
Kamali et al. BMC Res Notes           (2020) 13:27  
https://doi.org/10.1186/s13104-020-4890-z

RESEARCH NOTE

Evaluation of antimicrobial resistance, 
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Abstract 

Objectives:  Pseudomonas aeruginosa is known as a leading cause of nosocomial infections worldwide. Antimicrobial 
resistance and biofilm production, as two main virulence factors of P. aeruginosa, are responsible for the persistence of 
prolonged infections. In this study, antimicrobial susceptibility pattern and phenotypic and genotypic characteristics 
of biofilm of P. aeruginosa were investigated.

Results:  A total of 80 clinical P. aeruginosa isolates were obtained. Isolates showed resistance to all antibiotics with a 
rate from 12.5% (n = 10) against amikacin and piperacillin/tazobactam to 23.75% (n = 19) to levofloxacin. Multidrug-
resistant P. aeruginosa accounted for 20% (n = 16). 83.75% (n = 67) of isolates showed biofilm phenotype. All three bio-
film-related genes were found simultaneously in 87.5% (n = 70) of P. aeruginosa and 13.5% (n = 10) of the isolates had 
none of the genes tested. From the results of the present study, combination therapy including an anti-pseudomonal 
beta-lactam (piperacillin/tazobactam or ceftazidime) and an aminoglycoside or carbapenems (imipenem, merope-
nem) with fluoroquinolones in conjunction with an aminoglycoside can be used against Pseudomonas infections. 
However, reasonable antimicrobial use and high standards of infection prevention and control are essential to prevent 
further development of antimicrobial resistance. Combination strategies based on the proper anti-pseudomonal 
antibiotics along with anti-biofilm agents can also be selected to eradicate biofilm-associated infections.
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Introduction
Pseudomonas aeruginosa, as one of the most com-
mon hospital pathogens, is involved in a wide of severe 
opportunistic infections, particularly in immunocompro-
mised patients [1]. As a global problem, the increasing 
rate of multidrug-resistance (MDR) strains has resulted 
in the medical therapy against P. aeruginosa be compli-
cated [2–4]. In addition, the ability of P. aeruginosa to 

produce biofilm is thought to be a main factor involved 
in chronic infections. Biofilms are complex of microbial 
cells embedded in an extracellular matrix composed of 
proteins, extracellular DNA, and exopolysaccharides, 
providing a protective life-style for bacteria and are 
extremely challenging and costly to treat by antimicrobial 
compounds [5].

The biofilm components of P. aeruginosa are composed 
of at least three distinct exopolysaccharides, including 
alginate, Psl and Pel [6]. Alginate is mainly produced by 
P. aeruginosa clinical isolates originated from the lungs 
of cystic fibrosis (CF) patients [7]. It is a linear polymer 
consisting of β-d-mannuronic acid and α-l-guluronic 
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acid and has an important role in structural stability and 
protection of biofilm [8]. Alginate synthesis in P. aerugi-
nosa is controlled by the algACD operon. AlgD encoded 
by algD is a GDP-mannose dehydrogenase that catalyzes 
the production of GDP-mannuronic acid from GDP-
mannose [9]. The algD gene mediates the control of algi-
nate biosynthesis and transcription of the Alg proteins, 
and also is responsible for the final production of precur-
sor GDP-mannuronic acid, the foundation molecule for 
polymerization and alginate synthesis [7].

P. aeruginosa isolates obtained from environments 
often produce two different exopolysaccharides. Psl 
(polysaccharide synthesis locus) is a neutral polysac-
charide composed of a repeating pentasaccharide, con-
sisting of d-mannose, d-glucose, and l-rhamnose. Psl 
has been shown that provides cell–cell and cell–surface 
interactions during biofilm formation, thereby play-
ing an important in the initiation of biofilm formation 
and protection of biofilm structure [10]. The psl operon 
consisting of 15 co-transcribed genes (pslA to pslO) is 
required for Psl synthesis. PslD protein, encoded by pslD 
gene, is localized in the periplasm/outer membrane and 
is required for biofilm formation, probably by the export 
of a biofilm-relevant exopolysaccharide [11]. The forma-
tion of a layer of polymer/cells at the air–liquid interface 
of a P. aeruginosa standing culture is termed pellicle for-
mation that is controlled by the pel (pellicle) operon [12]. 
Pel is a cellulose-sensitive exopolysaccharide composed 
of 1→4 linked partially acetylated galactosamine and 
glucosamine sugars [13]. The pel operon is composed of 
seven genes (pelA to pelG) [14]. PelF has been suggested 
to be a soluble glycosyltransferase using UDP-glucose as 
a donor substrate toward the Pel exopolysaccharide bio-
synthesis [12].

