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Abstract

Introduction: White matter microstructure may be abnormal along the Alzheimer’s

disease (AD) continuum.

Methods:Diffusionmagnetic resonance imaging (dMRI) data fromtheAlzheimer’sDis-

ease Neuroimaging Initiative (ADNI, n = 627), Baltimore Longitudinal Study of Aging

(BLSA, n = 684), and Vanderbilt Memory & Aging Project (VMAP, n = 296) cohorts

were free-water (FW) corrected and conventional, and FW-corrected microstructural

metrics were quantified within 48 white matter tracts. Microstructural values were

subsequently harmonized using the Longitudinal ComBat technique and inputted as

independent variables to predict diagnosis (cognitively unimpaired [CU],mild cognitive

impairment [MCI], AD). Models were adjusted for age, sex, race/ethnicity, education,

apolipoprotein E (APOE) ε4 carrier status, and APOE ε2 carrier status.
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Results: Conventional dMRI metrics were associated globally with diagnostic sta-

tus; following FW correction, the FW metric itself exhibited global associations with

diagnostic status, but intracellular metric associations were diminished.

Discussion:White matter microstructure is altered along the AD continuum. FW cor-

rection may provide further understanding of the white matter neurodegenerative

process in AD.
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Highlights

∙ Longitudinal ComBat successfully harmonized large-scale diffusion magnetic reso-

nance imaging (dMRI) metrics.

∙ Conventional dMRImetrics were globally sensitive to diagnostic status.

∙ Free-water (FW) correction mitigated intracellular associations with diagnostic

status.

∙ The FWmetric itself was globally sensitive to diagnostic status.

Multivariate conventional and FW-corrected models may provide complementary

information.

1 INTRODUCTION

Although significant emphasis has been appropriately placed on hip-

pocampal volume in Alzheimer’s disease (AD),1,2 emerging evidence

has also demonstrated that measures of white matter microstruc-

ture can distinguish diagnosis along the AD continuum (i.e., cognitively

unimpaired [CU], mild cognitive impairment [MCI], AD). Diffusionmag-

netic resonance imaging (dMRI) is one method that allows us to

quantify white matter microstructure in vivo, and many studies using

this method have focused on fractional anisotropy (FA) and diffusivity

(mean diffusivity [MD], axial diffusivity [AxD], radial diffusivity [RD]).

Thus far, literature has demonstrated that there are global changes in

white matter in AD, with prominent abnormalities in tracts projecting

from the medial temporal lobe.3–11 Due to recent advances in dMRI

post-processing,12 the availability of spatially precise white matter

tract templates,13–16 and data harmonization,17 there is an unprece-

dented opportunity to better understand changes in white matter

along the AD continuum, which will further our knowledge into the

neurodegenerative processes in AD.

Although several prior studies that used dMRI in AD have been piv-

otal to our understanding the role of white matter in AD, many of

these studies used conventional measures of dMRI (FACONV, MDCONV,

AxDCONV, RDCONV), which are subject to awell-established partial vol-

ume limitation,8,12,18–20 whereby there is mixture of both tissue and

fluid compartments within each voxel. Extracting the fluid compart-

ment from the tissue compartment within each voxel would provide

more accurate assessment of tissue-specific changes, and the fluid

compartment may also be related to critical biological drivers of dis-

ease in AD (e.g., inflammation, atrophy). Accordingly, post-processing

techniques exist that allow us to separate these compartments. One

technique, called free-water (FW) elimination, allows us to segment a

conventional dMRI scan into: (1) an extracellular component in which

we can quantify the FW measure and (2) an intracellular component

in which we can quantify FW-corrected values of conventional dMRI

measures (FAFWcorr, MDFWcorr, AxDFWcorr, RDFWcorr). Prior studies

evaluating intracellular metrics have found that the observed differ-

ences in white matter along the AD continuum are altered before

and after FW correction.6,7 One recent study focusing on white mat-

ter FW in preclinical AD found that FW is sensitively associated with

several cerebrospinal fluid–derived biomarkers, including measures

of amyloid, phosphorylated tau, total tau, microglial activation, and

inflammation.21 Even though this technique provides an enhanced

insight into brain microstructure, studies thus far have primarily been

single-site/cohort studies with limited sample sizes. Advances in data

harmonization, such as Longitudinal ComBat, now allow for the correc-

tion for between-site andbetween-cohort heterogeneity (e.g., protocol

and demographic variability) in longitudinal data sets to perform

large-scale pooled analysis.

