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Abstract: Spinal cord injury (SCI) leads to numerous chronic and debilitating functional deficits that
greatly affect quality of life. While many pharmacological interventions have been explored, the
current unsurpassed therapy for most SCI sequalae is exercise. Exercise has an expansive influence
on peripheral health and function, and by activating the relevant neural pathways, exercise also
ameliorates numerous disorders of the central nervous system (CNS). While the exact mechanisms
by which this occurs are still being delineated, major strides have been made in the past decade to
understand the molecular underpinnings of this essential treatment. Exercise rapidly and prominently
affects dendritic sprouting, synaptic connections, neurotransmitter production and regulation, and
ionic homeostasis, with recent literature implicating an exercise-induced increase in neurotrophins as
the cornerstone that binds many of these effects together. The field encompasses vast complexity, and
as the data accumulate, disentangling these molecular pathways and how they interact will facilitate
the optimization of intervention strategies and improve quality of life for individuals affected by
SCI. This review describes the known molecular effects of exercise and how they alter the CNS to
pacify the injury environment, increase neuronal survival and regeneration, restore normal neural
excitability, create new functional circuits, and ultimately improve motor function following SCI.

Keywords: exercise; rehabilitation; spinal cord injury; sprouting; regeneration; BDNF; serotonin;
chloride homeostasis; KCC2

1. Introduction

Spinal cord injury (SCI) is a devastating condition and a major cause of disability,
with up to half a million cases reported every year worldwide [1]. In the United States
alone, there are an estimated 300,000 people living with a spinal cord injury (SCI), with
approximately 17,000 new cases arising each year [1]. SCI is associated with substantial
personal and societal costs, as well as secondary complications that often exceed the original
injury and lead to a reduced quality of life and increased rates of mortality. While there
is yet no definitive cure for SCI, many of its sequalae can be alleviated by exercise-based
rehabilitation programs and activity-based therapies. In the clinic, the planned, structured,
and repetitive physical activity produced by spinal networks and skeletal muscle has
noticeable beneficial effects on an array of functional systems, including respiratory [2–4],
cardiovascular [5,6] bladder, bowel, and sexual function [7,8]. In addition, by providing
repetitive and relevant sensory cues, effective rehabilitation strategies have the potential to
retrain the nervous system to improve performance of motor tasks such as walking and
standing [9–13].

Rehabilitation approaches that promote repetitive motor activity are considered the
gold-standard therapy and are widely used in the clinic as a critical component of successful
functional recovery in SCI individuals [9,14,15]. The beneficial effects of exercise after SCI
suggest that it provides sufficient excitation to the nervous system to promote the activity
both of uninjured spinal pathways and of residual supraspinal inputs. While clinical studies
are necessary to test whether specific strategies provide relief for individuals with SCI,
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these rely on evidence-based therapies [6,16], which do little to elucidate the mechanisms
contributing to recovery [15]. Therefore, investigating activity-dependent plasticity in
animal models is critical, not only to optimize rehabilitation programs in the clinic, but
also to identify potential pharmacological strategies. These may be used either in place of
exercise when it is not possible due to comorbidities or lack of access, or in conjunction
with exercise to enhance functional improvements. It is thus imperative that the molecular
underpinnings of exercise are understood in full in order to maximize its potential in the
clinic.

There is abundant evidence that exercise facilitates motor recovery after SCI, but how
an increase in physical activity leads to improvements in neurological function, especially
in terms of molecular mechanisms that promote plasticity of the injured spinal cord,
remains elusive. In this review, we compile and summarize how exercise affects signaling
pathways in the spinal cord to enhance functional motor recovery after SCI. Together, the
current literature suggests that exercise can: (1) modify the injury environment; (2) promote
axonal sprouting of local spinal networks and remaining descending axons; (3) promote
synaptic and ionic plasticity; and, importantly, (4) improve motor functions in both the
hindlimbs and forelimbs, validating the therapeutic potential of task-specific rehabilitation
for functional recovery after chronic SCI.

2. Effect of Rehabilitation on Spinal Networks below the Injury
2.1. Synaptic Plasticity and Synapse Formation

Synaptic plasticity plays a pivotal role in functional recovery after SCI, and extensive
molecular and morphological changes have been documented that implicate exercise as
a reliable initiator of activity-dependent neuroplasticity. After a thoracic SCI, exercise
causes lumbar spinal neurons below the injury to display an increase in: (1) the expression
of synaptophysin [17,18] and Synapsin I [19], important presynaptic markers; (2) the
expression of PSD-95 [17], a postsynaptic scaffolding protein; and (3) the number of
VGlut1+ terminals, an indicator of glutamatergic synapses [20]. Together, these changes
indicate an increased number of synaptic inputs below the lesion [21] (Figure 1A). While
the relationship between the density of synaptic inputs and their efficiency cannot be
determined based on anatomical data alone, these changes observed in the lumbar cord
are associated with an improvement in stepping performance. Similarly, reaching and
grasping training significantly increases Synapsin I around ventral horn motoneurons in
the cervical spinal cord caudal to the lesion and is associated with improved reaching and
grasping ability [22]. Overall, this suggests that by providing repeated activity within
neural networks, exercise strengthens synaptic connections and either promotes synaptic
formation and/or maintains synapses that would have otherwise degraded after injury.
The neuronal populations from which these synaptic structures originate is uncertain,
but their presence after a complete spinal cord transection suggests that this synaptic
reorganization may originate from sensory afferents as well as a number of interneurons.
Models of incomplete injuries also suggest a role for sprouting of spared supraspinal
pathways (further discussed in Section 3).

