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Age-related neural changes underlying
long-term recognition of musical
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Aging is often associatedwith decline in brain processing power and neural predictive capabilities. To
challenge this notion, we used magnetoencephalography (MEG) and magnetic resonance imaging
(MRI) to record thewhole-brain activity of 39 older adults (over 60 years old) and 37 young adults (aged
18–25 years) during recognition of previously memorised and varied musical sequences. Results
reveal that when recognising memorised sequences, the brain of older compared to young adults
reshapes its functional organisation. In fact, it shows increased early activity in sensory regions such
as the left auditory cortex (100ms and 250ms after each note), and only moderate decreased activity
(350ms) inmedial temporal lobe and prefrontal regions.When processing the varied sequences, older
adults show amarked reduction of the fast-scale functionality (250ms after each note) of higher-order
brain regions including hippocampus, ventromedial prefrontal and inferior temporal cortices, while no
differences are observed in the auditory cortex. Accordingly, young outperform older adults in the
recognition of novel sequences, while no behavioural differences are observed with regards to
memorised ones. Our findings show age-related neural changes in predictive andmemory processes,
integrating existing theories on compensatory neural mechanisms in non-pathological aging.

Aging is a major omni comprehensive phenomenon which brings new
challenges and places a large financial burden on society1,2. Research into
both healthy and pathological aging is crucial to understand changes in
brain function and structure across the lifespan and to eventually identify
early markers of the age-related neural decline. Aging is commonly asso-
ciated with a progression in brain atrophy, reduced neuronal plasticity, and
cognitive deterioration in domains such as decision-making, attention,
problem-solving, and memory3–6. However, despite the collective impor-
tance of these cognitive domains in daily functioning, developing a unified
theoretical framework for cognitive aging poses a scientific challenge due to
substantial interindividual variability and varying rates of decline across
cognitive domains. Nevertheless, various theories have been proposed. For
example, the Compensation-Related Utilization of Neural Circuits
Hypothesis (CRUNCH)7, Hemispheric Asymmetry Reduction in Older
Adults (HAROLD)8, and Posterior-Anterior Shift in Aging (PASA)9 suc-
cessfully addressed cognitive and neural changes occurring in aging but fell

short of explaining variability between individuals or across different cog-
nitive domains. In contrast, the Cognitive Reserve (CR) theory10 and the
revisedScaffoldingTheoryofAging andCognition (STAC-r)11 offeredmore
comprehensive frameworks able to capture the complexity of cognitive
aging by emphasising external factors influencing individuals’ compensa-
tory abilities for cognitive disturbances.

More specifically, the CR theory asserts that cognitive reserve, accu-
mulated through lifestyle choices and socioeconomic factors, enhances
cognitive and neuralflexibility, allowing individuals with similar age-related
structural brain changes to vary significantly in cognitive performance.
Conversely, the STAC-r theory emerged as a dynamic model of cognitive
aging asserting that cognitive function in aging is governed by a balance
between adverse and compensatory neural processes. It emphasises the role
of compensatory scaffolding, which supports cognitive performance despite
aging-related neural challenges and brain deterioration. This compensatory
process involves recruiting additional brain regions such as bilateral frontal
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areas, strengthening existing neural networks, and possibly even promoting
neurogenesis through neuroplastic mechanisms influenced by lifestyle
factors.

Empirical support for these theories spans behavioural, neurophysio-
logical, and neuroimaging studies. On a behavioural level, empirical data
supported the notion that engaging in cognitive enriching activities can
significantly enhance cognitive functions in the older adults. More specifi-
cally, lifestyle factors such as active intellectual, social, and physical
engagement, all of which are proxies for a higher cognitive reserve, were
repeatedly associated with improved cognitive performance12–14 as well as
lower risk of developing Alzheimer’s disease15–17 and delayed dementia
onset15,18,19. As summarised by Reuter-Lorenz & Park (2014), evidence for
compensatory scaffolding was also found in the neuroimaging literature
demonstrating that older adults exhibited greater activation or additional
recruitment of prefrontal and parietal brain regions during cognitive tasks,
compared to younger adults9,20,21. Compensatory mechanisms have also
been characterised by a shift to bilateral brain activation during tasks that
typically induce lateralised activity in younger individuals9,11,22,23. Such pat-
terns of brain activity were confirmed through meta-analyses, highlighting
their widespread occurrence across different cognitive domains including
perception,memory, and executive functions24.Here, of particular relevance
for the topic of our research are a series of longitudinal studies which have
examined music-related changes in the brains of healthy older adults and
demonstrated that cognitive stimulation through music preserves or even
enhances cognitive performance (for a review, seeRefs. 25,26). For instance,
Worschech, Marie, Junemann, Sinke, Kruger, Grossbach, Scholz, Abdili,
Kliegel, James and Altenmuller27 demonstrated that healthy older indivi-
duals who underwent six months of musical training showed marked
improvements in speech perception, a key component of cognitive reserve.
Other longitudinal studies have observed significant increases in grey
matter28 and cortical thickness within bilateral auditory brain structures29.
Similarly, it has been shown evidence of stabilisation of white matter
microstructure in the fornix30 after six months of piano training and
improvedfinemotor control in older adults after one year of piano lessons31.
These studies also showed evidence for increased functional connectivity in
the right dorsal auditory stream after one ear’s piano training in older
adults32. Such morphological changes highlighted the profound impact of
engaging in enriching activities like music on brain plasticity and may
additionally shed light into how lifestyle factors contribute to the main-
tenance of cognitive functions and the mitigation of cognitive decline,
providing support for the key tenets of the CR and STAC-r theories of
cognitive aging. These findings underscored the potential of lifestyle inter-
ventions to foster cognitive resilience against age-related declines and
neurodegeneration. Along this line, additional neuroimaging studies have
highlighted how older adults may exhibit greater or different patterns of
brain activation compared to younger adults. For instance, recent neuroi-
maging research has used magnetic resonance imaging (MRI) and func-
tional MRI to detect age-related neuroplastic adaption that may serve as
compensatory mechanisms33,34.

Similarly, neurophysiological evidence from electroencephalography
(EEG) studies supports the idea of scaffolding by detecting age-related
compensatory activity. A recent study35 on the role of APOE ε4 status—a
genetic marker linked to Alzheimer’s disease—found that healthy indivi-
duals without the APOE ε4 allele exhibited increased cerebellar activity
indicative of compensatory neural mechanisms which were not present in
healthy individuals carrying the gene. This differential response highlighted
the influence of genetic factors on the brain’s ability to employ compensa-
tory mechanisms in the face of aging. Moreover, ERP and microstate ana-
lyses of EEG data has found differences in neural responses to age-related
neural changes across different cognitive demands36. MEG studies investi-
gating the spatial-temporal dynamic of neural recruitment in older adults
has also found additional recruitments in frontal, temporal, and parietal
regions in older compared to younger adults37, supporting the notion of
compensatory mechanisms though cognitive control processes. Moreover,
neurophysiological studies indicated that aging impacts evoked responses,

such as the mismatch negativity (MMN). TheMMN is a component of the
event-related potential/field (ERP/F) that arises automatically in response to
deviant auditory stimuli and is widely used as an index for auditory sensory
memory38. Notably, several studies suggested that aging associates with
attenuated MMN responses, characterised by decreased amplitudes and
prolonged latencies, indicative of altered sensory memory traces in older
adults. For instance, using MEG, Cheng and colleagues39 showed a reduc-
tion in the fronto-temporo-parietal activity underlyingMMNin response to
pitch changes in older compared to young participants. In another MEG
study, the authors40 revealed that longer peak latencies and smaller ampli-
tudes were found in theMMNof older versus young adults. Similarly, in an
EEG study, Kisley and colleagues41 showed that older adults presented
reduced MMN amplitude at fronto-central sites and decreased sensory
gating efficiency compared to younger adults. Taken together, thesefindings
suggest that aging is associated with declines in automatic predictive pro-
cesses in the auditory domain and with a mild decline of the cognitive ear,
possibly related to slow brain atrophy typical of aging42.

