3.3 at regulatory regions to activate gene expression
(Figure 4C). The DAXX-CBP interaction is implicated in
transcription activation (142), although the interactions of
SUMO-1-modified CBP with DAXX and HDAC2 repress
transcription (140). The functional outcome of the DAXX-
CBP interaction may be context dependent. Collectively,
DAXX-mediated transcriptional activation may involve its
H3.3 chaperone function and coactivator recruitment (Fig-
ure 4C). Further studies will be required to define the reg-
ulatory dynamics of DAXX-mediated transcriptional acti-
vation and repression, which is likely regulated by specific
cell signaling events.

Molecular interactions impacting DAXX-mediated apoptosis

DAXX may serve as a scaffolding protein to form spe-
cific complexes to induce apoptosis. Upon Fas stimula-
tion, DAXX binds to the N-terminal domain of ASK1,
which disrupts the autoinhibitory intramolecular interac-
tion of ASK1, resulting in the activation of the ASK1–JNK
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Figure 4. Mechanisms underlying DAXX-mediated transcriptional regulation. (A) DAXX, as an H3.3 chaperone along with ATRX, is recruited to chro-
matin by interacting with a TF. This complex deposits H3.3 to specific chromatin sites. Histone methyltransferases (KMTs) such as SETDB1 and SUV39H1
are associated with the DAXX repression complexes and mediate H3K9 trimethylation to repress transcription. (B) DAXX interacts with HDAC1, HDAC2
and HDAC3 as well as DNMT1 to repress transcription. KMTs such as SETDB1 are associated with the DAXX-HDAC1 repression complex. (C) DAXX
can activate transcription through interacting with a TF, and possibly also with coactivator(s) such as CBP. H3.3 deposition may also be involved in
DAXX-mediated gene activation. Multivalent interactions, partly mediated by the two SIMs of DAXX, are probably important for DAXX-mediated
transcriptional repression and activation (not depicted).

proapoptotic signaling cascade (5). Notably, K63-linked
polyubiquitination of DAXX at K122 was shown to be im-
portant for TNF�-induced ASK1 activation (91) (Figure
3A and B), which possibly enables the assembly of a sig-
naling complex akin to other cytoplasmic complexes asso-
ciated with death receptors. In the nucleus, DAXX forms
complexes with HIPK2, p53 and AXIN to facilitate p53
phosphorylation (117) (Figure 3I). Further studies are re-
quired to establish DAXX-containing complexes with de-
fined composition and functions.

REGULATION OF DAXX FUNCTIONS

DAXX undergoes extensive posttranslational modifica-
tions including phosphorylation, acetylation, ubiquitina-
tion and SUMOylation (www.phosphosite.org). DAXX
protein abundance is regulated by ubiquitin-mediated pro-
teasomal degradation. These events likely play critical roles
in regulating DAXX’s biological functions.

Phosphorylation

There are numerous sites of phosphorylation throughout
DAXX, especially in the intrinsically disordered regions
(Figure 1). ASK1 phosphorylates DAXX at Ser-176 and
Ser-184, which stabilizes DAXX (176) and promotes K63-
linked polyubiquitination of DAXX at K122 and cell death
(91). By contrast, DAXX phosphorylation at Ser-178 is im-
plicated in triggering DAXX polyubiquitination and degra-
dation (103). Upon DNA damage, ATM rapidly phospho-
rylates DAXX at Ser-564 (149,150), which appears to pro-
mote p53 activation (149). Ser-712 was identified as a pu-
tative ATM/ATR phosphorylation site (177). RIPK3 was
shown to phosphorylate DAXX at Ser-668 to promote
DAXX nuclear export and cell death (113). CK2 phos-
phorylates DAXX at Ser-737 and Ser-739 within SIM2 to
enhance its affinity to SUMOs (38). HIPK2 phosphory-
lates DAXX, which potentiates DAXX-mediated apoptosis
(109). HIPK1 was shown to phosphorylate mouse Daxx at
Ser-669 (178).