There are several mechanisms by which exercise likely promotes synaptic plasticity.
For example, exercise increases synthesis of the transcription factor cyclic AMP response
element binding protein (CREB) and its phosphorylated form, pCREB, in the spinal cord
caudal to the injury, in association with improved functional recovery [19,23] (Figure 1B).
CREB is one of the best-characterized transcription factors and contributes to cell survival
following insults to the CNS, as well as motor learning [24,25]. Another possible contribut-
ing factor is that exercise prevents the SCI-induced downregulation of perineuronal nets
(PNNs) around lumbar motoneurons below the lesion site [20,26,27]. PNNs are formed
of extracellular matrix molecules, i.e., chondroitin sulphate proteoglycans (CSPGs) that
aggregate extracellularly on the surface of neuronal cell bodies and proximal dendrites [28].
The role of PNNs is complex and can be both protective and inhibitory; while they restrict
axonal plasticity and limit the ability of the spinal cord to reorganize following injury, they
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are also involved in the fine-tuning of function by regulating ion buffering, neuroprotection,
and synaptic stabilization, and by curtailing aberrant plasticity [29]. There is also strong
evidence that PNNs are associated with activity-dependent synaptic plasticity during de-
velopment [30] and after injury [31]. Although the effect of rehabilitation on PNNs remains
to be fully described, recent studies have suggested that rehabilitation increases PNNs and
the level of CSPGs in the lumbar spinal cord in intact animals [26] and in animals with
SCI [27], in association with improved functional recovery. This suggests that the increased
neuronal activity provided by exercise may prevent the loss of stabilizing structures and
maintain existing synapses through an increase in expression of CSPGs and PNNs in the
associated spinal circuits. There is also substantial evidence supporting an exercise-induced
formation of new synapses. Exercise increases the growth-associated Protein 43 (GAP43)
after SCI [19], which appears to act in concert with Synapsin I [32]. GAP43 is expressed at
high levels in neuronal growth cones (Figure 1C), and plays a critical role in axon growth,
regeneration, and the formation of new connections [33]. Additionally, large changes in
morphology have been reported, implying that new circuits are formed.Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 20 

 

 

 
Figure 1. Schematic representation of various alterations induced by exercise following spinal cord injury (SCI). (A) Below 
the lesion, SCI causes atrophy of motoneuronal dendrites, reduced number of motoneuronal synapses, and less pre-syn-
aptic inhibition of primary afferents. Exercise increases/maintains the number of synapses on motoneurons, as well as on 
primary afferents, with various changes in synaptic terminal size. (B) Many signaling pathways that ensue following SCI 
and exercise depend on BDNF signaling, including chloride homeostasis, neurotransmitter regulation, synapse formation, 
and neuronal growth and survival. The 5-HT2AR is believed to be upregulated after SCI, and further enhanced by exercise. 
(C) Within and around the lesion site, exercise increases angiogenesis, axon sprouting, and detour circuit formation, while 
reducing inflammation and glia reactivity. 
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Figure 1. Schematic representation of various alterations induced by exercise following spinal cord injury (SCI). (A) Below
the lesion, SCI causes atrophy of motoneuronal dendrites, reduced number of motoneuronal synapses, and less pre-synaptic
inhibition of primary afferents. Exercise increases/maintains the number of synapses on motoneurons, as well as on primary
afferents, with various changes in synaptic terminal size. (B) Many signaling pathways that ensue following SCI and
exercise depend on BDNF signaling, including chloride homeostasis, neurotransmitter regulation, synapse formation, and
neuronal growth and survival. The 5-HT2AR is believed to be upregulated after SCI, and further enhanced by exercise.
(C) Within and around the lesion site, exercise increases angiogenesis, axon sprouting, and detour circuit formation, while
reducing inflammation and glia reactivity.
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SCI causes significant dendritic atrophy and synaptic stripping of motoneurons caudal
to the lesion [18,34], and both treadmill training [18] and bike-training [35] were shown
to increase dendritic density and total neurite length compared to sedentary controls.
Upon closer examination, it was found that the size, density, and total number of various
synapses on lumbar motoneurons of exercised animals with SCI differed substantially from
those in intact animals [36]. This was accompanied by significant recovery of locomotor
ability. This suggests, perhaps not surprisingly, that recovery after a major insult to the
CNS is not necessarily a restoration of pre-injury properties, but a functional adaptation to
a “new normal” [37].