In summary, extensive neurophysiological and neuroimaging research
has explored the brain changes associated with aging, highlighting altera-
tions in automatic predictivemechanisms. Despite these advancements, the
impact of aging on conscious predictive processes, particularly pertaining to
the long-term recognition of previously memorised auditory sequences,
remains poorlyunderstood.Addressing this critical gap, in the current study
we used a validated paradigm that was previously employed in samples
composed only by young participants in combination with state-of-the-art
neuroimaging techniques to study the brain dynamics of healthy older and
young adults as they recognised musical sequences. These previous studies
in young healthy participants showed that encoding of sounds recruited a
large network of functionally connected brain areas, especially in the right
hemisphere, such as Heschl’s and superior temporal gyri, frontal oper-
culum, cingulate gyrus, insula, basal ganglia, and hippocampus43. Similarly,
long-term recognition of short musical sequences recruited nearly the same
brain network, displaying hierarchical dynamics from lower- to higher-
order brain areas during recognition ofmusical sequences44–46. In particular,
our most recent research has revealed faster (150–250ms from the onset of
the tones) and negative responses to the tones forming the varied musical
sequences, in contrast to slower (300–400ms from the onset of the tones),
positive signals generated by the brain when recognising previously mem-
orised musical sequences47.

Given the theoretical framework provided by the STAC-r theory11,
which highlights compensatory scaffolding mechanisms, we hypothesised
that the aging brain exhibits a functional reorganisation of the networks
highlighted in our previous studies on memory recognition of musical
sequences44–47. Indeed, we expected that such transformation in neural
predictive processes during aging would notmerely show a reduction in the
amplitude of the brain signal, but a qualitative change, leveraging com-
pensatory mechanisms. In particular, we hypothesised that during the
recognition of musical sequences, the older adults’ brain would be char-
acterised by reduced activity in regions of the medial temporal lobe (e.g.
hippocampus and inferior temporal cortex) and increased, compensatory
activity in the auditory cortex.

Results
Overview of the experimental design and analysis pipeline
In this study, we investigated the impact of aging on the fast-scale spatio-
temporal brain dynamics underlying recognition of previously memorised
musical sequences. In brief, during magnetoencephalography (MEG)
recordings, two groups of participants (39 older adults [older than 60 years
old] and 37 young adults [younger than 25 years old]) listened to the first
musical sentence of the Prelude in Cminor, BWV 847 by Johann Sebastian
Bach andwere instructed tomemorise it to the best of their ability.As shown
in Fig. 1 and Supplementary Fig. 1, participants were subsequently pre-
sented with five-tone musical excerpts (M) taken from the music they
previouslymemorised andwith carefullymatchedvariations.Thevariations
consisted of five-tone musical sequences generated by systematically
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altering theMsequences after either the first (NT1) or third (NT3) tone. For
each musical sequence, participants were requested to assess whether the
sequence was taken from the memorised musical piece (M) or whether it
was new (N). Additional details on the stimuli are available in theMethods
section. Key background information on the two samples of participants is
reported in Supplementary Table 1.

The analysis pipeline of this study is partly depicted in Fig. 1. Initially,
we conducted an analysis of the participants’ behavioural performance
(Fig. 2). Subsequently, the pipeline involved contrasting the brain activity of
young versus older adults at MEG sensor and source levels (Figs. 3–6,
Supplementary Figs. S2–S6). This dual-level analysis is considered best
practice in MEG research as it ensures comprehensive data disclosure and
allows verification that the results in the MEG source space are consistent
with those obtained at the MEG sensors48,49.

First, we used Monte Carlo simulations (MCS) on univariate tests of
event-related field (ERF)MEG sensor data. This was followed by estimating
the sources of the brain activity which generated the differences between
young and older adults. Second, we focused on eight key regions of interest
(ROIs) which were identified based on their functional properties in our
latest study47 on music recognition. Here, we analysed whether their time
series differed between older and young adults. Third, we assessed the
impact ofWM, years of general andmusical education, sex, and age groups
on the brain activity underlying recognition of the musical sequences.

Behavioural results
We calculated the impact of age on response accuracy and reaction times
during the musical recognition task that participants performed in
the MEG.

Regarding the response accuracy, there was a statistically significant
difference between the two age groups in the memory task (F(3, 61) = 7.18,

p < 0.001, Wilks’ Λ = 0.739, partial η2 = 0.26). Follow-up ANCOVAs
showed that older adults scored lower than young adults when correctly
identifying NT1 (F(1, 63) = 13.03, p < 0.001) and NT3 sequences (F(1,
63) = 19.89, p < 0.001). Years of education (F(3, 61) = 3.37, p = 0.02, Wilks’
Λ = 0.857, partial η2 = 0.14), WM scores (F(3, 61) = 7.07, p < 0.001, Wilks’
Λ = 0.742, partial η2 = 0.26), and years of musical training (F(3, 61) = 4.61,
p = 0.005, Wilks’ Λ = 0.815, partial η2 = 0.18) were statistically significant
covariates. Specifically, years of educationhad a statistically significant effect
on correctly identifying M (F(1, 63) = 4.58, p = 0.03) and NT1 sequences
(F(1, 63) = 6.52, p = 0.01), meaning that higher number of years of educa-
tion was associated to higher number of correct responses. Similarly, WM
capacity had a statistically significant positive effect on correctly identifying
NT1 (F(1, 63) = 14.31, p < 0.001) and NT3 sequences (F(1, 63) = 19.24,
p < 0.001). Finally, years of musical training had a statistically significant
positive effect on correctly identifying NT1 (F(1, 63) = 5.45, p = 0.02) and
NT3 sequences (F(1, 63) = 13.80, p < 0.001).

With respect to the average reaction timeduring recognitionofM,NT1
and NT3 sequences, we found a statistically significant difference between
the two age groups on the reaction times (F(3, 64) = 2.904, p = 0.04, Wilks’
Λ = 0.880, partial η2 = 0.12). However, this effect was non-significant in
follow-up ANCOVAs. Regarding the covariates, only WM scores had a
significant effect on the dependent variables (F(3, 64) = 5.18, p = 0.002,
Wilks’Λ = 0.804, partialη2 = 0.20). Inparticular,weobserved that highWM
scores were associated with lower average reaction time when correctly
identifying NT1 (F(1, 66) = 10.96, p = 0.001) and NT3 sequences (F(1,
66) = 4.29, p = 0.04).

Aging and whole-brain activity
To assess the difference between the brain activity of older and young adults
while they recognised the musical sequences, we calculated several

Fig. 1 | Experimental design, stimuli, and analysis pipeline. a Thirty-seven young
and 39 older adults were invited to participate in the experiment. bThe brain activity
of the participants was collected usingmagnetoencephalography (MEG), while their
structural brain images were acquired using magnetic resonance imaging (MRI).
c Participants were requested to memorise a short musical piece (lasting about 30 s).
Then, we used an old/new auditory recognition task (left). Here, one at a time, five-
tone temporal sequences (i.e., musical melodies) were presented in randomised
order and participants were instructed to respond with button presses whether they
were taken from the musical piece they previously memorised (‘old’ or memorised
musical sequences, ‘M’) or they were novel (‘new’ musical sequences, ‘N’). Three
types of temporal sequences (M,NT1, NT3)were used in the study. The figure shows
a graphical depiction of how the novel musical sequences were created with regards

to the previously memorised ones (right). The N sequences were created through
systematic variations of the M sequences. For example, in the middle row, it is
depicted a sequence (NT1) where we changed all tones but the first one (indicated by
the red colours). Likewise, the bottom row shows a sequence where we changed only
the last two tones (NT3). d After pre-processing the MEG data, we co-registered it
with the individual anatomical MRI data and reconstructed its brain sources using a
beamforming algorithm. This procedure returned one time series for each of the
3559 reconstructed brain sources. eWe constrained the source reconstructed data to
eight brain regions of interest (ROIs) which were selected based on previous lit-
erature (left). For each of the ROI, we studied the differences over time between the
brain activity of young versus older adults (right).
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independent samples t-tests with unequal variances and then corrected for
multiple comparisons using cluster-based MCS (t-test threshold = 0.05,
MCS threshold = 0.001, 1000 permutations). As reported in detail in the
Methods section, this procedure was computed independently for the three
experimental conditions (M, NT1, NT3).

The analyses returned several significant clusters, highlighting overall
reduced brain activity along a wide array of MEG sensors in older partici-
pants. In addition, a fewsignificant clusters showed stronger brain activity in
older participants. Supplementary Table 2 shows the key information of the

larger significant clusters for the three experimental conditions, while
Supplementary Table 3 provides complete statistical information.