SUMOylation and PML-NB localization

DAXX is SUMOylated at multiple sites, which is increased
by oxidative stress (14,38). As noted above, multivalent in-
teractions via numerous SUMO-SIM interfaces between

DAXX and PML allow their high affinity interactions and
the recruitment of DAXX, along with other components
into PML-NBs, which may aggregate into phase-separated
droplets (125,179,180). Interestingly, a DAXX mutant with
15 lysine to arginine mutations (15KR) that is largely de-
void of detectable SUMOylation (14) can still localize to
PML-NBs (14), indicating that the DAXX SUMOylation
per se is not essential to its PML-NB localization. This
is consistent with the observations that the two DAXX
SIMs are the major determinant of DAXX’s PML-NB lo-
calization (6,14). Functionally, the localization of DAXX
in PML-NBs has been suggested as a means to sequester
DAXX to relieve repression of certain genes (10,12,125).
As mentioned above, PML-NBs may also facilitate the
deposition of H3.3 by DAXX to certain chromatin sites
(31). Interestingly, PML blocks DAXX-mediated H3.3 in-
corporation into heterochromatin during S phase (44). Al-
though precisely how the diverse functions of DAXX are
regulated through PML-NBs remains to be established,
PML-NBs may facilitate posttranslational modifications
(phosphorylation, SUMOylation, acetylation and deacety-
lation) of DAXX and other clients (180). Indeed, CK2 and
HIPK2 that phosphorylate DAXX localize to PML-NBs
(38,109,180). Because CK2-mediated SIM2 phosphoryla-
tion increases its affinity to SUMOs (38), this can in turns
promote DAXX SUMOylation. Through interacting with
the PML N-terminal RING domain, UBC9 is concentrated
in PML-NBs. It has been proposed that PML-NBs may fa-
cilitate SUMOylation of clients (180). However, whether or
not DAXX is SUMOylated in PML-NBs remains to be es-
tablished.

Ubiquitin-mediated DAXX degradation

As discussed above, DAXX undergoes ubiquitin-mediated
degradation in response to DDR and other stimuli
(134,136). A number of E3 ubiquitin ligases have been iden-
tified to mediate DAXX proteasomal degradation includ-
ing SPOP/CUL3 (18,82,181–183) and CHIP (184). Lys-
630 and Lys-631 of DAXX are sites of CHIP-mediated
ubiquitination, which appears to interfere with DAXX
SUMOylation (184). SPOP-mediated DAXX degradation
is best understood and potentially important for tumor
suppression. Somatic SPOP missense mutations are fre-
quently detected in several cancer types including endome-

http://www.phosphosite.org
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trial and prostate cancer (185–187). Via the substrate-
binding meprin and TRAF homology (MATH) domain,
SPOP binds to the SPOP-binding (SB) motif with the con-
sensus sequence of �-�-S-S/T-S/T, where � is a nonpolar
and � is a polar residue (182). SPOP contains two dimer-
ization domains, the BTB (broad-complex, tramtrack, and
bric-a-brac) and the BACK (BTB and C-terminal kelch)
domains, which mediate further oligomerization to form
phase-separated liquid droplets (188). DAXX contains mul-
tiple SBs within its intrinsically disordered regions (Fig-
ure 1). The multiple weak DAXX-SPOP interactions in the
C-terminal disordered region are critical to sequestering
DAXX in the SPOP droplets to enhance DAXX ubiqui-
tination (18). The SPOP-DAXX compartment is distinct
from PML-NBs and nuclear speckles. Significantly, cancer-
derived SPOP mutations impair SPOP-DAXX colocaliza-
tion (18). Thus, cancer-associated SPOP mutations compro-
mise its substrate recognition and the degradation of an in-
creasing number of known and potential oncoproteins such
as DAXX (18,181,182), BRD4 (189,190), MYC (191), the
androgen receptor (AR) (192), PD-L1 (193), ERG (194) and
Nanog (195,196).

SUMMARY AND PERSPECTIVES

The literature reviewed here highlights critical functions of
the ubiquitously expressed DAXX in cell survival, apopto-
sis and oncogenesis. As a chromatin-associated transcrip-
tional regulator, DAXX modulates gene expression through
binding to TFs, epigenetic modifiers, and chromatin re-
modelers. The genes regulated by DAXX are likely im-
portant mediators or effectors of DAXX’s biological func-
tions. The regulation of other functions such as cell death
by DAXX may also be through direct physical interac-
tions between DAXX and various proteins. An understand-
ing of signaling pathways that regulate DAXX-mediated
biological processes will be informative to illuminate the
context-dependent roles of DAXX in transcription, cell
survival and apoptosis. Importantly, the compelling evi-
dence that DAXX has an oncogenic function as reviewed
here suggests that targeting of DAXX-mediated mecha-
nisms could have therapeutic potential for treating differ-
ent cancer types. A precise mechanistic understanding of
how DAXX modulates gene expression, epigenetic modi-
fication, chromatin remodeling and DNA repair can pro-
vide innovative ideas for designing anticancer therapeutic
interventions. Future work based on conventional method-
ologies in molecular cell biology along with integrated sys-
temic OMIC approaches will undoubtedly yield more in-
sights into the complex functions of DAXX in biology and
pathobiology.
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