2.2. Neurotrophins

Neurotrophins, such as brain-derived neurotrophic factor (BDNF), glial-cell-derived
neurotrophic factor (GDNF), and Neurotrophins 3 and 4 (NT-3 and NT-4, respectively), are
a class of growth factors that promote neurogenesis, neuroregulation, synaptic regeneration,
neuroprotection, and neuronal survival [38–40]. BDNF and its high affinity receptor, TrkB,
often dominate the spotlight, as countless studies have identified them as key players in
many SCI sequelae, as well as in the pathways associated with exercise-based recovery
(Figure 1B).

BDNF was shown to be regulated in a neural activity-dependent manner [41], and
it has been known since the 1990s that physical activity in general, and the resultant
neuronal activity, enhances the expression of BDNF in the CNS in animal models [42].
While some molecular markers of plasticity are modulated in a task-dependent manner [43],
BDNF is increased whether the rehabilitation program incorporates conventional treadmill
training [18,44–46], water treadmill training [47], passive bicycling [44], wheel running [19],
or swimming [45], regardless of sex and severity of injury. In humans, the results have
become equally convincing, with even short bouts of exercise increasing BDNF serum
levels in non-injured individuals and individuals with SCI alike [48–50].

SCI induces an abrupt decrease in activity of neural networks, which leads to reduced
BDNF in the lumbar spinal cord below the injury [19,23,45,51,52] (Table 1). By repetitively
activating the relevant neural networks, exercise promotes BDNF mRNA and protein expres-
sion in muscles [53] and throughout the length of the spinal cord [18,19,23,44,45,47,51,52,54].
This increase in BDNF promotes plasticity, bolsters the effect of descending drive on motoneu-
rons, and helps normalize motoneuronal properties [21,55,56]. Consequently, the exercise-
associated increase in BDNF is accompanied by multiple forms of functional recovery, includ-
ing improved locomotor performance and decreased spasticity and allodynia [23,44,46,56].
The variety of sensorimotor functional improvements associated with the activity-dependent
increase in BDNF after SCI likely stems from the complex and widespread influence that
BDNF has on numerous biological functions, including axon regeneration, synaptic plasticity,
myelination, neuronal survival, and reduced inflammation (reviewed in [56,57]), and its com-
plex interplay with different neurotransmitter cascades [58]. This versatility is perhaps due
to the diverse molecular reach of BDNF’s high-affinity receptor, TrkB. Once BDNF binds to
the TrkB receptor, three major intracellular signaling cascades ensue: the PI3-K/Akt pathway,
the PLC/PKC pathway, and the Ras/ERK pathway, all of which modulate neuronal survival,
growth, and plasticity to varying degrees with exercise following SCI. This can be inferred by
BDNF-associated increases in synaptic markers [18,19], inhibitory neurotransmitters [23], and
transcription factors [19,23,47] (Figure 1B).

The BDNF/TrkB pathway is known to increase both synthesis and phosphorylation
of Synapsin I to trigger the MAPK signaling pathway and modulate neurotransmitter
release in cortical neurons [59]. It is believed that the exercise-induced increase in BDNF
may account for the observed increase in Synapsin I phosphorylation in SCI rats [19], as
previously reported in the hippocampus [60]. While many experiments have highlighted a
correlation between increases in BDNF and exercise-based recovery, a growing number
of studies have confirmed its necessary and causal role in the recovery processes. When
TrkB-IgG, a molecule that competes with endogenous TrkB and thus sequesters BDNF,
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is delivered to animals undergoing rehabilitation, the exercise-induced improvements in
allodynia [46], locomotor impairment [61], and spasticity [62] are eliminated. The activity-
dependent increase in BDNF/TrkB is also associated with an increase in synthesis of the
transcription factor cyclic AMP response element binding protein (CREB) and p-CREB, its
phosphorylated form, in the spinal cord caudal to the lesion [19,23]. Accordingly, blocking
TrkB signaling after SCI significantly reduces CREB and p-CREB and prevents activity-
dependent functional recovery [23,47]. Together, these studies unequivocally identify
BDNF-TrkB as a crucial agent of exercise-mediated signaling.

In the hippocampus [63], prolonged exercise was found to induce an accumulation of
the metabolite β-hydroxybutyrate (BHB) in the liver. BHB crosses the blood–brain barrier
into hippocampal neurons, in which it inhibits the class I histone deacetylases HDAC2
and HDAC3, which act upon selective BDNF promoters. In doing so, BHB specifically
promotes BDNF expression via Ca2+-dependent epigenetic modifications [64–66]. While it
is plausible that a similar mechanism exists in the spinal cord, and a class I HDAC inhibitor
was recently shown to induce modest locomotor improvements in SCI mice [67], a direct
link between exercise-induced metabolites and BDNF has yet to be demonstrated in an SCI
model.