After analysing the brain activity at theMEGsensor level,we computed
source reconstruction analyses using a beamforming algorithm to estimate
thebrain sources that generated the signal recordedby theMEGsensors. For
eachof the significant clusters,we contrasted the source-reconstructed brain
activity of older versus young adults and corrected formultiple comparisons
using a three-dimensional (3D) cluster-based MCS (α < 0.05, MCS p-
value = 0.001). These analyses returned several significant clusters of brain

Fig. 2 | Impact of aging, education, musical training andWMon the recognition
of musical sequences. a Raincloud plots show the overlapping distributions and
normalised data points of both age groups with regards to the recognition of the
previously memorised and novel (NT1 and NT3)musical sequences. Boxplots show
the median and interquartile (IQR, 25–75%) range, whiskers depict the 1.5*IQR
from the quartile. Each dot corresponds to the number of correct responses (top

plot) or the mean reaction time (bottom plot) of each participant (n = 76). The plot
above refers to the number accuracy in the task, while the bottom plot to the reaction
times. b Correlation matrix between memorised, NT1, NT3 (number of correct
responses, top plot, and reaction times, bottom plot), years of education, WM, years
of musical training. Significant correlations are indicated by the stars (*p < 0.05;
**p < 0.01; ***p < 0.001).
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activity, revealing that the main brain regions differentiating older from
young adultswere theprimary and secondary auditory cortices, post-central
gyrus, hippocampal regions, inferior frontal gyrus, and ventromedial pre-
frontal cortex. These results are depicted in Figures S3, S4 and reported in
detail in Supplementary Tables 4, 5.

Aging and functional brain regions of interest (ROIs)
To strengthen the reliability of our results and allow an easier comparison
with previous literature, we computed a complementary analysis by investi-
gating the difference between the brain activity of older versus young adults in
a selected array of functional ROIs that were previously described by Bonetti
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and colleagues47. These areas (described in detail in Supplementary Table 6
and shown in Supplementary Fig. 2) were the bilateralmedial cingulate gyrus
(MC), bilateral ventromedial prefrontal cortex (VMPFC), left (HITL) and
right hippocampal area and inferior temporal cortex (HITR), left (ACL) and
right auditory cortex (ACR), and left (IFGL) and right inferior frontal gyrus
(IFGR). We contrasted the brain activity of young versus older adults by
computing an independent-sample t-test for each ROI, timepoint, and con-
dition. We corrected for multiple comparisons using 1D cluster-based MCS
(t-value threshold = 0.05, MCS p-value = 0.001).

This analysis returned several significant clusters showing differences
in the brain activity of older compared to young adults.Of particular interest
are the clusters reported in the HITR (p < 0.001, k = 25; max t-val = 4.70,
time: 640–736ms) and IFGR (cluster 1: p < 0.001, k = 38;max t-val =−4.59,
time: 464–612ms; cluster 2: p < 0.001, k = 33; max t-val =−5.04, time:
1260–1388ms) showing reduced activity for older versus young adults
when recognising previously memorised musical sequences. In addition,
older versus young participants were characterised by a weaker signal in
response to the variation of the original musical sequences. This was par-
ticularly evident for HITR (NT1: p < 0.001, k = 24; max t-val =−3.53, time:
1284–1376ms; NT3: p < 0.001, k = 21; max t-val =−4.01, time:
1320–1400ms), VMPFC (NT1: p < 0.001, k = 15; max t-val =−3.57, time:
1320–1376ms; NT3: p < 0.001, k = 23; max t-val =−3.97, time:
1672–1760ms), andHITL (NT3: p < 0.001, k = 12;max t-val =−3.31, time:
1324–1368ms).

Finally, older adults showed a stronger activity in ACL in response to
the first tone of the sequences in all conditions (M: p < 0.001, k = 14; max
t-val = 5.37, time: 84–136ms; NT1: p < 0.001, k = 15;max t-val = 5.86, time:
88–144ms; NT3: p < 0.001, k = 16; max t-val = 6.04, time: 84–144ms) and
in relation to each tone until the variation was introduced (Fig. 3, first row).
These results are depicted in Figs. 3, 4 and extensively reported in Supple-
mentary Table 7.

WM, musical expertise, education level, aging and neural data
Finally, we computed two additional analyses to assess whether potential
confounding variables had an impact on the relationship between aging and
the neural mechanisms underlying recognition of musical sequences.

In the first analysis we computed three independent multivariate
analyses of covariance (MANCOVAs), one for each experimental condi-
tion. In eachMANCOVA, thedependent variableswere thehighest peaksof
the neural data for the eight ROIs, while the independent variables were age,
sex, years of formal musical expertise, WM, and years of formal education
(see Methods for additional details).

The results of the MANCOVAs showed a significant main effect for
age in all experimental conditions: M (F(8, 59) = 4.62, p = 0.0002, Wilks’
Λ = 0.614, partial η2 = 0.39), NT1 (F(8, 59) = 3.117, p = 0.005, Wilks’
Λ = 0.703, partial η2 = 0.30), and NT3 (F(8, 59) = 3.575, p = 0.002, Wilks’
Λ = 0.674, partial η2 = 0.33). This confirmed the impact of age on the neural
data. The other variables did not showany significant results, indicating that
no confounding variables affected the relationship between age and the
neural data. However, WM approached the significance in all experimental
conditions, showing moderate effect sizes: M (F(8, 59) = 4.62, p = 0.09,

Wilks’ Λ = 0.802, partial η2 = 0.20), NT1 (F(8, 59) = 1.313, p = 0.25, Wilks’
Λ = 0.849, partial η2 = 0.15), and NT3 (F(8, 59) = 1.691, p = 0.11, Wilks’
Λ = 0.814, partial η2 = 0.19). This indicated thatWMmaypartially affect the
brain dynamics of musical recognition in relation to aging.

Following the results of the MANCOVAs, we computed independent
analyses of variance (ANOVAs) for each time-point, ROI and condition and
usedcluster-based3DMCStocorrect formultiple comparisons.Weused two-
way ANOVAs with the following levels: WM (high and low performers) and
age (older and young adults). The analysis returned significant key clusters for
three main ROIs in the NT3 condition: HITR (NT3: p < 0.001, k = 40; max
F-val= 17.66, time: 1308–1464ms), VMPFC (NT3: p < 0.001, k = 32; max
F-val= 13.57, time: 1300–1424ms), HITL (NT3: p < 0.001, k = 24; max
F-val= 9.36, time: 1304–1396ms). Figure 5 show the time series of these ROIs
in relation to age and WM, while detailed statistical results are reported in
Supplementary Table 8.

We computed an additional sub-analysis to assess whether we could
distinguish a sub-sample of the older participants based on their brain
activity. To this aim, we used one-way ANOVAs contrasting three age-
groups: young (younger than 25), older adults 60–68 (age between 60 and
68, n = 23) and older adults >68 (older than 68, n = 16). Then, we corrected
for multiple comparisons with cluster-based 3D MCS. The results high-
lighted that the oldest group within the older adults was characterised by
overall reduced brain activity, especially in response to the variation of the
original sequences. This was particularly evident for HITR (NT3: p < 0.001,
k = 22; max F-val = 7.92, time: 1312–1396ms), VMPFC (NT3: p < 0.001,
k = 15; max F-val = 7.73, time: 1320–1376ms), HITL (NT3: p < 0.001,
k = 13; max F-val = 10.01, time: 1316–1364ms). Figure 6 shows the time
series of these ROIs in relation to the three age groups, while detailed
statistical results are reported in Supplementary Table 9.

Finally, we computed two additional analyses. The first one aimed
to assess whether the level of dissonance of the novel sequences affected
the neural signal. Here, we first divided the novel melodies in two sub-
categories: in-key and out-of-key and then computed one two-way
ANOVA for each time-point, ROI and category of novel sequences (i.e.
NT1 and NT3). The levels of the ANOVAs were age (older and young)
and musical key (in-key and out-of-key). The results of the ANOVA
(main effects for age and musical key and interaction age x musical key)
were corrected for multiple comparisons using a one-D MCS (α = 0.05,
MCS p-value = 0.001). This analysis revealed a few significant clusters
indicating an overall increase in prediction error in response to the out-
of-keymelodies, especially in the young adults. The results are illustrated
in Supplementary Fig. 5 and described in detail in Supplementary
Table 10. The second analysis aimed to assess whether the familiarity of
the participants with the Bach’s prelude before joining the experiment
affected the brain signal. Here, we computed a correlation between the
brain signal recorded at each time-point, ROI and experimental con-
dition and the self-reported familiarity of the participants with the
Bach’s prelude and corrected for multiple comparisons using one-D
MCS (α = 0.05, MCS p-value = 0.001). This analysis only returned a few,
scattered clusters which are illustrated in Supplementary Fig. 6 and
reported in detail in Supplementary Table 11.