Given the potential of biofilm in increasing antimicro-
bial resistance and, as a result, the persistence of infec-
tions caused by P. aeruginosa, identification of the isolates 
possessing such factor will help us to better understand 
the pathogenesis of the organism. This study aimed to 
evaluate the antimicrobial susceptibility pattern as well as 
the phenotypic and genotypic characteristics of biofilm 
in P. aeruginosa isolates.

Main text
Methods
Bacterial isolates were collected during September 2017 
to August 2018 from clinical specimens of patients in 
three university affiliated hospitals in Gorgran, Iran. 
Laboratory identification of P. aeruginosa isolates were 
performed by standard microbiological and biochemical 
methods, including pigment production in agar, oxidase 
and catalase tests, reactions in triple sugar iron (TSI) agar, 
SIM (sulfide, indole, motility), and oxidative-fermentative 

(OF) media (Merck, Darmstadt, Germany), and finally, 
growth at 42 °C [2].

Susceptibility of isolates to different antibiotics was 
determined by disk diffusion agar method on cation-
adjusted Mueller–Hinton agar (Merck, Darmstadt, 
Germany) according to the Clinical and Laboratory 
Standards Institute (CLSI) recommendations [15]. Anti-
biotic disks (MAST Diagnostics, Merseyside, UK) tested 
were ceftazidime (CAZ, 30  μg), piperacillin/tazobactam 
(PTZ, 100 μg/10 μg), ciprofloxacin (CIP, 5 μg), levofloxa-
cin (LEV, 5 μg), gentamicin (GM, 10 μg), amikacin (AK, 
30 μg), tobramycin (TOB, 10 μg), imipenem (IMI, 10 μg), 
and meropenem (MEM, 10  μg). Escherichia coli ATCC 
25922 was used as a control for susceptibility testing. 
Multidrug-resistant P. aeruginosa (MDR-PA) was defined 
as isolate resistant to more than one antimicrobial agent 
in three or more antimicrobial categories [16].

Quantitative assessment of biofilm formation was 
performed by the colorimetric microtiter plate assay as 
described previously by Stepanović et al. [17] with some 
modifications. An overnight culture of P. aeruginosa was 
adjusted to the turbidity of a 1 McFarland standard. Sus-
pensions were diluted 1:100 in 200 μL tryptic soy broth 
(TSB) containing 1% glucose (Merck, Darmstadt, Ger-
many), and were then transferred into the sterile flat-
bottomed 96-well polystyrene microplates (JET Biofil, 
Guangzhou, China). Wells were gently washed three 
times with sterile phosphate buffered saline (PBS, pH 
7.3) after 24 h of incubation at 37 °C. Adherent biofilms 
were fixed by 99% methanol for 15  min, the solutions 
were removed, and the plate was air-dried. Biofilms were 
stained by 200 μL of crystal violet 0.1% (Sigma Chemical 
Co., St Louis, MO, USA) for 5 min at room temperature, 
and then rinsed by water and allowed to dry. Biofilm in 
each well was destained by treatment with 200 μL of 95% 
ethanol for 30 min. The optical density (OD) was meas-
ured at 570  nm using a microtiter plate reader (BioTek, 
Bad Friedrichshall, Germany). All experiments were per-
formed in triplicate and repeated three times. In addi-
tion, a cut-off value (ODc) was established. It is defined 
as three standard deviations (SD) above the mean OD of 
the negative control: Odc = average OD of negative con-
trol + (3 × SD of negative control). The isolates were clas-
sified into the four following categories based upon the 
OD: non-biofilm producer (OD < ODc); weak-biofilm 
producer (ODc < OD < 2 × ODc); moderate-biofilm pro-
ducer (2 × ODc < OD < 4 × ODc); strong-biofilm producer 
(4 × ODc < OD).

All P. aeruginosa isolates were evaluated for three bio-
film-encoding genes, algD, pslD, and pelF by polymerase 
chain reaction (PCR) method, using specific primers [8] 
synthesized by Metabion company (Metabion interna-
tional AG, Germany). DNA extraction was performed 
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from bacterial colonies by boiling method. All three 
genes were amplified under the following thermal con-
ditions: initial denaturation at 95  °C for 5 min, followed 
by 30 cycles of denaturation at 94 °C for 30 s, annealing 
at 60 °C for 40 s, extension at 72 °C for 40 s, and a final 
elongation step at 72  °C for 5  min. PCR products were 
analyzed with UV light after running at 100 V for 1 h on 
a 1% agarose gel stained with DNA safe stain (SinaClon, 
Tehran, Iran).