The present study aims to perform a large-scale, harmonized

analysis using conventional and FW-corrected dMRI data derived

from three well-established aging cohorts, including the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), Baltimore Longitudinal Study

of Aging (BLSA), and Vanderbilt Memory & Aging Project (VMAP).

In our analysis, we will evaluate white matter microstructure within

48 different white matter tract templates, including 3 association, 7

limbic, 9 projection, 6 occipital transcallosal (TC), 5 parietal TC, 6motor
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TC, and 12 prefrontal TC tracts. The goal of our study is two-fold: (1)

determine between-group differences (CU vs MCI vs AD) in con-

ventional (FACONV, MDCONV, AxDCONV, RDCONV) and FW-corrected

(FW, FAFWcorr, MDFWcorr, AxDFWcorr, RDFWcorr) metrics within each

white matter tract, and (2) use recursive feature elimination (RFE),

in separate conventional and FW-corrected models, to determine

the best set of microstructural metrics that are most significantly

associated with diagnostic category. We hypothesized that white

matter tract microstructure from the limbic tracts would be most sig-

nificantly associated with diagnosis category, and that FW-corrected

metrics would display more pathologically relevant between-group

differences.

2 METHODS

2.1 Study sample

The present study used data from three well-established cohorts

of aging. The largest cohort was the Neuroimaging substudy of the

BLSA22—behavioral assessment in this cohort began in 1994 and

included dementia-free participants 55 to 85 years of age who had

up to 10 years of prospective data collection at baseline. In 2009, the

original cohort was expanded to include participants 20 to 85 years

of age and 3T MRI data collection began. Data from the BLSA cohort

are available upon request by a proposal submission through the BLSA

website (www.blsa.nih.gov). Another cohort leveraged in this studywas

the well-known ADNI (adni.loni.usc.edu) cohort23—this cohort was

launched in 2003 as a public-private partnership led by principal inves-

tigator Michael W. Weiner, MD. The primary goal of ADNI has been

to test whether serial MRI, positron emission tomography (PET), other

biologicalmarkers, and clinical and neuropsychological assessment can

be combined to measure the progression of MCI and early AD. The

final cohort used in this study was VMAP24—data collection for VMAP

began in 2012 and includes participants 60 years of age and older who

are considered CU or who have MCI. Data from the VMAP cohort

can be accessed freely following data use approval (www.vmacdata.

org). Within each cohort, informed consent was provided by all par-

ticipants. For each cohort, several demographic and clinical covariates

were required for inclusion, including age, sex, educational attainment,

race/ethnicity, apolipoprotein E (APOE) haplotype status (ε2, ε4), and
cognitive diagnosis (CU, MCI, AD). In total, this study included 1718

participants across 4614 imaging sessions; however, participants were

excluded if they had a conversion in diagnostic status within their lon-

gitudinal data collection (e.g., CU to MCI between two timepoints).

Furthermore, individuals were only considered if theywere 50 years of

age or older. The cohort used in the present study was also restricted

to only baseline timepoints as we are interested in the differences

in cross-sectional diagnostic differences. Given all inclusion/exclusion

criteria, the present study included 1607 participants. Sample sizes,

demographic information, and health characteristics for each cohort

can be found in Table 1. Acquisition parameters for each cohort can be

found in Table S1.

RESEARCH INCONTEXT

1. Systematic review: The authors used PubMed and

Google Scholar to review literature that used conven-

tional and free-water (FW)–corrected diffusion magnetic

resonance imaging (dMRI) data to evaluate diagnostic dif-

ferences along the Alzheimer’s disease (AD) continuum.