While BDNF signaling responds to exercise most prominently, other neurotrophins,
such as NT-3 [19,44,45,52,68], NT-4 [44,69], NGF, and GDNF [44,53], are also linked with
exercise-induced recovery after SCI. However, these growth factors are less frequently
studied following SCI, and their contribution to recovery remains incompletely under-
stood. Nonetheless, there is overwhelming evidence suggesting that exercise increases the
expression of various neurotrophins after SCI, and that it contributes to facilitate recovery.
This is further supported by experiments in which exogenous neurotrophins are provided
and contribute to functional recovery [57,70–73]. However, increasing neurotrophins, par-
ticularly BDNF, after SCI is not likely the perfect remedy for SCI patients. Exogenous
delivery of BDNF can be accompanied by debilitating side effects, such as neuropathic
pain and hyperreflexia [57,72,74–76]. While the intensity, duration, and type of exercise
yields differential increases of BDNF in the spinal cord of animals with SCI [19,45,77,78]
and in blood serum in humans [50], it appears that exercise does not produce BDNF in
detrimental excess. This suggests that exercise has a homeostatic effect, and to date, exercise
is considered the safest method of increasing neurotrophin expression.

2.3. Serotonin Receptors

Serotonin (5-HT) is a vital neurotransmitter in the mammalian spinal cord, playing
an essential role in modulating sensorimotor function. In the intact spinal cord, sero-
toninergic innervation is almost entirely derived from the raphe nuclei in the brainstem,
which is lost [79,80] or severely compromised following SCI [81]. The drastic and sudden
decrease in serotonin availability below the lesion renders spinal networks unexcitable
and unresponsive [82,83], which critically contributes to SCI-induced paralysis [80]. The
importance of 5-HT to movement is exemplified by the restoration of neuronal excitability
and associated locomotor behaviors observed when 5-HT or 5-HT receptor agonists are
administered, both in the acute or chronic phase of injury (reviewed in [84]). However,
while spinal 5-HT availability is undeniably decreased after SCI, the serotonergic system
remains challenging to study compared to other systems, as it comprises intraspinal and
supraspinal neurons, as well as numerous receptors, all of which are highly plastic.

The serotoninergic system exerts its function via an interaction between 5-HT and
a number of 5-HT receptors expressed in the spinal cord. Following SCI, the loss of
descending 5-HT supply causes 5-HT receptors to undergo varying degrees of plasticity,
depending on the specific subtype. Here, we will mainly focus on the receptors that have
been clearly demonstrated to undergo anatomical and/or functional changes following
injury and impact motor output.

Considerable interest has been devoted to 5-HT1A, 5-HT2A, and 5-HT2C in terms
of their anatomical and functional changes, likely due to their direct involvement in
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regulating motoneuronal excitability and functional recovery after SCI [80,85]. In the
chronic phase of SCI, a number of 5-HT receptors are upregulated in the spinal cord. Most
notably 5-HT1A [35,86], 5-HT2A [35,87–92], and 5-HT2C [79,81,93] (Table 1). This increase in
receptor expression perhaps represents the development of a compensatory mechanism to
counterbalance the lack of 5-HT. This is supported by the fact that (1) motoneurons become
extremely sensitive even to small amounts of 5-HT [82]; (2) pharmacologically activating
5-HT receptors after SCI with quipazine (5-HT2A/2CR agonist) and 8-OH-DPAT (5-HT1A/7R
agonist) can prevent the upregulation of 5-HT1A/2A receptors below the lesion [35]; and (3)
5-HT2CR becomes constitutively active (active in the absence of 5-HT) after chronic SCI in
rat motoneurons, which contributes to the recovery of locomotion [79,94]. Interestingly,
while 5-HT1A/2A/2CR are increased after injury, exercise does not decrease their expression
toward intact levels [35,87] to restore motor function as it does for inhibitory markers (see
Section 2.4) and BDNF (Section 2.2). This is likely because 5-HT is not produced in the
spinal cord. Instead, exercise further enhances the expression of 5-HT2AR (Figure 1B), a
change that is specifically observed in extensor motoneurons [87].

These studies have led to the use of Buspirone, a 5-HT1A/2/7R agonist, in human sub-
jects with SCI to enhance spinal cord excitability and promote locomotor recovery, either
alone or in combination with activity-based interventions such as treadmill training [95–97]
or other pharmacological agents [98]. Interestingly, the presence of sensory feedback from
the limbs is critical to the upregulation of 5-HT1AR, as it does not occur in deafferented
animals after SCI [86]. Since the presence of proprioceptive feedback is essential to motor
recovery [99], this further supports a role for limb afferents to enhance 5-HT receptor
expression in response to exercise. In addition, while exercise does not prevent 5-HT1/2R
upregulation, combining passive bicycling with 5-HT agonists both prevented the upreg-
ulation and improved locomotor recovery [35]. This is in agreement with other studies
demonstrating that although 5-HT agonists improve functional recovery, the approach is
more successful when combined with exercise [36,100,101], suggesting a synergistic effect.
However, the potential to translate this to the clinic remains unclear, as 5-HT agonists also
trigger undesirable effects and contribute to psychiatric disorders [102] and pain [103].

A lot remains to be determined about the intricacies of how exercise affects the
different facets of serotoninergic pathways after SCI, as the effect of exercise has not been
investigated in regard to many 5-HT receptor subtypes. However, our current knowledge
suggests that they have an important role in promoting activity-dependent neural plasticity.