Fig. 3 | Older adults show stronger activity in auditory cortex and reduced
responses in medial temporal lobe during recognition of musical sequences.
a The results show that the older (n = 39) compared to young (n = 37) adults have
significantly stronger activity in the left auditory cortex compared to young adults
only when recognising themelodies that were previouslymemorised. In fact, the top
graphs indicate a component occurring about 300 ms after the onset of each tone
that was stronger for the older adults for all the tones in the M condition and for all
the tones before introducing the variations in theN conditions (i.e. one tone for NT1
and three tones for NT3). In addition, the N100 response to the first tone of the
sequences was significantly stronger for old versus young adults in all conditions.
b Conversely, older adults showed significantly decreased activity in the hippo-
campal and inferior temporal regions. This was particularly evident for conditions
NT1 andNT3.Here, as highlighted by the red bottom graphs, the older versus young

adults exhibited reduced prediction error responses when the sequence was varied.
This happened especially for the first tone which introduced the variation in the
melodies (i.e. tone two for NT1 and tone four for NT3). Finally, even if to a smaller
extent, reduced activity in older adults was also observed for theM condition, where
positive components of the neural signals were reduced for all the tones except for
the first one. Note that the figure shows the source localised brain activity illustrated
for each experimental condition (M,NT1, NT3) in four ROIs (left and right auditory
cortex, left and right hippocampal and inferior temporal regions). Grey areas show
the statistically significant differences of the brain activity between young (solid red
line) and older adults (solid blue, shading indicates standard error in both cases),
while red and blue graphs highlight neural components of particular interest. The
sketch of the musical tones represents the onset of the sounds forming the musical
sequences. The brain templates illustrate the spatial extent of the ROIs.
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Discussion
In this study, we have investigated the age-related neurophysiological
changes underlying the recognition of previously memorised and novel
musical sequences. Our findings challenge simplistic notions that non-
pathological aging merely diminishes neural predictive capabilities by

showing age-related reorganisation of the brain functioning during pre-
dictive and memory processes.

During the recognition of the previously memorisedmelodies, the left
auditory cortex exhibited stronger activity in response to each sound of the
sequence for the older compared to young adults. Conversely, other brain
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regions of key importance for memory and predictive processes such as the
hippocampus, inferior temporal cortex and inferior frontal gyrus showed an
overall decreased activity for the older adults. In response to the varied
musical sequences, the left auditory cortex did not exhibit any difference
between older and young adults after the musical sequence was altered.
Conversely, a much-reduced activity generated by prefrontal regions and
the medial temporal lobe was observed for the older adults after the
sequence was changed. This effect was particularly strong for the condition
NT3 where the sequence was altered after the fourth tone, and it primarily
regarded hippocampus, inferior temporal cortex and ventromedial pre-
frontal cortex.

Working memory (WM) abilities also affected the brain responses,
especially for the condition NT3, both in older and young individuals. The
brain activity after varying the original musical sequence was reduced for
participants with lower WM skills.

In relation to the behavioural responses, no differences between older
and young adults were found when inspecting the accuracy and reaction
times associated with the recognition of the previously memorised
sequences. Conversely, older adults reported lower accuracy when recog-
nising the varied musical sequences (both NT1 and NT3). No differences
were observed for the reaction times.

As expected, the results of this study are consistent with our previous
research on the brain dynamics underlying the encoding and recognition of
musical sequences in healthy young individuals, which showed that the
recognition of the previously memorised and varied musical sequences is
built over time through a rapid hierarchical pathway of components ori-
ginated in the auditory cortex and progressing to the hippocampus, ven-
tromedial prefrontal cortex and inferior temporal cortex43–47,50,51. Beyond
this, the most notable finding of the current study is the altered brain
functioning observed in older compared to young adults. On the one hand,
this was related to an overall reduction of the brain activity generated in
memory-relatedbrain regions, supportingpreviousfindingswhich reported
diminished brain responses in aging populations in a variety of different
contexts, spanning from resting state to automatic neural responses and
conscious tasks39,40,52–57. On the other hand, only for the recognition of the
previously memorised sequences, older adults showed increased activity in
the left auditory cortex. This phenomenon was observed for the N100
component to the first sound, as well as for the positive component peaking
around 350–400ms after each sound of the sequence. Here, while the
increased N100 aligns with previous evidence of enhanced sensory-evoked
responses associated with aging58, the increased amplitude of the later
component, peaking at 350–400ms, offers a notable addition to the litera-
ture. This altered brain functioning supports the hypothesis that neural
predictive processes in non-pathological aging are not simply reduced, but
qualitatively transformed59. This result aligns with the STAC-r theory11,37,
which emphasises the role of compensatory scaffolding in aging brains.
According to this theory, compensatory scaffolding involves recruiting
additional brain regions to successfully perform activities and complex
tasks. In the current study, the additional recruitment of the left auditory
cortex likely serves as a compensatory mechanism to offset the reduced
functionality observed in the medial temporal lobe regions, such as the
hippocampus and inferior temporal cortex. This finding can also be inter-
preted through theHAROLDtheory8,33,whichproposes that aging leads to a
reduction in the asymmetrical activation of the brain’s hemispheres during

cognitive tasks. Interestingly, our study observed a different effect: the
enhanced activity in the left auditory cortex of the older adults was not
accompanied by a similar response in the right auditory cortex. This might
seem surprising but can be explained by the specific nature of our stimuli,
which are musical sequences. It is well-established that musical material is
processed differently by the two hemispheres, with the right hemisphere
primarily involved in holistic music listening, while the left hemisphere is
more critical for conscious, linguistic evaluation of musical sequences60–62.
Given that our memory task required participants to actively extract
information from the musical sequences, it is conceivable that the left
auditory cortex exhibited compensatory mechanisms in older adults,
whereas the right auditory cortex showedonlymarginal differencesbetween
older and young adults. This interpretation is further supported by Zatorre
and colleagues’ studies63–65 on hemispheric differences in music and audi-
tory processing, which indicate that the degradation of temporal features of
auditory informationprimarily affects the left auditory cortex, impairing the
brain’s ability to understand speech and extract linguistic and musical
information from acoustic material. This degradation does not impact the
right auditory cortex in the same way. Therefore, in our study, the reliance
on the left auditory cortex to extract meaningful information frommusical
sequences, and the enhanced activity observed in this region among older
adults, may align with the need to compensate for reduced functionality in
the temporal lobe regions.

Another essential brain region for understanding and producing lan-
guage and music is the inferior frontal gyrus66,67, which also indicated a
functional reorganisation in older adults in our study. In youngparticipants,
we observed a sharp increase in negative responses to each sound of the
previously memorised sequences. Conversely, older adults displayed a less
pronounced yet noticeable increase in positive responses generated by the
right inferior frontal gyrus to each tone of the sequences. This finding is
coherentwith previous research showing altered functionality in the inferior
frontal gyrus in aging populations68 and expands on it byproviding evidence
of age-related changes in its functioning during memory and predictive
processes of musical sequences. Additionally, our previous studies44–47

indicated that the inferior frontal gyrus does not typically play a pivotal role
in recognising memorised musical sequences. However, our current find-
ings suggest that it may provide an additional, relevant contribution to
music recognition, differing between young and older adults. This func-
tional reorganisation of the inferior frontal gyrusmay also alignwith several
studies reporting reduced abilities in linguistic, predictive, and memory
tasks among older adults69–71. Interestingly, unlike the reorganisation
observed in the left auditory cortex, the changes in the inferior frontal gyrus
may not necessarily indicate a compensatorymechanism but perhaps solely
a shift in the functional response of this brain region. In this light, this
finding would relate less to the STAC-r theory, but it would instead be
consistent with the CRUNCH7 and PASA9 theories, which propose that
older adults may employ different neural networks, strategies, or func-
tionalities of frontal brain regions to achieve similar cognitive tasks as young
adults.