Although several studies have leveraged conventional

dMRI to find that white matter is sensitively associated

with diagnostic status, there has yet to be a large-scale,

FW-corrected analysis.

2. Interpretation: Conventional FW metrics are globally

associated with diagnostic status. FW correction, how-

ever, mitigated these effects and the FW measure itself

was highly associated with diagnostic status. Our mul-

tivariate approach demonstrated that although conven-

tional and FW-corrected models perform similarly when

associated with diagnostic status, the top neuroimaging

features involved in these models differ, suggesting that

the incorporation of bothmodels may be useful.

3. Future directions: Genetic studies may add knowledge

into which biological pathways drive changes in conven-

tional and FW-corrected dMRI measures and may help in

understanding the role white matter has in the neurode-

generative cascade of AD. Future large-scale research is

needed to fully understand howwhitemattermicrostruc-

tural metrics are associated with cognitive decline, AD

pathology, and genetic predictors of AD.

2.2 dMRI preprocessing

Preprocessing for all dMRI analyses followed standard procedures.

First, we used an automated pipeline (PreQual) to correct for eddy

currents, motions, and distortions. The data outputted from this step

was then inputted into DTIFIT to calculate conventional dMRI metrics

(FACONV, MDCONV, AxDCONV, RDCONV). The preprocessed data (i.e.,

dMRI brain image, brain mask, bvec file, bval file) was also inputted

into well-established MATLAB code12 to calculate the FW compo-

nent and FW-corrected dMRImetrics (FAFWcorr, MDFWcorr, AxDFWcorr,

RDFWcorr).
14,15,24,25 After all microstructural metrics were quantified,

a standard space representation of these maps was created by non-

linearly transforming the FACONV map to the FMRIB58_FA atlas using

the Advanced Normalization Tools (ANTs) package.26 This warp was

then applied to all remainingmicrostructural maps.

2.3 White matter tract microstructure
harmonization

The present study used well-established tractography templates in

Montreal Neurological Institute (MNI) space to evaluate white matter

http://www.blsa.nih.gov
http://www.vmacdata.org
http://www.vmacdata.org
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TABLE 1 Demographic and health characteristics.

Cohort

Measure

ADNI

(n= 627)

BLSA

(n= 684)

VMAP

(n= 296) p-value

Age (y) 73.86 (7.71) 70.82 (10.15) 73.32 (7.26) <0.001

Sex (%male) 50.56 46.13 57.77 <0.001

Education (y) 16.30 (2.62) 17.03 (2.36) 15.81 (2.68) <0.001

Race (% non-HispanicWhite) 91.23 65.64 86.82 <0.001

APOE ε2 (% positive) 8.61 17.54 15.20 <0.001

APOE ε4 (% positive) 40.83 26.17 35.81 <0.001

Cognitive status (% CU) 49.12 98.83 56.76 <0.001

Note: Values denoted asmean (SD) or frequency.

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; BLSA, Baltimore Longitudinal Study of Aging; CU, cognitively unimpaired; VMAP,

Vanderbilt Memory &Aging Project; y, years.
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F IGURE 1 Tractography templates used in the present study. This study leveraged 48well-established tractography templates of the
association (A), limbic (B), projection (C), occipital transcallosal (TC) (D), parietal TC (E), motor TC, and prefrontal TC tracts.

microstructure (Figure 1),13-16,25,27 all ofwhich are publicly available in

aGitHub repository (https://github.com/VUMC-VMAC/Tractography_

Templates). Mean values for all 48 tracts were calculated for the 4 con-

ventional and 5 FW-corrected dMRImetrics, whichwere subsequently

harmonized using the Longitudinal ComBat technique in R (version

4.1.0).28 Harmonization controlled for several covariates, including age

at baseline, education, sex, race/ethnicity,APOE ε4 carrier status,APOE
ε2 carrier status, and the interaction of age at baseline and interval

from baseline. Moreover, we included a site x scanner x protocol batch

variable that would control for all combinations of dMRI acquisition,

and random effects for intercept and interval from baseline per par-

ticipant. It is important to note that the harmonization was conducted

using all possible longitudinal data (number of sessions = 4,605), and

each cohort differed in number of timepoints (ADNI: 4.04 [2.49];

BLSA: 3.61 [1.95]; VMAP: 3.58 [0.84]) and longitudinal follow-up time

(in years) (ADNI: 1.23 [1.75]; BLSA: 2.42 [2.54]; VMAP: 2.01 [1.86]).