2.4. Inhibitory Neurotransmitters

GABA and glycine are the chief inhibitory neurotransmitters in the central nervous
system, making their synthesis and release important determinants of neuronal processing.
Disruptions in GABAergic and glycinergic signaling have widespread functional effects,
which range from schizophrenia to depression, epilepsy, and neuropathic pain [104,105].
After SCI, the loss of supraspinal descending input also results in alterations in inhibitory
synaptic transmission. A number of factors contribute to this, including increases in (1) the
size and density of presynaptic inhibitory inputs; (2) postsynaptic expression of glycinergic
(GlyR) and GABAA receptors (GABAAR); (3) expression of the anchoring protein gephyrin,
a peptide closely associated with GlyR; and (4) the two GABA synthetizing enzymes,
glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67, respectively) in the spinal
segments below the lesion [37,106–109].

Exercise has been shown to reverse/prevent the disruptions in GABAergic and glycin-
ergic signaling in several pathologies, including epilepsy [110], neuropathic pain [111,112],
anxiety [113], and also SCI. Specifically, step-training was shown to decrease GAD67,
GlyR, and GABAAR expression in the lumbar spinal cord toward intact levels after in-
jury [37,43,107] (Table 1). Interestingly, stand-training did not decrease the same markers
of inhibition, hinting at the importance of providing appropriate proprioceptive feedback
to restore spinal inhibition. While this reflects general changes in inhibitory signaling that
arise after SCI, recent studies have suggested that plasticity in this pathway is more com-
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plex than initially thought. For example, a month following a contusive SCI, the expression
of both GAD65 and GAD67 was reported to be decreased in the dorsal horn, rather than
increased, with treadmill training reversing this effect, likely via BDNF-TrkB dependent
pathways [23] (Figure 1B). Multiple factors may contribute to the discrepancies between
studies, including the animal model, injury type/severity, and time after injury, but also
the differences in where and how GAD67/65 was quantified. This is supported by a recent
study in which GAD65 expression was increased in axon terminals on motoneuron somata,
but decreased in presynaptic boutons contacting primary afferents [36,114]. By taking into
account not only the overall expression of inhibitory markers, but also their density, size,
and location, exercise was revealed to increase both the density and size of GAD65-positive
presynaptic boutons (Figure 1A), suggesting an increase in modulation of afferent input,
which perhaps contributes to the restoration of presynaptic inhibition [115]. In contrast,
GAD65-positive axon terminals contacting motoneuron somata increased in number with
exercise but shrank in size. Similarly, exercised animals displayed an increased number of
glycinergic terminals contacting motoneuron somata, each of smaller size than those found
in animals with SCI (Figure 1A). This suggests either sprouting of existing axon terminals,
or newly formed connections from new/spared GABAergic and glycinergic interneurons.
Interestingly, these exercise-induced changes were accompanied by significant recovery of
locomotor ability, but differed substantially from the connections observed in intact animals.
In fact, this was exemplified by the emergence of a new stepping pattern observed only
in SCI-exercised rats [36]. This demonstrates that recovery does not necessarily involve a
restoration of pre-injury properties, but a functional adaptation to new conditions [37].

While separate studies may have indicated opposite effects of injury on GAD67/65 ex-
pression, exercise was shown to counteract the changes, suggesting that exercise may have
a homeostatic effect. This may occur via changes in BDNF-TrkB signaling, as BDNF modu-
lates GAD65 and GAD67 expression following SCI [23] (Figure 1B). This is in agreement
with the dual role of BDNF in preventing or promoting downstream pathways depending
on the surrounding cellular environment [73,116] (further discussed in Section 2.5).

2.5. Chloride Homeostasis

The alterations in inhibitory synaptic transmission after SCI are not only due to a gen-
eral change in markers of inhibition (Section 2.4), but also to changes in the cation chloride
co-transporters KCC2 (and/or NKCC1) that regulate intracellular chloride levels ([Cl−]i)
required for inhibition [36,51,73,87,117–119]. [Cl−]i is largely governed by the cation
chloride cotransporters KCC2 (chloride extruder) and NKCC1 (chloride intruder) [120].
Their relative expression determines the chloride reversal potential, and thus regulates
the amplitude and polarity of GABAergic and glycinergic responses. After SCI, there is
a sudden and severe reduction in excitability of neurons below the lesion, due in part to
the lack of serotonergic neuromodulation that normally emanates from descending tracts.
This causes the sub-lesional cord to recapitulate a state observed during early develop-
ment: KCC2 is downregulated, Cl− ions accumulate within the neurons, and GABA- and
glycine-mediated responses are less hyperpolarizing, and can even be depolarizing [73,121]
(Figure 1B). The importance of this shift is revealed by its involvement in the development
of both spasticity and neuropathic pain after SCIs [73,122,123].