We also examined the impact of aging on the recognition of varied
musical sequences and the prediction error arising when the original
sequences were altered. We identified the key involvement of the left and,
especially, right hippocampus and bilateral ventromedial prefrontal cortex.
The hippocampus is a central brain region for prediction error72,73 and its

Fig. 4 | Impact of aging on the cingulate gyrus, ventromedial prefrontal cortex
and inferior frontal gyrus responses during recognition of musical sequences.
The red graphs in the second row highlight that the VMPFC produced a weaker
activity indexing prediction error for the older (n = 39) versus young (n = 37) adults
for conditions NT1 andNT3, in an analogousmanner to the right hippocampal and
inferior temporal regions shown in Fig. 3. Notably, while these two brain regions also
showed a decreased activity for the M condition for older versus young adults, this
did not happen for the VMPFC. Finally, the last row of this figure shows a much
stronger activity originated in the right inferior frontal gyrus of the young versus
older adults. This was particularly evident for the M sequences and consisted of a

negative component peaking approximately 250 ms after the onset of each musical
tone. Note that thefigure shows the source localised brain activity illustrated for each
experimental condition (M, NT1, NT3) in four ROIs (medial cingulate gyrus,
ventromedial prefrontal cortex [VMPFC], left and right inferior frontal gyrus). Grey
areas show the statistically significant differences of the brain activity between young
(solid red line) and older adults (solid blue, shading indicates standard error in both
cases), while red and blue graphs highlight neural components of particular interest.
The sketch of the musical tones represents the onset of the sounds forming the
musical sequences. The brain templates illustrate the spatial extent of the ROIs.
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Fig. 5 | Impact of WM and aging on the ventromedial prefrontal cortex and
medial temporal lobe responses during recognition of musical sequences. The
black graphs in theNT3 plots (all rows) highlight that the strongest brain prediction
error in response to the variation of the original musical sequences occurred in
young adults who performed very well in the WM tasks. The strength of the pre-
diction error was lower and very similar for young adults with lowWM (n = 17) and
older adults with high WM (n = 17). Finally, older adults with low WM (n = 22)
presented the most reduced prediction error signal in the brain, while young adults
with high WM the strongest (n = 17). This was particularly evident for the right
hippocampal and inferior temporal regions as well as for the VMPFC. A similar, but
less pronounced, effect was observed in the VMPFC for M and NT1. The figure

shows the source localised brain activity illustrated for each experimental condition
(M, NT1, NT3) in three (ventromedial prefrontal cortex [VMPFC], left and right
hippocampal and inferior temporal regions). Graphs indicates the key event of
interest in the brain responses, while the three lines show the statistically significant
effect of the ANOVAs conducted for each time-point and corrected for multiple
comparisons using cluster basedMCS. Here, o indicates themain effect of age,+ the
main effect of WM and * the interaction age xWM. Solid line indicates the average
over participants, independently for the four groups, while the shaded area the
standard errors. The sketch of the musical tones represents the onset of the sounds
forming the musical sequences. The brain templates illustrate the spatial extent of
the ROIs.
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reduced activity in older adults suggests that aging is associated with
decreased ability to consciously process errors and deviations from pre-
viously learned sequences. Similarly, the ventromedial prefrontal cortex, a
brain region implicated in reasoning and evaluation processes74, exhibited

reduced activity in older adults. In accordance with our findings, studies
have shown that age-related changes in the ventromedial prefrontal cortex
are associated with decline in cognitive control and decision-making
abilities75,76. For instance, O’Callaghan and colleagues75 found that

Fig. 6 | Ventromedial prefrontal cortex and medial temporal lobe responses
during recognition of musical sequences for three age groups (young adults,
adults between 60 and 68 years of age, adults older than 68). The black graphs in
the NT1 and NT3 plots (all rows) highlight that the strength of the brain prediction
error in response to the variation of the originalmusical sequenceswasmodulated by
age. In fact, the strongest signal was recorded for the young adults (n = 37). A
reduced prediction error was observed for the adults aged between 60 and 68
(n = 22), while the weakest signal occurred for the adults older than 68 years (n = 17).
As observed for theWM in Fig. 5, this effect was particularly evident for the VMPFC
and right hippocampal and inferior temporal regions. Note that the figure shows the
source localised brain activity illustrated for each experimental condition (M, NT1,

NT3) in three (ventromedial prefrontal cortex [VMPFC], left and right hippocampal
and inferior temporal regions). Graphs indicates the key event of interest in the brain
responses, while the grey areas show the statistically significant differences of the
brain activity between the participants grouped in the following three groups: young
adults (i), adults between 60 and 68 years of age (ii), adults older than 68 years (iii).
Solid line indicates the average over participants, independently for the four groups,
while the shaded area the standard errors. The sketch of themusical tones represents
the onset of the sounds forming themusical sequences. The brain templates illustrate
the spatial extent of the ROIs.
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individuals with ventromedial prefrontal cortex damage and healthy older
adults reported reduced awareness of the presented stimuli during learning
tasks. This relates to our results, suggesting that the reduced activity in the
ventromedial prefrontal cortex observed in older adultsmight represent the
neural signature of the decreased conscious prediction error and awareness
of the musical novelty in aging.

In contrast to the neural mechanisms observed during the recognition
of previouslymemorised sequences, the perception and evaluation of varied
melodies between older and young adults did not display evident functional
reorganisation or compensatory mechanisms in the brain. While both the
memorised melodies and their variations elicited reduced responses in the
medial temporal lobe among older compared to young adults, no com-
pensatory mechanisms in the auditory cortex were observed. Consistent
with these neural findings, while older adults showed unaltered recognition
of previously memorised sequences, their ability to detect varied melodies
was significantly impaired. This suggests that detecting novelty within
auditory sequences poses a greater cognitive challenge than recognising
previously learned information. This observation aligns with existing
research indicating that older adults often struggle to adapt to changes and
process novelty across various domains of life59,77–79. On a neural level, this
study suggests that the impaired processing of novel information shown by
the older adults may be explained by the absence of compensatory
mechanisms in their auditory cortex. These mechanisms, which counter-
balance the reduced functionality of the medial temporal lobe when
recognizing previously memorised melodies, appear to be altered. Under-
standingwhy a consciously perceivedprediction error does not rely on these
compensatory mechanisms poses a central question for future research.

Overall, our results can also be interpreted within the large framework
of the PCT, providing a relevant contribution to the age-related changes of
its neural underpinnings59. PCT posits that the brain is constantly updating
internal models to predict information and stimuli from the external
world80. Recently, it has been successfully linked to complex cognitive
processes, finding a notable example in the neuroscience of music. Vuust
and colleagues81,82 suggested that, while processing music, the brain
repeatedly generates hypotheses and predictions about the upcoming
unfolding ofmusical sequences.When the predictionmatches the incoming
sounds, the brain recognises themusic. Conversely, when the expectation is
violated by different sounds, predictions errors arise. Our findings point to
impaired conscious predictive coding processes in healthy older adults, as
evidencedby reducedbrain activity during theprediction and recognitionof
the varied musical sequences. These results are coherent with previous
research which showed an age-related reduction of automatic predictive
processes such as MMN39–41,83. Notably, our study largely expands on their
significance by showing age-related changes of conscious predictive pro-
cesses and novelty detection and not only automatic responses to subtle
environmental irregularities as typically done in MMN studies. Along this
line, we revealed decreased activity in older adults during the recognition of
the varied musical sequences in brain regions particularly relevant for
memory and predictive processes, such as the hippocampus (especially in
the right hemisphere)72,84. Accordingly, numerous studies have shown the
detrimental effects of aging on the hippocampus andmemory performance.
For instance, it has been reported that aging is associated with reduced
hippocampal size85,86 and that it affects the long-term potentiation (LTP)
and long-term depression (LTD) occurring in the hippocampal neurons87.
The altered size and functionality of LTP and LTD in the hippocampus
occurring with aging might be reflected in the reduction of hippocampal
activity that we observed in older adults in our study during the conscious
detection of the varied sequences. Conversely, as described above with
regards to the recognition of previouslymemorised sequences, our findings
revealed an intriguing pattern of increased activity in the left auditory cortex
of older adults during the recognition of musical sequences. In a coherent
view which takes into consideration not only the PCT82 but also the
CRUNCH7 and STAC-r11 theories, it may be hypothesised that the
increased activity in the left auditory cortex is a result of top-down influences
from the hippocampus and ventromedial prefrontal and inferior temporal

cortices, which are supposed to actively monitor the unfolding musical
sequence82. In this case, when they successfully predict the sequence, they
require less effort fromthe left auditory cortex. In ayoungandmore effective
brain, themore refinedprediction and higher control exerted by those brain
regionswould result in a reduced activity in the auditory cortex. Conversely,
when such top-down processing is reduced, compensatory mechanisms in
the auditory cortex may be necessary, exactly as we observed in our study.

Interestingly, no significant differences were found between older and
young adults in terms of accuracy and reaction times when recognising
previously memorised sequences. This finding suggests that brain activity
may undergo alterations before behavioural manifestations become
apparent. Supporting the STAC-r theory11, the enhanced activity in the left
auditory cortex appears to compensate for the reduced functionality of the
medial temporal lobe, resulting in unaltered behavioural performance. This
observation raises exciting possibilities for using brain activity as a potential
biomarker for the early detection of cognitive decline. Future studies could
hypothesise and test whether the level of compensatory mechanisms and
reorganisation of the brain network during musical sequence recognition
can index the aging status of the brain.