Harmonized data were then subset to satisfy the inclusion/exclusion

criteria of the present study (number of participants= 1607).

2.4 Statistical analyses

All statistical analyses were performed in R (version 4.1.0) and Python

(version 3.9.7). First, we were particularly interested in determining

how effectively Longitudinal ComBat harmonized the dMRI measures.

To evaluate Longitudinal ComBat’s ability to harmonize the dMRI mea-

sures used in this study, we conducted an analysis using a subset of our

CUparticipants. Specifically,wepulled a single protocol fromtheADNI,

BLSA, andVMAPcohorts and filtered toonly includeCUparticipants.A

propensity matching analysis was then conducted tomaximize overlap

https://github.com/VUMC-VMAC/Tractography_Templates
https://github.com/VUMC-VMAC/Tractography_Templates
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of age, sex, education, race/ethnicity, APOE ε4 carrier status, and APOE
ε2 carrier status.29 For the initial ADNI cohort in this analysis (n=131),

dMRI data (number of directions: 48; b-values: 0, 1000; reconstructed

resolution: 2 mm x 2 mm x 2 mm) was collected on a 3T Siemens scan-

ner. For the initial BLSA cohort in this analysis (n = 644), dMRI data

(number of directions: 32; b-values: 0, 700; reconstructed resolution:

0.81mmx0.81mmx2.2mm)was collectedona3TPhillips scanner. For

the initial VMAP cohort in this analysis (n = 167), dMRI data (number

of directions: 32; b-values: 0, 1000; reconstructed resolution: 2 mm x

2mmx 2mm)was collected on a 3T Philips scanner. Between-protocol

effects were found by conducting linear regression analyses and quan-

tifying themaineffect of protocol ondMRImeasures, covarying for age,

sex, education, race/ethnicity, APOE ε4 carrier status, and APOE ε2 car-
rier status. Furthermore, we conducted linear regression analyses to

determine the association between age and dMRI measures and quan-

tified age and protocol x age interactions using the same covariates. We

expected harmonized data to yield similar age-effect estimates within

each cohort.

We then conducted multinomial logistic regression analyses to

determine how each of the four conventional and five FW-corrected

dMRI metrics were associated with all diagnostic categories (CU vs

MCI vs AD). In this analysis, each white matter metric was evaluated

separately as an independent variable, and covariates included age,

sex, race/ethnicity, education, APOE ε4 carrier status, and APOE ε2
carrier status. Significance was set a priori as α = 0.05 and correc-

tion for multiple comparisons was made using the false discovery rate

(FDR) method. Multiple comparisons were made for the conventional

and FW-corrected metrics separately, totaling in the correction 192

and 240 models, respectively. In addition to the multinomial logistic

regression analysis, we conducted several binomial logistic regression

analyses (CU vsMCI, CU vs AD,MCI vs AD).

RFE was conducted for each diagnostic comparison. Specifically,

we input all neuroimaging measures and covariates into each com-

parison and iteratively removed variables to maximize the weighted

precision (i.e., weighted ratio of true positives to sum of true pos-

itives and false positives). We conducted this analysis for the con-

ventional and FW-corrected dMRI measures separately for each

comparison of interest, totaling in eight RFE analyses. Feature impor-

tance (i.e., absolute z-value) was then quantified for the top 10

neuroimaging measures included in the final models. To reduce

collinearity, MDCONV and MDFWcorr microstructural measures were

excluded from all models. Significance was set a priori as α = 0.05

and correction for multiple comparisons was made using the FDR

method.