Exercise improves these symptoms in the clinic [124,125], and recent studies from
animal models of SCI suggest that these improvements are associated with an increase in
expression of KCC2 around motoneurons below the lesion [20,36,46,51,62,87]. Moreover,
KCC2 was identified as both necessary and sufficient for these effects. Exercise-induced
improvements in spasticity are mimicked by a single dose of a KCC2-enhancing compound
in unexercised rats with SCI [126], and are eliminated when KCC2 activity is blocked
during exercise [62]. This effect was found to rely on BDNF/TrkB signaling, as chelating
BDNF with TrkB-IgG during exercise prevented both the upregulation of KCC2 and the
exercise-dependent functional improvements [46,62]. This provides evidence that beyond
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modulating classical synaptic plasticity, the activity-dependent increase in BDNF is also a
robust mediator of ionic plasticity.

Importantly, the regulation of KCC2 by BDNF changes following SCI, with BDNF
promoting KCC2 expression after injury, rather than downregulating it [73,116]. Potential
mechanisms driving this change remain to be fully explored, but a likely possibility is
the contribution of PLCγ (Phospholipase C) and Shc [127–129]. BDNF has been shown to
induce an increase in Shc and downregulate KCC2 when PLC-γ is present, but upregulate
KCC2 when PLC-γ is absent [127,128]. Fittingly, expression of PLC-γ is reduced within 14
days following SCI [46] (Figure 1B). While exercise increases the expression of BDNF, it
does not impact the expression of PLC-γ (Table 1), and therefore leads to KCC2 upregula-
tion [46]. Interestingly, the increase in KCC2 with exercise is also paralleled by a significant
preservation of spinal PNNs [20]. The proteoglycans found in PNNs can contribute to
chloride homeostasis and the polarity of GABA signaling [130]. The simultaneous increase
in KCC2 expression on motoneurons and increase in synthesis of PNN components during
development [131,132] suggests a potential relationship between these markers that can
be reversed by exercise. Together, this suggests that chloride homeostasis may play an
important role in the homeostatic effects observed with exercise.

Additionally, 5-HT2AR have also been implicated in the regulation of KCC2 in the
spinal cord [73]. After SCI, the pharmacological activation of 5-HT2AR, which hyperpo-
larizes the reversal potential of inhibitory postsynaptic potentials (IPSPs), increases cell
membrane expression of KCC2 and restores endogenous inhibition [117]. While some
studies have found exercise to increase the expression of the 5-HT2AR following SCI [35,87],
whether this contributes to the upregulation of KCC2 in synergy with the BDNF pathway
remains to be determined.

3. Rehabilitation Promotes Sprouting and Regeneration

Beyond synaptogenesis and the strengthening of existing pathways, anatomical plas-
ticity in response to exercise after SCI also includes axonal growth, regeneration through
the core of the lesion, sprouting of spared neural tissue, and the formation of novel relays.
The remodeling of spinal cord connectivity can also be triggered by increased sprouting
and plasticity of axonal connections.

3.1. Serotoninergic Fiber Sprouting

Injury-induced sprouting has been shown to be enhanced by exercise such as tread-
mill training or wheel running [17,27,133–136]. However, very little is known about the
signaling pathways contributing to these changes, as they have mostly been identified
in terms of which supraspinal pathway is involved. Due to its vital role in supraspinal
modulation, serotonin is often a focus of these studies.

Beyond changes in the expression of spinal 5-HT receptors induced by exercise
(Section 2.3), supraspinal serotoninergic projections that are spared after an incomplete SCI
can also undergo plastic changes. Serotoninergic projections originating from the raphe
nuclei extend to motoneurons in the ventral horn of the spinal cord to regulate their activity.
It has been long known that increasing serotonergic activity with exogenous serotonergic
agonists facilitates stepping after SCI in animal models [137–139], and that the presence
of 5-HT fibers and terminals in the spinal cord and the recovery of locomotor function
after injury is strongly correlated [140–143]. Exercise was shown to increase (1) 5-HT fiber
outgrowth, (2) the number of 5-HT fibers, and (3) the amount of presynaptic terminals
around motoneurons in the ventral horn caudal to an incomplete injury (Figure 1A). In
agreement with earlier studies, this was associated with functional recovery, including
improvements in locomotion and reaching/grasping [22,133,136]. Although the causality
of this relationship remains to be determined, this suggests that exercise can promote
axonal sprouting to supplement the loss of 5-HT supply and improve function. Potential
mechanisms for this likely involve exercise-induced increases in BDNF, as it is implicated in
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structural changes in the lumbar spinal cord following SCI, including increased sprouting
of serotonergic axons [133].

3.2. Markers of Regeneration

Perhaps the most obvious approach to treat SCI is to reestablish communication
between the separated segments of the CNS. Axonal regeneration was long considered the
gold standard to cure SCI by achieving regrowth across the lesion site. However, several
decades of research have proven it is not a trivial endeavor [144]. In that context, exercise
is mostly used to guide regenerating axons towards creating functional circuits. This is a
critical step, as without appropriate guidance, newly formed connections are likely to reach
inappropriate targets and lead to maladaptive plasticity and aberrant function [145,146].