To be noted, splitting the older adult participants into two age groups
further strengthens the reliability of our previously described results, as it
reveals a more pronounced reduction in brain activity in participants older
than 68 compared to those aged 60–68. This highlights the progressive
nature of age-related changes in brain functioning. In addition, we showed a
relationship between the participants’ WM abilities and the brain activity.
Participants with higher WM exhibited stronger brain activity, particularly
when recognising the varied musical sequences. This finding underscores
the potential of usingWMas a predictor of preserved brain activity in older
adults. In fact, older adults with high WM capacity showed brain activity
levels similar to those of young adults with lowerWMcapacity. This finding
is strongly in line with previous research on cognitive reserve, suggesting
that higher cognitive abilities in older populations represent a protective
factor against mild cognitive impairment and dementia88–90. Finally, upon
analysing the novelty detection of sequences composed in the original
musical key (in-key) versus those in a differentmusical key (out-of-key), we
found a few significant clusters indicating an overall increase in prediction
error in response to the out-of-keymelodies, especially amongyoung adults.
Although limited, this finding suggests that the out-of-key sequences, being
more dissonant91,92, were perceived by the brain as more different from the
previously memorised sequences, as indicated by the overall increased
neural responses. Additionally, our findings also suggest that the marginal
level of familiarity our participants hadwith themusical piece before joining
the experiment used in this study did not significantly influence the brain
activity. While this observation does not rule out the potential impact of
previous familiarity on brain responses, it underscores the need for dedi-
cated studies aimed at investigating this aspect further. Regarding individual
differences, althoughourparticipants didnot exhibit significant hearing loss
and the stimuli were calibrated to their auditory thresholds, future research
could focus on aging individuals with more pronounced hearing loss93 to
investigate its impact on the neurophysiology of auditory long-term
memory. Finally, future studies could also build on our results by incor-
porating additional neurophysiological and neuroimaging techniques, such
as stereo-electroencephalography (SEEG) and functional magnetic reso-
nance imaging (fMRI). While MEG can safely reconstruct subcortical
sources, it does so with less accuracy compared to cortical regions. Thus,
utilising SEEG and fMRI could provide an additional confirmation and
expansion of the results presented in the current study.

In summary, our studyoffers valuable insights into the effects of agingon
brain function, particularly in relation to the recognition of previously
memorised auditory sequences. It demonstrates a comprehensive reorgani-
sation of the brain associatedwith age in this cognitive process.Moreover, the
observed partial discrepancy between age-related changes in brain responses
and behavioural performance highlights the potential of our methodology, if
implemented in future longitudinal studies, to identifypossiblebiomarkers for
healthy aging and early detection of transformative changes in brain function.
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Materials and methods
Participants
After excluding one participant who was not able to perform the task, the
sample consisted of 76 participants (34 males, 42 females, sex, biological
attribute, self-reported), divided into two age groups: young and older
adults. We have not collected information about participants’ gender since
thiswasbeyond the scopeof our research.Theolderadult groupconsistedof
39 participants (24 females, 15 males) aged 60 to 81 years old (mean age:
67.72 ± 5.35 years). The young group included 37 participants (18 females,
19 males) aged 18 to 25 years old (mean age: 21.89 ± 2.05 years). The
nationality of all participants was Danish. The inclusion criteria for the
participants were the following: (i) normal health (no reported neurological
nor psychiatric illness), (ii) age between 18 and 25 years old (young adults’
group) and older than 60 years (older adults’ group), (iii) normal hearing
according to the age groupof eachparticipant, (iv) normal sight or corrected
to normal sight (e.g., contact lenses), and (v) understanding and acceptance
of participant information. The exclusion criteria that we applied were: (i)
useofprescribedmedication that could affect the central nervous system, (ii)
neurological or psychiatric illness, (iii) lack of cooperation or verbal
agreement for participating in the study, (iv) magnetic resonance imaging
(MRI) contraindications, (v) age between 26 and 59 years old, and impaired
hearing (vi). The sample size was determined based on previous neuro-
physiological studies (usingMEG and EEG) which either employed similar
paradigms43–47 or compared analogous groups of participants55,94–96. Addi-
tionally, a power analysis, accounting for the anticipated brain signals across
the eight ROIs utilised in the study, alongside correction for multiple
comparisons, corroborated the appropriateness of employing two groups
consisting of approximately 30–40 individuals each.

The project was approved by the Institutional Review Board of Aarhus
University (case number: DNC-IRB-2021-012). The experimental proce-
dures complied with the Declaration of Helsinki–Ethical Principles for
Medical Research. Participants’ informed consent was obtained before the
beginning of the experiment and received compensation for their partici-
pation in the study. All ethical regulations relevant to human research
participants were followed.

Experimental stimuli and design
In this study, we presented participants with an auditory recognition task
based on the old/new paradigm that we developed in our previous
works44–46,50,51. At the same time, we recorded their brain activity using
magnetoencephalography (MEG). The participants were required to lis-
ten to a brief musical piece (roughly 25 s) twice and were instructed to
memorise it as best as they could. The musical piece comprised the initial
fourmeasures of Johann Sebastian Bach’s PreludeNo. 2 inCMinor, BWV
847. The wave audio file that we used in the experiment was generated
using Finale (version 26, MakeMusic, Boulder, CO) and presented using
Psychopy v3.0. The volume of the musical stimuli was set to 60 dB for 67
participants and to 70 dB on average for nine of our participants older
than 70 years who presented a very mild hearing impairment, as typically
occurring with aging. To limit the adjustment of the volume across par-
ticipants to only a few of them, we used sounds that almost always fell in
the range 125–650Hz, which is only marginally affected by the typical
hearing loss occurring with aging97. Each tone within the piece had the
same duration of around 350ms. In the second phase of the task, parti-
cipants were presented with 81 musical sequences consisting of five tones
and lasting 1750 ms. They were then asked to identify whether each
sequence was part of the original musical piece (old or memorised
sequence [M]) or if it was a different musical sequence (new or novel
sequence [N]) (see Fig. 1). For the purpose of this study, we presented
participantswith 27 sequences from theoriginalmusical piece and created
54 variations of the original melodies. The musical sequences used in the
study are depicted in Supplementary Fig. 1. The two types of stimuli used
in the study were created as follows. The M sequences were comprised of
thefirstfive tones from thefirst threemeasures of themusical piece. These
sequenceswere presented a total of 27 times, nine times for each sequence.

The N sequences were generated by systematically altering the three M
sequences (see Fig. 1). This involved changing every musical tone of the
sequence while keeping the first tone (NT1) or the first three tones (NT3)
the same as the M sequences. Nine variations were created for each of the
originalM sequences and each of the two categories ofN. As a result, there
were 27 N sequences for each category and 54 N sequences in total. The
variations were created following specific rules:
• Inverted melodic contour (used twice): this involved creating a varia-

tionwith amelodic contour that was inverted relative to the originalM
sequence. (i.e., if the melodic contour of the M sequence was down-
down-up-down, the N sequence would be up-up-down-up).

• Same tone scrambled (used three times): this involved scrambling the
remaining tones of the M sequence (e.g., M sequence C-E-D-E-C, was
changed into NT1 sequence C-C-E-E-D).

• Same tone (used three times): this involved using the same tone
repeatedly, sometimes varying only the octave (e.g., M sequence C-E-
D-E-C, became NT1 sequence C-E8- E8- E8

− E8).
• Scrambling intervals (usedonce): this involved scrambling the intervals

between the tones (e.g., M sequence 6 thm - 2ndm – 2ndm – 3rdm, was
changed to NT1 sequence 2ndm, 6 thm, 3rdm, 2ndm).

We adopted this procedure to study the difference between young and
older adults with regards to their brain dynamics underlying (i) the recog-
nition of previously memorised auditory sequences and (ii) their conscious
detection of the varied sequences.

Neural data acquisition
During this study, MEG recordings were conducted at Aarhus University
Hospital (AUH), Aarhus, Denmark, using an Elekta Neuromag TRIUX
MEG scanner with 306 channels. The data was recorded with an analogue
filtering of 0.1–330Hz at a sampling rate of 1000Hz. To ensure accurate co-
registration with the MRI anatomical scans, the head shape of participants
and the position of fourHead Position Indicator (HPI) coils were registered
using a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA). During the
MEG recordings, two sets of bipolar electrodes were also used to record
cardiac rhythm and eye movements, allowing for removal of electro-
cardiography (ECG) and electro-oculography (EOG) artifacts in a later
stage of the analysis.

The MRI scans were recorded on a CE-approved 3 T Siemens MRI-
scanner atAUHusing the following structuralT1 sequenceparameters: echo
time (TE) = 2.61ms, repetition time (TR) = 2300ms, reconstructed matrix
size = 256 × 256, echo spacing = 7.6ms, and bandwidth = 290Hz/Px.