3 RESULTS

3.1 Free-water correction and Longitudinal
ComBat harmonization on dMRI data

Propensity score–matched cohorts were created for ADNI (n = 131),

BLSA (n= 131), and VMAP (n= 108). Table S2 shows the demographic

and health characteristics of these cohorts, in which there were no

significant differences in age, sex, education, race, APOE ε4 carrier sta-
tus, or APOE ε2 carrier status. Figure 2 illustrates the differences seen

before and after FWcorrection and Longitudinal Combatharmonization

for the cingulum tract (Figure 2A). Between-group analysis of cingu-

lum distributions of raw, conventional dMRI metrics revealed highly

significant differences in FACONV,MDCONV, AxDCONV, and RDCONV (all

p‘s < 0.001) (Figure 2B). Next, we conducted between-group analysis

of cingulum bundle distributions of harmonized, FW-corrected dMRI

metrics (Figure 2C) and found no significant effects (all p‘s > 0.05).

We then evaluated if there were protocol x age interactions in the

association with dMRI metrics, and there were no significant interac-

tions for any conventional or FW-corrected variables before or after

harmonization (all p‘s> 0.05).

3.2 White matter tract microstructure
relationship with diagnosis category

The conventional dMRI microstructure effects with all diagnostic

categories (CU vs MCI vs AD) are shown in Figure 3 and all rel-

evant statistics are found in Table S3. As shown in Figure 3A

(top row), there were nearly global associations with conventional

dMRI microstructure on diagnostic category, in which there were

increases in MDCONV, AxDCONV, and RDCONV accompanied with

decreases in FACONV. As expected, effects were especially pronounced

in the limbic tracts, particularly for the cingulum and fornix. For

the cingulum, there were significant effects for all metrics, including

higher MDCONV (β = 13.37 ± 1.10; pFDR < 2.2 × 10−16), AxDCONV

(β=11.58±1.12; pFDR <2.20×10−16), andRDCONV (β=12.78±1.07;

pFDR < 2.20 × 10−16) in addition to lower FACONV (β = −5.56 ± 0.83;

pFDR = 2.82 × 10−11), for increased severity in diagnostic cate-

gory. For the fornix, there was higher MDCONV (β = 13.82 ± 1.11;

pFDR <2.20×10−16), AxDCONV (β=13.00±1.08;pFDR<2.20×10−16),

and RDCONV (β = 14.28 ± 1.15; pFDR < 2.20 × 10−16) in addition to

lower FACONV (β=−2.55 ± 1.03; pFDR = 0.014), for increased severity

in diagnostic category. Illustrations of the effects of conventional dMRI

microstructure on diagnostic category are shown in Figure 3B, which

shows that the most pronounced differences are within MDCONV,

AxDCONV, and RDCONV. Tables S4–S6 show relevant statistics for all

other comparisons (CU vsMCI, CU vs AD,MCI vs AD).

The FW-corrected dMRI microstructure effects with all diagnostic

categories (CUvsMCI vsAD) are shown in Figure 3 and relevant statis-

tics are shown in Table S7. Although there were near global effects for

the conventional dMRI metrics, Figure 3A (bottom row) shows that

there is a near global effect for the FW metric itself, but also shows

that FW correction mitigated the significance shown in the intracel-

lular dMRI metrics. Nevertheless, significance was still pronounced

within the limbic tracts, particularly the cingulum and fornix. For the

cingulum, there were significant effects for three metrics, including

higher FW (β = 14.13 ± 1.13; pFDR < 2.20 × 10−16), lower MDFWcorr

(β = −5.13 ± 0.82; pFDR = 4.81 × 10−10), and lower AxDFWcorr

(β = −3.45 ± 0.76; pFDR = 5.43 × 10−6), with increased severity along
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Raw FACONV Raw MDCONV Raw AxDCONV Raw RDCONV

Harmonized FW Harmonized FAFWcorr Harmonized MDFWcorr Harmonized AxDFWcorr Harmonized RDFWcorr