A very limited number of studies have focused on the effect of exercise alone on
regeneration, perhaps because early studies suggested that exercise only modestly im-
pacts axon regeneration across the lesion site and might not be sufficient to induce ro-
bust recovery [147–149]. However, any treatment aiming to be translatable to the clinic
needs to include a rehabilitation program, as it is incorporated in the standard of care.
In any case, there is now a consensus that an effective treatment for SCI will require
the inclusion of activity-based therapy to promote functional recovery and effectively
enhance neuroplasticity [15,147,150]. Most often, exercise is combined with pharmaco-
logical and/or surgical approaches to manipulate neuronal intrinsic growth programs
that encourage axon regeneration. These include peripheral nerve grafts (PNG) [148,151],
neural stem-cell grafts [149,152], and enzymes that degrade inhibitors of axon regenera-
tion [27,153,154], all of which contribute to establishing a growth and plasticity permissive
environment [148–151].

To date, there are no convincing data supporting a role for exercise in increasing the
regenerative potential and improving function in SCI models of regeneration [155–158].
However, a number of anatomical changes were identified. For example, cycling exercise
has been shown to increase propriospinal regeneration into a PNG and modulate the
expression of genes associated with regeneration, including mRNA levels for GAP43 and
β-actin, both involved in axon elongation, and neuritin, which promotes synapse formation
and neurite outgrowth [148] (Figure 1C). Similarly, combining neural stem-cell grafts with
treadmill training significantly improved regenerative capability after contusion injury in
mice by increasing the number of Elavl+ cells, suggesting that exercise facilitated neuronal
differentiation within the stem-cell graft [149]. The addition of treadmill training also
increased the immunoreactivity of pGAP43 in the spinal cord caudal to the injury site,
and was accompanied by a significant increase in other molecules that regulate synaptic
plasticity, such as VGlut1, GAD65, and Synapsin I, as well as functional improvements
in reflex inhibition. While this is encouraging, results still remain limited in terms of
functional recovery, especially after chronic SCI [149,152].

3.3. Bypassing the Lesion

Long descending supraspinal tracts are particularly susceptible to damage by an SCI.
As such, a substantial amount of supraspinal rewiring takes place at a distance from the
lesion, and it is now well known that this is important for recovery [159–162]. There are
several detour pathways that have been shown to relay information from supraspinal
locomotor commands through the lesion site after incomplete SCI. Amongst these path-
ways, the contribution of exercise to the corticospino-propriospinal pathway [159] and the
corticospino-reticulospinal pathway [163] are the best described.

In rats [159] and in humans [164], combining electrical stimulation of the spinal
cord with locomotor training improves voluntary control of overground stepping even
when stimulation is discontinued, suggesting that adding training to the neuromodulatory
treatment is essential to shape the circuitry in a meaningful manner [159]. These new
circuits arise when collaterals of transected corticospinal fibers migrate into the grey matter
to contact neurons of either the long propriospinal tract [136,159] or the reticulospinal
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tract [163]. These subsequently bypass the lesion site to contact lumbar motoneurons,
and form cortically controlled detour pathways [136,165]. Even without the addition of
neuromodulatory treatments, rehabilitation provided via irregular running wheels was
shown to increase formation of these circuits up to threefold [136] (Figure 1C). The rewiring
persisted for many weeks and was accompanied by improvements in skilled motor tasks,
which depend on corticospinal input. Interestingly, uninjured animals that underwent
the same rehabilitative program showed no such changes in circuitry, suggesting that this
effect of exercise on circuit plasticity is specific to damaged pathways [136].

4. Other Considerations

Beyond the damage incurred by the lesion itself, known as the primary mechanical
injury, there are further mechanisms of damage that follow. Inflammation, neural and
glial cell death, and maladaptive immune responses all contribute to what is known as the
secondary injury, which leads to expansion of the initial damage to more distal segments
of the cord [166]. Although most of these factors are studied in terms of their contribution
to lesion size and neuropathic pain after SCI, which is not the focus of this review, they
also have the potential to affect motor recovery. By destroying the blood–spinal-cord
barrier, an SCI allows blood-borne neutrophils to flood into the lesion site. This triggers a
near-immediate upsurge in inflammatory mediators, such as TNF-α and IL-1β, as well as
activation of microglia [167,168] (Figure 1C).

Inflammation after SCI induces an abundant number of complications, including
activation of multiple apoptotic signaling proteins and the subsequent death of neurons
and oligodendrocytes (demyelination) [168]. Several studies have found that exercise
reduces expression of inflammatory markers after SCI in animal models [169,170] and
in humans [171], but how this occurs has yet to be clearly delineated. While there are
numerous mechanisms likely at play, one possibility is via an increase in vascular endothe-
lial growth factor (VEGF). VEGF promotes endothelial cell proliferation, vascularization,
and angiogenesis, and is upregulated by exercise via lactate receptors expressed in the
blood–brain barrier [172]. After SCI, the exercise-induced increase in VEGF is associ-
ated with enhanced expression of tight junctions and adherens junctions, which reduces
blood–spinal-cord barrier permeability and improves locomotor recovery [173]. This effect
was further shown to rely on BDNF/TrkB signaling [47], as well as inhibition of matrix
metalloproteinases (MMPs) [173], which restructure extracellular matrices and damage
the blood–spinal-cord barrier after SCI [174,175]. Interestingly, another study found that
after SCI, proliferating endothelial cells located in the core of the lesion upregulate CD200,
which hinders inflammation [176], while yet another study found that treadmill exercise
upregulates both CD200 and its receptor after stroke in rats [177]. Thus, it is possible that
the decrease in inflammatory signaling observed with exercise occurs in part by increasing
the endothelial release of CD200 and increasing the expression of the CD200 receptor.
However, this has yet to be investigated in a model of SCI.