The MEG and MRI recordings were conducted on separate days.

Working memory, musical expertise and background data
We evaluated domain-general working memory (WM) abilities using the
Digit Span and Arithmetic subtests from the Wechsler Adult Intelligence
Scale IV’s Working Memory index. The Digit Span subtest required parti-
cipants to listen and repeat sequences of numbers in the same, inverse, or
ascending order. The Arithmetic subtest involved solving mathematical
operations provided orally by the experimenters without external aids. We
combined the raw scores from both subtests to calculate individual WM
abilities, with scores ranging from five to 70. Additionally, we assessed
formal musical training using the GoldsmithsMusical Sophistication Index
(Gold-MSI) questionnaire, which includes 39 questions on musical skills,
experience, and habits.We used theMusical Training facet, which estimates
an individual’s history of formal musical training, and scores range from
seven to 49.

In addition, we collected general background data such as the years of
education and self-reported familiarity before joining the experiment with
the Bach’s prelude used in the study. The familiarity was expressed along a
Likert scale from 1 to 7 (1 = no familiarity at all; 7 = extreme familiarity).
These data were then used in later stages of the analysis to assess whether
they had an impact on the relationship between age and neural data during
recognition of auditory sequences.

https://doi.org/10.1038/s42003-024-06587-7 Article

Communications Biology |          (2024) 7:1036 12



Behavioural data during MEG recording
During the auditory recognition task, we recorded participants’ responses
and reaction times. We then used this data to estimate differences in
response accuracy and average reaction time between young and older
participants, and to calculate the impact of sex, years of education, WM
abilities, and years of musical training on the behavioural data.

We computed two independent multivariate analysis of variance
(MANCOVA, Wilk’s Lambda [Λ], α = 0.05)98 using group as the inde-
pendent variable (young vs older) and years of education,WM scores, years
of musical training, and sex as covariates. In one MANCOVA, number of
correct responses (divided into M, NT1 and NT3) were used as the three
dependent variables. In the other MANCOVA, average reaction time
during correct responses (divided into M, NT1, and NT3) were used as the
three dependent variables. The effect size was calculated using partial eta
squared (i.e., partial η2).

To determine the effects of the independent variable and covariate,
univariate analyses of covariance (ANCOVA) were computed individually
for each of the dependent variables and statistically significant covariates.

MEG data pre-processing
The MEG data obtained from 204 planar gradiometers and 102 magnet-
ometers was initially subjected to pre-processing with MaxFilter99 (version
2.2.15), which helped to reduce external interferences. We applied signal
space separation and the following MaxFilter parameters: spatiotemporal
signal space separation [SSS], down-sample from 1000Hz to 250Hz, cor-
relation limit between inner and outer subspaces used to reject overlapping
intersecting inner/outer signals during spatiotemporal SSS: 0.98,movement
compensation using cHPI coils (default step size: 10ms).

After conversion to Statistical Parametric Mapping (SPM) format, the
datawaspre-processed andanalysed inMATLABusingboth in-house-built
codes (LBPD, https://github.com/leonardob92/LBPD-1.0.git) and the freely
available Oxford Centre for Human Brain Activity (OHBA) Software
Library (OSL)100 (https://ohba-analysis.github.io/osl-docs/), which utilises
Fieldtrip101, FSL (version 6.0)102, and SPM12103 toolboxes. We visually
inspected the filtered MEG data using OSLview to remove large artifacts,
which accounted for less than 0.1% of the total data. We employed inde-
pendent component analysis (ICA) to separate and remove eyeblink and
heartbeat interference from the brain data104. This involved decomposing
the original signal into independent components, discarding the compo-
nents that detected eyeblink and heartbeat activities, and reconstructing the
signal using the remaining components.We then epoched the signal into 81
trials and baseline-corrected it by subtracting the mean signal recorded in
the baseline from the post-stimulus brain signal. The trials lasted 3500ms
(3400ms after the onset of thefirst tone of themusical sequence plus 100ms
of baseline time) and were categorised into three groups (M, NT1, NT3)
with 27 trials each.

MEG sensor level and aging
To assess the difference between the brain activity of young and older adults
while they recognised the musical sequences, we calculated several inde-
pendent samples t-tests with unequal variances and then corrected for
multiple comparisons using cluster-basedMonte-Carlo simulations (MCS).
As it is common inMEGandEEGtask studies48,49, we computed the average
over trials in each condition before performing t-tests, which resulted in
three mean trials (M, NT1, NT3). For each condition separately, we com-
puted a t-test for each MEG magnetometer channel and each time-point
between 0 and 2000 ms, contrasting the brain activity of young and older
adults. We then reshaped the matrix to obtain a two-dimensional (2D)
approximation of the MEG channels layout for each time-point, binarising
it basedon thep-values obtained from the previous t-tests (threshold = 0.05)
and the sign of t-values. The resulting 3Dmatrix (MX, 2D x time) consisted
of 0 s when the t-test was not significant and 1 s when it was. To correct for
multiple comparisons, we identified clusters of 1 s and assessed their sig-
nificance using MCS. Specifically, we performed 1000 permutations of the
elements of the original binary matrixMX, identified the maximum cluster

size of 1 s, and built the distribution of the 1000maximum cluster sizes.We
considered clusters that had a size bigger than the 99.9% maximum cluster
sizes of the permuted data to be significant.We applied theMCS procedure
to the absolute values of magnetometer MEG channels for both young
versus older adults and vice versa.

Source reconstruction
MEG provides excellent temporal resolution, but to fully understand the
brain activity underlying complex cognitive tasks, the spatial component of
the brain activitymust also be identified.To estimate the sourcesof the brain
that generated the signal recorded by the MEG sensors, we computed a
source reconstruction protocol using a combination of in-house-built codes
and codes available in OSL, SPM, and FieldTrip.

The source reconstruction analysis consists of designing a forward
model and computing the inverse solution. The forward model considers
each brain source as an active dipole and describes how the unitary strength
of each dipole is reflected over all MEG sensors. We used magnetometer
channels and an 8-mmgrid to obtain 3559dipole locationswithin thewhole
brain (voxels). After co-registering the individual structural T1datawith the
fiducial points (i.e., information about head landmarks such as the nasion
and the left and right pre-auricular points), we computed the forwardmodel
using the widely used “Single Shell” method, which resulted in a leadfield
model stored in matrix L (sources x MEG channels)105. In cases where
structural T1 was unavailable, we used a template (MNI152-T1 with 8-mm
spatial resolution) for the leadfield computation.

Afterwards, we calculated the inverse solution, using the established
beamforming method, which is a popular and effective algorithm available
in the field of neuroscience. The process involves utilising a distinct series of
weights that are applied successively to the source positions, enabling the
separation of the impact of each source on the activity detected by theMEG
channels. This is carried out for every instance of the brain data captured.
The beamforming inverse solution is comprised of several key stages, which
can be outlined as follows.

The data measured by theMEG sensors (B) at time t, can be described
by the following Eq. (1):

BðtÞ ¼ L � QðtÞ þ ε ð1Þ

where L is the leadfield model, Q is the dipole matrix which carries the
activity of each active dipole (q) over time, and Ɛ is noise (see Huang and
colleagues for details106). In order to resolve the inverse problem,Q has to be
computed. In the beamforming algorithm, to calculated Q, a series of
weights have to be computed and applied to the MEG sensors at each
timepoint. This is done for each single dipole q and shown in Eq. (2):

qðtÞ ¼ WT � BðtÞ ð2Þ

To obtain q, the weightsW have to be computed (here, the subscript T
indicates the transpose matrix). The beamforming method relies on the
matrix multiplication between L and the covariance matrix between MEG
sensors (C). This matrix is calculated on the concatenated experimental
trials. More specifically, for each brain source (dipole) q, the weightsWq are
calculated as shown in Eq. (3):

WðqÞ ¼ ðLðqÞT � C�1 � LðqÞÞ
�1 � L qð ÞT � C�1 ð3Þ

The calculation of the leadfield model was performed for the three
main orientations of each brain source (dipole), as done in the field (see, for
example, Nolte105). Then, prior to computing the weights, the orientations
were reduced (from three to one) by using the singular value decomposition
algorithmon thematrixmultiplication reported inEq. (4). This procedure is
widely adopted and used to simplify the beamforming output107,108.

L ¼ svdðlT � C�1 � lÞ�1 ð4Þ
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In this context, ldenotes the leadfieldmodelwith the threeorientations,
whileL is the resolvedone-orientationmodel thatwas used in the estimation
of the brain sources in Eq. (3). The weights were then applied to each brain
source and timepoint, with the covariance matrix C being computed based
on the continuous signal that resulted from concatenating the trials across
all experimental conditions. To counterbalance the source reconstruction
bias towards the head’s centre, the weights were normalised according to
Luckhoo and colleagues108. Since we worked on evoked responses, the
weights were applied to the neural activity averaged over trials.