BLSA
VMAP

ADNI
Cohort 

Free-water Correction and
ComBat Harmonization

(A) Cingulum Tract
Template

(B) Density and Regression Plots for Raw, Conventional dMRI Measures

(C) Density and Regression Plots for Harmonized, Free-Water Corrected dMRI Measures

F IGURE 2 Demonstration of free-water (FW) correction and Longitudinal ComBat harmonization in covariate-matched participants.
Propensity scorematching was conducted to find covariate-matched participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
Baltimore Longitudinal Study of Aging (BLSA), and Vanderbilt Memory and Aging Project (VMAP) cohorts. It is notable that the propensity score
matching was conducted on a single protocol for each cohort and participants werematched to balance age, sex, education race/ethnicity,
diagnosis, apolipoprotein E (APOE) ε4 carrier status, and APOE ε2 carrier status. Conventional dMRImeasures are shown for the cingulum tract
template (A), and distributions of the raw, conventional measures in addition to the associations with age are shown (B). The dMRI scans were
subsequently FW corrected and Longitudinal ComBat harmonization was conducted on themicrostructural values. Distributions of the
harmonized, FW-correctedmeasures in addition to the associations with age are shown (C).

theADcontinuum.For the fornix, therewere significant effects for four

metrics, including higher FW (β= 15.17± 1.23; pFDR < 2.20× 10−16) in

addition to lower MDFWcorr (β = −9.18 ± 0.89; pFDR < 2.20 × 10−16),

AxDFWcorr (β = −6.38 ± 0.92; pFDR = 3.90 × 10−12), and RDFWcorr

(β = −9.07 ± 0.89; pFDR < 2.20 × 10−16). Illustrations of the effects

of FW-corrected microstructure on diagnostic category are shown in

Figure 3C, which shows that the most pronounced differences are

within the FW metric, and bar charts of the most pronounced FW-

corrected differences are shown in Figure 3D. Tables S8–S10 show

relevant statistics for all other comparisons (CUvsMCI, CUvsAD,MCI

vs AD).

3.3 Multivariate regression to maximize
association with diagnosis category

The multivariate logistic regression analysis results for the set of

conventional dMRI microstructural metrics that best predict diag-

nostic category (CU vs MCI vs AD) are shown in Figure 4 and

relevant statistics are shown in Table 2. Although Table 2 (left panel)

shows that the top conventional dMRI measures selected using RFE

analysis significantly predicted diagnostic category (Radj2 = 0.433;

pFDR = 4.76 × 10−143), Figure 4A (left panel) shows that significance

was most pronounced within the uncinate fasciculus (UF), with other
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F IGURE 3 Diagnostic differences in white matter microstructure. The strengths (i.e., absolute z-values) are shown for the relationship
between diagnostic category and conventional (A, top row) and free-water (FW) corrected (A, second row) white matter microstructure. Limbic
tract diagnostic differences for the conventional (B) and FW-corrected (C) measures are illustrated, which show prominent differences in the
fornix and cingulum. FW for the cingulum, fornix, and inferior longitudinal fasciculus (ILF) are shown (D).

contributions from the cingulum, fornix, inferior frontal gyrus (IFG)

pars opercularis, and TC superior temporal gyrus. Illustration of pre-

diction probabilities for the CU diagnosis using conventional dMRI

metrics are shown in Figure 4A (right panel), which shows that indi-

viduals with CU and AD diagnoses displayed the highest and lowest

probabilities of obtaining a CU diagnosis, respectively, whereas those

with MCI diagnosis varied largely in their probability of obtaining

a CU diagnosis. Table 2 also shows relevant statistics for all other

comparisons (CU vs MCI, CU vs AD, MCI vs AD) using conventional

measures.

The multivariate logistic regression analysis results for the set of

FW-corrected dMRI microstructural metrics that best predict diag-

nostic category (CU vs MCI vs AD) are shown in Figure 4 and

relevant statistics are shown in Table 2. Although Table 2 (right panel)
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(A)

(B)

F IGURE 4 Multivariate logistic regression on diagnostic category. The top 10 neuroimaging features and prediction probabilities from a
recursive feature elimination analysis are shown for the conventional (A) and free-water (FW)–corrected (B) multivariate regression analyses.