Chi squared test was performed on the relationship 
between categorical variables, including biofilm char-
acteristics and antimicrobial resistance using SPSS soft-
ware, 18.0 (SPSS Inc., Chicago, IL, USA). A p value < 0.05 
was considered as statistically significant.

Results
A total of 80 distinct P. aeruginosa isolates were obtained 
from patients, of which 44 (55%) were from males and 
36 (45%) were from females. Analysis of P. aeruginosa 

distribution in clinical specimens indicated that the most 
isolates (n = 29, 36.25%) were originated from endotra-
cheal secretions, followed by urine (n = 26, 32.5%), blood 
(n = 11, 13.75%), wound (n = 8, 10%), CSF (n = 4, 5%), 
and ear (n = 2, 2.5%).

Based on the CLSI interpretive criteria [15], resistance 
rate among P. aeruginosa isolates to antibiotics tested was 
as follow (Fig. 1): IMI 22.5% (n = 18), MEM 15% (n = 12), 
GM 18.75% (n = 15), TN 16.25% (n = 13), AK 12.5% 
(n = 10), CIP 20% (n = 16), LEV 23.75 (n = 19), CAZ 
17.5% (n = 14), and PTZ 12.5% (n = 10). The prevalence 
of MDR-PA and non-MDR-PA was 20% (n = 16) and 80% 
(n = 64), respectively.

Biofilm phenotypes accounted for 83.75% (n = 67), 
being distributed in the following categories: 16.25% 
(n = 13) produced strong biofilm; 33.75% (n = 27) pro-
duced moderate biofilm; 33.75% (n = 27) produced weak 
biofilm, whilst 16.25% of isolates (n = 13) were identified 
as non-biofilm producer (Table 1). A high occurrence of 
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Fig. 1  Antibiotic susceptibility patterns of P. aeruginosa clinical isolates. IMI imipenem, MEM meropenem, GM gentamicin, TOB tobramycin, AK 
amikacin, CIP ciprofloxacin, LEV levofloxacin, CAZ ceftazidime, PTZ piperacillin/tazobactam

Table 1  Relationship between  biofilm characteristic and  antibiotic susceptibility pattern among  P. aeruginosa clinical 
isolates

Phenotypic pattern of biofilm, no. (%) Genotypic pattern of biofilm, no. (%)

AlgD +/pslD +/pelF + AlgD −/pslD −/pelF − p-value

Strong, 13 (16.25) 10 (76.92) 3 (23.07) 0.001

Moderate, 27 (33.75) 25 (92.59) 2 (7.41) 0.0001

Weak 27 (33.75) 24 (88.89) 3 (11.11) 0.0001

Non-biofilm, 13 (16.25) 11 (84.61) 2 (15.38) 0.0001

Total, 80 (100) 70 (87.5) 10 (12.5) 0.0001
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biofilm-encoding genes was found (Fig. 2): 87.5% (n = 70) 
of the isolates presented all three algD, pslD, and pelF 
genes, simultaneously (identified as algD +/pslD +/pelF + 
genotypic pattern), while 12.5% (n = 10) had none and 
considered as algD −/pslD −/pelF − pattern. In addition, 
isolates were divided to four groups based on both phe-
notypic and genotypic characteristics of biofilm: biofilm 
positive/gene positive (n = 59, 73.75%); biofilm negative/
gene positive (n = 11, 13.75%); biofilm positive/gene neg-
ative (n = 8, 10%); biofilm negative/gene negative (n = 2, 
2.5%). MDR phenotype accounted for 17.91% (n = 12) of 
67 biofilm producers and 20% (n = 14) of 70 genotypically 
positive isolates.

Discussion
Development of resistance by P. aeruginosa to many 
antimicrobial agents is a great challenge in controlling 
its infections [1, 18, 19]. Comprehensive surveillance of 
antimicrobial resistance in European countries for 2017 
demonstrated a range of combined resistance (resist-
ance to three or more antimicrobial groups, including 
piperacillin ± tazobactam, ceftazidime, fluoroquinolones, 
aminoglycosides and carbapenems) from 0% (Iceland) to 
59.1% (Romania) [20]. The prevalence of MDR P. aerugi-
nosa in Iran has been estimated at 58%, with a variation 
in geographical areas: the highest and lowest rates were 
observed in Tehran (100%) and Zahedan (16%), respec-
tively [21]. In a recent study, Bavasheh et  al. [22] found 
that 27.8% of clinical P. aeruginosa isolates were MDR. 

Similarly, the rate of isolates with resistance to at least 
three antimicrobial groups in our study was 20% that was 
lower than that reported from other studies [8, 23, 24]. 
Although the rate of multi-resistance in the present study 
was relatively low, this may be an alarming situation that 
reflects a threat limiting treatment options in therapeutic 
centers studied.