This procedure allowed us to obtain a time series for each of the 3559
brain sources and eachexperimental condition.Toadjust the signambiguity
of the evoked responses time series for each brain source, the sign was
matched with the N100 response to the first tone of the auditory
sequences44–46,50,51.

MEG source level and aging
For each of the significant clusters emerged from the previous analysis at the
MEG sensor level, we contrasted the brain activity of young versus older
adults. We averaged the time series of all brain sources over the time-
window of each significant cluster and computed independent-sample t-
tests contrasting the brain activity of young versus older adults. This pro-
cedure was computed independently for the three experimental conditions
(M, NT1, NT3). Finally, we corrected for multiple comparisons using a 3D
cluster-based MCS (α = 0.005 [older vs young adults], α = 0.05 [young vs
older adults], p-value = 0.001). Here, we used a stricter α level for older vs
young adults since the difference in their brain activity was particularly
strong and we wanted to highlight the main focus of such differences. For
this procedure,wefirst determined the sizes of significant clusters consisting
of neighbouring brain voxels. Subsequently, we generated 1000 permuta-
tions of the initial data and estimated the sizes of significant clusters formed
by neighbouring brain voxels in each permutation. This process yielded a
reference distribution of the largest cluster sizes observed in the permutated
data. Finally, we identified original clusters as significant if their size was
larger than 99.99% of the clusters in the reference distribution. Further
details on theMCSalgorithmcanbe found inpreviousworks byBonetti and
colleagues44–46,50,51.

Functional regions of interests (ROIs)
Wecomputed an additional analysis by investigating the difference between
the brain activity of young versus older adults in a selected array of func-
tional ROIs, previously described by Bonetti and colleagues47. These were
derived from the whole-brain analysis of the active brain regions of young
adults during recognition of the samemusical sequences used in the current
study. These areas roughly corresponded to the bilateral medial cingulate
gyrus (MC), bilateral ventromedial prefrontal cortex (VMPFC), left (HITL)
and right hippocampal area and inferior temporal cortex (HITR), and left
(ACL) and right auditory cortex (ACR). In addition,we incorporated the left
(IFGL) and right inferior frontal gyrus (IFGR) because these regions dis-
played marked differences between young and older adults.

This additional analysis allowed us to reconstruct with greater preci-
sion the time series of each brain region that played a central role in auditory
sequence recognition. Thus, while it did not provide additional information
to the previous analysis, it refined its significance. In SupplementaryTable 6,
we reported theMontreal Neurological Institute (MNI) coordinates of each
voxel forming the eight ROIs. The ROIs are visually displayed in Supple-
mentary Fig. 2.

Aging and ROIs time series
We contrasted the brain activity of young versus older adults by computing
an independent-sample t-test for each ROI, timepoint, and condition. We
corrected for multiple comparisons using 1D cluster based MCS (α = 0.05,
MCS p-value = 0.001). First, we identified the clusters of the significant
values which were continuous in time. Second, we performed 1000 per-
mutations, consisting of randomising the significant values obtained from
the t-tests. For each permutation, we then extracted the maximum cluster

size, and we built their reference distribution. To summarise, we considered
significant the original clusters thatwere larger than the 99.9%of the clusters
emerged in the permutations. Additional details on this procedure can be
found in previous works by Bonetti and colleagues44–46,50,51.

In addition, since there were a few novel sequences which were out-of-
(musical)-key in relation to the original Bach’s prelude and to most of the
melodies presented in the recognition task, we have computed a further
analysis by comparing the brain responses to the out-of-key -of-key versus
the in-key melodies. Here, we first divided the novel melodies in two sub-
categories: in-key and out-of-key. Then, we computed one two-way
ANOVA for each time-point, eachROI and each category of novel (i.e. NT1
andNT3). Here, the levels of the ANOVAs were age (older and young) and
musical key (in-key and out-of-key). The results of the ANOVA (main
effects for age and musical key and interaction age x musical key) were
corrected for multiple comparisons using the same 1D cluster based MCS
(α = 0.05, MCS p-value = 0.001) described above in this paragraph.

Finally, we computed an additional analysis to assess whether the
familiarity of the participants before joining the experiment with the Bach’s
prelude affected the brain signal. Here, we computed a correlation for each
time-point, ROI and experimental condition between the brain data and the
self-reported familiarity of the participants with the Bach’s prelude. As
before, multiple comparisons were controlled using 1D MCS (α = 0.05,
MCS p-value = 0.001).

WM, musical expertise, education level, aging and neural data
We computed two additional analyses to assess whether potential con-
founding variables had an impact on the relationship between aging and the
neural responses underlying the recognition of the musical sequences.

In the first analysis we computed three independent multivariate
analyses of covariance (MANCOVAs), one for each experimental condition
(Wilk’s Lambda [Λ], α = 0.05). In each MANCOVA the dependent vari-
ables were the neural data for the eight ROIs, the independent variable was
age, and the covariateswere years of formalmusical expertise, sex,WM, and
years of formal education that participants received. To be noted, the neural
data was collapsed into one single value for each ROI and participant. This
was computed by averaging the main response (neural peak ± 20ms) to
each tone in theM condition.With regards to the N conditions, we selected
the main response (neural peak ± 20ms) to the tone that introduced the
variation in the sequence. This analysis was conducted in R109.

The second analysis consisted of computing analyses of variance
(ANOVAs) for each time-point and each ROI and then using the same
cluster-based 1D MCS to correct for multiple comparisons that we descri-
bed in the previous paragraphs.

In this case, we computed two independent sets of ANOVAs. In the
first one, we used one-way ANOVAs contrasting three age-groups: young
(younger than 25, n = 37), older adults 60–68 (age between 60 and 68,
n = 22), and older adults >68 (older than 68, n = 17). In the second set, we
used two-way ANOVAs with the following levels: WM (high and low
performers) and age (young and older adults). Here, we tested the main
effects ofWMand age as well as their interaction. This allowed us to further
test the changes in the brain activity over different age-groups as well as to
better highlight the impact of WM on the ROIs time series.

Figures 5, 6 report the ROIs which showed the strongest results, while
Supplementary Tables 8, 9 disclosed the complete details of the statistical
results.

To be noted, four participants (three young and one older adult) did
not complete theWMassessment. For this reason, the analyses described in
this paragraph were computed with a sample of 72 participants.

Statistics and reproducibility
The behavioural data was analysed using two independent multivariate
analysis of variance (MANCOVA,Wilk’sLambda [Λ],α = 0.05) and follow-
up ANOVAs. The MEG sensor data was analysed using paired-sample t
tests and corrected for multiple comparisons using cluster-based Monte-
Carlo simulations (MCS). TheMEG source data was first restricted to eight
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regions of interest (ROIs) and analysed using paired-sample t tests and
corrected for multiple comparisons using cluster-based Monte-Carlo
simulations (MCS). Additional two-way ANOVAs were conducted to
establish the effect of working memory (WM) and age on the neural
responses and the effect of age and themusical key of the novel sequences on
the neural responses. Multiple comparisons were addressed using cluster-
based MCS. An additional MANCOVA was computed to establish the
influence of covariates such as years of formal musical expertise, sex, WM,
and years of formal education received by the participants on the neural
responses. Finally, Pearson’s correlations were conducted to establish the
relationship between the neural responses and the familiarity participants
self-reported with the Bach’s prelude before joining the experiment. Mul-
tiple comparisons were addressed using cluster-basedMCS. Details of these
procedures are extensively reported throughout the Methods section. The
analyses involved 76 participants (39 older and 37 young adults).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The multimodal neuroimaging data (time series of the eight sources
investigated in the study, provided independently for each experimental
condition and participant) is available as Supplementary Data 1. The epo-
ched data for each trial, MEG sensor, experimental condition and partici-
pant (including individual MRI data co-registered with the MEG data for
source reconstruction), as well as the Source Data used for preparing the
Figures, are available in the following Zenodo repository: https://doi.org/10.
5281/zenodo.11299627110. The Supplementary Tables S3–S11 are available
in the following repository: https://doi.org/10.5281/zenodo.12734383111.
Supplementary Tables S1, S2 are instead present in the Supplementary
information file.

Code availability
The code used for the full analysis pipeline is available at the following link:
https://doi.org/10.5281/zenodo.12734383111. Additional code related to the
study is available at the following link: https://github.com/leonardob92/
LBPD-1.0.git.
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