TABLE 2 Multivariate regression statistics.

Conventional measures FW-correctedmeasures

Radj2 F-statistic pFDR Radj2 F-statistic pFDR

CU vsMCI vs AD 0.433 13.01 4.76× 10−143 0.418 28.38 1.13× 10−160

CU vsMCI 0.267 5.40 5.05× 10−58 0.243 19.50 1.48× 10−76

CU vs AD 0.414 20.74 8.12× 10−119 0.445 21.55 1.87× 10−130

MCI vs AD 0.242 5.03 6.13× 10−17 0.216 9.34 4.21× 10−19

Note: Several recursive feature elimination analyses were conducted using the conventional and FW-corrected dMRImeasures.

Abbreviations: AD, Alzheimer’s disease; CU, cognitively unimpaired;MCI, mild cognitive impairment.

shows that the top FW-corrected dMRI measures selected using RFE

analysis significantly predicted diagnostic category (Radj2 = 0.418;

p = 1.13 × 10−160) and were similar in overall model performance to

conventional measures, Figure 4B (left panel) shows that, as expected,

significance was most pronounced in the FW metric of the fornix,

which is part of the limbic tract group. However, the prediction prob-

abilities plot for the CU diagnosis using FW-corrected dMRI metrics

shown in Figure 4B (right panel) is nearly identical to that using con-

ventional dMRI metrics, where individuals with CU and AD diagnoses

displayed the highest and lowest probabilities of obtaining a CU diag-

nosis, respectively, whereas those with MCI diagnosis varied largely

in their probability of obtaining a CU diagnosis. Table 2 also shows

relevant statistics for all other comparisons (CU vs MCI, CU vs AD,

MCI vs AD).
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4 DISCUSSION

This study leveraged dMRI data within 48 white matter tracts in con-

junction with the FW-correction post-processing technique and Longi-

tudinal ComBat harmonization to investigate the relationship between

white matter microstructure alterations and progression along the

AD continuum. Specifically, we identified white matter metrics that

were most robustly correlated with an individual’s diagnosis as CU,

MCI, or AD using conventional and FW-corrected dMRI measures

and evaluated these twomethods regarding their predictive strengths.

First, we found that consistent with the previous literature and cur-

rent understanding of AD neuropathology, microstructural metrics

of limbic tracts white matter (e.g., cingulum, fornix) were identified

as the most robust predictors of diagnosis in both conventional and

FW-corrected analyses. Second, we found that the top neuroimag-

ing features involved in conventional and FW-corrected multivariate

analyses differed drastically, suggesting that the incorporation of both

conventional andFW-correctedmeasures in studiesofADmayprovide

complementary information.

We found global associations with conventional dMRI metrics, in

which increased clinical severity along the AD continuum was associ-

ated with higher MDCONV, AxDCONV, and RDCONV in addition to lower

FACONV. In addition, we found that the most significant effects were

localized to the limbic tracts, including the cingulum, fornix, ILF, UF

as well as TC projections of the inferior, middle, and superior tem-

poral gyri. These results confirm long-standing research that white

matter microstructure within the limbic tracts can differentiate diag-

nostic categories.3-11 For example, one study found that widespread

regionswithin the cingulumbundle exhibited lower FACONV and higher

MDCONV in amnestic MCI (n = 23) and AD (n = 31) participants com-

pared to CU (n = 14).10 Another study using ADNI data found that

although there were global changes in conventional dMRI metrics

between CU (n = 44), MCI (n = 88), and AD (n = 23) participants,

tracts projecting from the temporal and posterior brain regions were

particularly sensitive to diagnostic status and sensitively associated

with cognitive impairment.11 Finally, a recent study leveraged a sup-

port vector, machine-learning algorithm to distinguish between CU

(n = 15), MCI (n = 15), and AD (n = 15); investigators found that

ventral portions of the cingulum were capable of distinguishing cat-

egories with high accuracy (AD vs controls: 90%, AD vs MCI: 87%).