The local responses of glial cells, astrocytes and oligodendrocytes in particular, are
also a critical determinant of motor recovery, as they contribute to the non-permissible
environment limiting axon regeneration [178]. Rehabilitation significantly decreases glial
fibrillary acidic protein (GFAP)+ astrogliosis, i.e., reactive astrocytes and their deposition of
extracellular matrix molecules, such as CSPGs, both in the epicenter and in the spinal cord
caudal to the lesion [22,136] (Figure 1C). As astrogliosis inhibits axonal growth through the
formation of the glial scar after SCI, this suggests that rehabilitation can modify the injury
environment and improve functional recovery. Similarly, it was found that exercise reduces
microglia activation in the spinal cord [179], though there remains substantial ambiguity
surrounding microglia and their effect on motor recovery.

5. Potential for Translation and Limitations

Following SCI, exercise-based therapies are associated with countless forms of plastic-
ity, ranging from circuit formation, prevention of apoptosis, axonal sprouting, changes in
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chloride homeostasis, and many other alterations that likely contribute to neural repair
and functional recovery. While the mechanisms responsible for this activity-dependent
plasticity remain to be completely described, there is substantial evidence implicating the
upregulation of neurotrophins as a cardinal regulator of these processes.

As a result of its versatility and non-invasive nature, exercise is routinely used in
the clinic as a strategy to improve motor recovery. While there is abundant evidence sup-
porting improved functional recovery and quality of life with exercise and activity-based
therapies after SCI in humans, the number of randomized controlled clinical trials remains
limited, and shows considerable variability across studies and patients in response to
therapy [180,181]. Amongst the critical limitations of clinical trials is the need to standard-
ize therapy, while in the clinic, activity-based therapies need to be highly individualized,
both in modality and intensity based on specific needs to optimize functional improvements.
In addition, the many co-morbidities that accompany SCI can make exercise challenging or
even impossible for some individuals, particularly early after injury. Thus, there remains a
need for pharmacological therapies that can be combined with exercise or substituted for
exercise when necessary. Caution is warranted, however, as pharmacological interventions
produce systemic changes in signaling, unlike exercise, which, by inducing neural activity
in relevant networks, alters molecular pathways in a more finely tuned, spatio-temporal
manner.

Nonetheless, it is now widely accepted that to significantly regain motor function after
an SCI, it will necessitate a combination of cellular and pharmacological treatments that
address the variety of targets and processes affected by the SCI, and that these approaches
are more robust when combined with activity-based therapies [15,182]. Optimizing these
strategies will critically rely on a firm understanding of the molecular pathways involved
in recovery, many of which were identified by investigating the effect of activity-based
therapies in animal models of SCI. Finally, future therapeutic developments would benefit
greatly from bench studies that consider the injury model and severity, the type of exercise
provided, appropriate timing for initiation, as well as the spinal region of interest.

Table 1. Table summarizing key molecular changes in the spinal cord below the lesion after SCI and with exercise.

Section Chronic SCI References Chronic SCI + Exercise References

2.1. Synaptic Plasticity

↓ CREB [19,23] ↑ CREB [19,23,54]
↓ Synapsin I [19,54] ↑ Synapsin I [19,22,54]
↓ Synaptophysin [18,19,183] ↑ Synaptophysin [17,28]
↓ PSD-95 [17] ↑ PSD-95 [17]
↓ PNN [20,27] ↑ PNN [20,27]

2.2. Neurotrophins ↓ BDNF [18,19,23,45,51,54] ↑ BDNF [18,19,23,44–47,51,54]

2.3. Serotonin Receptors
↑ 5-HT1A [35,86] ↑ 5-HT1A [35]
↑ 5-HT2A [35,87–92] ↑ 5-HT2A [35,87]
↑ 5-HT2C [79,81,93] = 5-HT2C [87]

2.4. Markers of
in inhibition

↑↓ GlyR
↑ [37]
= [36]
↓ [114]

↓↑ GlyR ↓ [37]
↑ [36]

↑↓ GABAAR ↑↓ [107]
↓ [114] ↓↑ GABAAR ↑↓ [107]

↑↓ GAD67
↑ [106]
↓ [23] ↓↑ GAD67 [25,45]

↑↓ GAD65
= [36,106]
↓ [23] ↑↓ GAD65

↑ [23]
= [43]
↑↓ [36]

2.5. Chloride
Homeostasis

↓ KCC2 [20,36,51,62,73,87] ↑ KCC2 [20,36,46,51,62,87]
↓ PLCγ [46] = PLCγ [46]

Legend: ↑ increased, ↓ decreased, = no change, ↑↓ increased or decreased depending on location.
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