Similar to the results of other studies [25, 26], a sig-
nificant number of included isolates (83.75%) formed 
biofilm. The present study revealed a high prevalence 
of algD, pslD, and pelF genes, being presented simul-
taneously in a considerable proportion (87.5%) of P. 
aeruginosa isolates, a finding that are similar to those 
found by Banar et  al. [8]. Other genes associated with 
biofilm formation, such as pslA and pelA were detected 
by Ghadaksaz et al. [27] with a frequency of 83.7% and 
45.2%, respectively, and Pournajaf et al. [25] with a fre-
quency of 89.5% and 57.3%, respectively among P. aer-
uginosa clinical isolates. However, little data is available 
about the prevalence rate of pslD and pelF genes in dif-
ferent regions of the world.

In agreement with other studies [8, 27], our results 
revealed a significant correlation between the biofilm 
forming capacity and the presence of relevant genes 
(p-value < 0.0001). About 88.06% of 67 biofilm producer 
isolates showed algD +/pslD +/pelF + genotypic pattern, 
while 11.94% were algD −/pslD −/pelF −. On the other 
hand, 84.61% of 13 non-biofilm producers carried bio-
film genes. The capacity of biofilm production despite 
the absence of biofilm genes studied indicates other 
genetic determinants of biofilm participate in matrix 
formation in P. aeruginosa [14, 28, 29]. By contrast, the 
presence of genes without biofilm production may be 
due to chromosomal mutations in different regulatory 
systems, affecting the production of functional biofilm-
associated proteins. Hou et  al. [30] reported that no 
P. aeruginosa isolates were phenotypically positive for 
biofilm formation in Congo red agar and microtiter 
plate assays, whereas 31.03% of isolates contained the 
pslA gene. Conformational changes in quorum sens-
ing proteins due to mutations in lasI/lasR and rhlI/rhlR 
systems were suggested in previous studies [31–33] as 
the reason why these isolates are unable to produce 
biofilm.

According to the results of this study, P. aeruginosa 
that produced biofilm and also those carried biofilm-
associated genes were mainly considered as non-MDR. 
This may cause a misunderstanding in the first place 
that biofilm production is not related to antibiotic 
resistance. It is noteworthy that all isolates in our study 
were subjected to antimicrobial susceptibility testing as 
planktonic cells and not in biofilm form. Thus, multiple 
mechanisms of biofilm and its architectural features, 

Fig. 2  PCR amplification of biofilm-encoding genes in one selected 
clinical isolate of P. aeruginosa as representative. a Lane 1–3: PCR 
products of the pelF, algD, and pslD genes, respectively. M: 50 bp 
DNA ladder. Lane 4: PCR mixture without DNA template as control 
negative. Lane 5–7: PCR products of the corresponding genes in P. 
aeruginosa PAO1 reference strain as control positive. b A 50 bp DNA 
ladder containing seventeen discrete fragments ranging from 50 to 
1500 bp with double intensity reference bands at 200 bp, 500 bp, and 
1200 bp
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including glycocalyx matrix, outer membrane structure, 
heterogeneity in metabolism and growth rate, persister 
cells formation, genetic adaptation, stress responses 
as well as quorum sensing conferring MDR pheno-
type were not involved [34]. Regardless, Lima et  al. 
[31] in Brazil found 48.4% of biofilm producer P. aer-
uginosa isolates were MDR and 51.6% were non-MDR. 
In another study, Abidi et al. [35] reported that biofilm 
production was significantly higher in MDR isolates.

In conclusion, combination therapy including an anti-
pseudomonal beta-lactam (piperacillin/tazobactam or 
ceftazidime) and an aminoglycoside or carbapenems 
(imipenem, meropenem) with fluoroquinolones in con-
junction with an aminoglycoside can be used against 
Pseudomonas infections. Although the rate of resistance 
to multiple antibiotics among the P. aeruginosa isolates 
was relatively low in the present study, prudent antimi-
crobial use and high standards of infection prevention 
and control are essential to prevent further development 
of resistant strains. In addition, combination strategies 
based on the proper anti-pseudomonal antibiotics with 
anti-biofilm agents can be used to enhance the treatment 
of biofilm-associated infections.

Limitations
This study may be limited by the lack of clinical infor-
mation of the patients (treatment, prescription drugs, 
mortality rate, length of a hospital stay) from whom 
bacteria were isolated. Furthermore, this study indicates 
that determination of expression levels of biofilm-asso-
ciated genes by quantitative real-time PCR may help to 
evaluate the role of each corresponding gene in biofilm 
production.
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