Although our analysis using conventional metrics provided results

that were similar to those of prior studies, Longitudinal ComBat har-

monization allowed us to perform this analysis on a substantially

larger cohort of CU (n = 1,152), MCI (n = 350), and AD (n = 105)

individuals.

In our FW-corrected analysis, we found a global association with

the FW metric itself, such that increased clinical severity along the

AD continuumwas associatedwith elevated FW. This confirms smaller

FW studies studying the AD continuum.6,7 For example, one study

used a whole-brain white matter mask in 81 CU participants, 103MCI

patients, and 42 AD patients to investigate if the FW measure itself

can determine diagnostic category.7 They found that FWwas elevated

in the MCI and AD participants even after removing white matter

hyperintensities from the analyses. In addition to global FW effects,

the present study found that there were significant effects within the

intracellular metrics, although the effect sizes were mitigated com-

pared to their conventional dMRI counterparts. These results are in

line with a prior study that evaluated white matter microstructural

patterns in CU (n = 20) and MCI (n = 25) patients before and after

FW correction.6 Specifically, they found that using conventional dMRI

metrics made analyses susceptible to both false-positive and false-

negative between-group differences. In this prior study, they suggest

that cerebrospinal fluid (i.e., partial volume) contamination is particu-

larly pronounced within the fornix, and therefore conventional dMRI

metrics are vulnerable to this contamination. Our results confirm this

hypothesis bydemonstrating thatMDCONV,AxDCONV, andRDCONV are

elevated along the AD continuum, but after FW correction, the eleva-

tion is confined within the FW metric itself and MDFWcorr, AxDFWcorr,

and RDFWcorr are lower along the AD continuum.

We also conducted separate multivariate logistic regression analy-

ses to determine the best set of conventional and FW-corrected vari-

ables that predict status along theADcontinuum.Of interest,we found

comparable performance for the conventional (Radj2 = 0.433) and FW-

corrected (Radj2 = 0.418) models, in which prediction probability plots

for CU diagnosis look almost identical between the conventional and

FW-corrected analyses (see Figure 4). However, differences emerge

between models when evaluating feature importance. Given these

findings, we suggest that the incorporation of both conventional and

FW-corrected metrics may provide useful information when studying

the neurodegenerative process in AD.30,31

The present study has several strengths. First, we leveraged dMRI

data of 48 white matter tracts from a combined sample of 1607 indi-

viduals spanning three well-established cohorts. This large sample size

allows us to examine the predictive strengths of relevant dMRI mea-

suresmore systematically andmakes resultsmore generalizable across

studies. Second, we employed the FW-correction technique on these

neuroimaging results, which allowed for the separation and individ-

ual analysis of extracellular and intracellular components of a diffusion

image. Third, we effectively harmonized dMRI data across dozens of

site x scanner x protocol combinations. Despite these strengths, our

cohort is mostly non-Hispanic White and is highly educated. Although

we included only non-converting (i.e., no change in clinical diagnosis)

participants in our study, it is possible that further examination of

these participantswould lead to diagnostic changes. In addition, we did

not consider the high heterogeneity across AD, and consequently, it is

possible that our findings may not generalize to other studies. Future

studies evaluating differential white matter patterns between AD sub-

types (e.g., typical, limbic-predominant, hippocampal-sparing, minimal

atrophy)33 are necessary. Although prior studies have evaluated amy-

loidosis and its role on white matter abnormalities in AD,34–36 we did

not consider this as a covariate—future large-scale studies evaluating

amyloidosis and white matter microstructure in preclinical AD would

be useful. We found that FW was sensitive along the AD continuum;

however, it is currently unclear what exact biological mechanisms are

associated with this metric—additional attention on this variable is

necessary to determine which mechanisms in AD are associated with
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FWabnormalities. Replicationof our results in amorediverse, diagnos-

tically balanced cohort that has longer longitudinal follow-up is needed

to further evaluate conventional and FW-corrected dMRI measures

in their abilities to distinguish between different stages of AD and to

identify highest contributing white matter microstructural metrics.
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