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Introduction
Laryngeal squamous cell carcinoma (LSCC) is one of the 
most common types of head and neck squamous cell carci-
noma (HNSCC) in the world and arises in the larynx.1 LSCC 
is the histologic subtype in greater than 90% of laryngeal can-
cers2 and is the second most prevalent malignancy in the head 
and neck as well as the respiratory tract, with both a high inci-
dence and mortality rate.3-5 Based on the published global 
cancer statistics report, more than 17 950 new cases and 3640 
deaths are estimated to be confirmed in the United States in 
2020.5 Poor living habits, such as tobacco use and alcohol con-
sumption, and human papillomavirus (HPV) infection are the 
primary risk factors contributing to the incidence of LSCC.6,7 
HVP is by far the most widely used and studied biomarker in 
laryngeal papillomatosis, but maybe not in LSCC, the primary 
mechanisms of the pathogenesis of this cancer are still 
unclear.8,9 Early stage LSCC is primary treated either with 
surgical treatment or with radiotherapy, can often be curative, 
the survival advantage for patients with LSCC is limited.10

With the rapid development of genomic technologies, it is 
becoming increasingly common to study the molecular and 
cellular mechanisms underlying the pathogenesis of diseases 

and to identify disease-specific biomarkers in gene expression 
profiles using bioinformatics.11 Weighted Gene Co-expression 
Network Analysis (WGCNA) is an effective method for pre-
dicting gene functions and gene associations from genome-
wide expression.12 WGCNA can be applied to identify 
co-expression modules of highly correlated genes and modules 
of interest associated with clinical traits,13 which provides 
insights for predicting the function of co-expresses genes and 
discovering genes that play a significant role in human dis-
ease.14,15 In addition, differential gene expression analysis is 
another powerful method within transcriptomics that can also 
provide methods for understanding molecular mechanisms in 
genome regulation and identifying quantitative changes in 
gene expression levels between experimental and control 
groups.16 Such differences in gene expression can help identify 
potential biomarkers for a particular disease. Thus, the results 
of WGCNA and differential gene expression analysis were 
combined in 2 ways to improve the identification of highly rel-
evant genes that could be used as candidate biomarkers.

In this study, mRNA expression data of LSCC from the 
TCGA and GEO databases were analyzed by WGCNA and 
differential gene expression analysis to identify differential co-
expression genes. Through WGCNA and differential gene 
expression analysis, we further probed the development of 
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LSCC by gene functional enrichment analysis and protein-
protein interaction (PPI) analysis combined with survival anal-
ysis. We attempted to identify a precise gene that may serve as 
a novel biomarker for LSCC.

Materials and Methods
The flow diagram of the analysis hub gene extraction curation 
pipeline is shown in Figure 1. We elaborate on each step in the 
following subsections.

Datasets From TCGA and GEO Database
The gene expression profiles of LSCC were downloaded from 
TCGA (https://portal.gdc.cancer.gov/) and GEO (https://
www.ncbi.nlm.nih.gov/gds). Using the official TCGA website, 
we entered the Genomic Data Commons (GDC) Data Portal 
and selected “Larynx” as the Primary Site and “TCGA-HNSC” 
as the Project. Gene transcriptome data were obtained, com-
prising data on 111 LSCC and 12 noncancerous samples. We 
got the RNA-seq count data on 19 600 genes. Clinical informa-
tion was also obtained from TCGA database. The Gene tran-
scriptome data were cogenerated using the Illumina HiSeq 
2000 platform and annotated into a collection of reference tran-
scripts of the Human HG38 gene standard track. As the Edger 
package tutorial suggests,17 low read count genes are usually not 
worthy of further analysis. Therefore, in this study, we retained 
genes with a cpm (count per million) ⩾1. After filtering using 
the RPKM function in the Edger package, the gene count was 
calculated by dividing the gene length, and a total of 14 556 
genes with RPKM values were further analyzed.

In addition, the gene expression dataset GSE59102 was 
downloaded from GEO. GSE59102 consists of 4 tumor sam-
ples and 4 paired normal tissues from patients with LSCC and 
was researched using the GPL6480 Agilent-014850 Whole 
Human Genome Microarray 4x44K G4112F. According to 
the annotation file provided by the manufacturer, the probes 
were converted into human gene symbols. Duplicate probes of 
the same gene were removed by determining the median 
expression value of all corresponding probes. Ultimately, a total 
of 17 539 genes were selected for the next series of analyses.

Inference of Key Co-expression Gene Network 
Modules Using the R Package WGCNA
Network-based gene screening methods promoted by 
Co-expression networks can be used to identify new candidate 
biomarkers and candidate gene targets for therapy. In this 
study, we constructed the gene expression profiles of TCGA-
LSCC and GSE59102 using the R software WGCNA pack-
age and built a gene co-expression network.11 WGCNA was 
used to mine the highly correlated gene modules between sam-
ples and construct the modules related to the traits of external 
samples. To build a scale-free network, soft power β = 3 and 20 
was selected using the function SoftThreshold. Next, the adja-
cency matrix was created using the following formula: aij =|Sij|β 
(aij: adjacency matrix between gene i and gene j, Sij: similarity 
matrix which is done by Pearson correlation of all gene pairs, b: 
softpower value) and was transformed into a topological overlap 
matrix (TOM) as well as the corresponding dissimilarity 
(1-TOM). Next, a hierarchical clustering tree diagram of the 

Figure 1. Flow diagram of the study.
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1-TOM matrix was constructed to divide similar gene expres-
sion patterns into different gene co-expression modules. To 
further survey the functional modules in the co-expression 
network, we calculated the module-trait association between 
the modules and analyzed the modules with clinical trait 
information.

Identification of DEGs and Their Interaction With 
Modules of Interest
An integrated solution for RNA sequencing and differential 
expression analysis of microarray data was provided using the 
R package limma (linear models for microarray data).18 To 
explore the differentially expressed genes (DEGs) between 
LSCC and normal tissues, we applied limma to TCGA-LSCC 
and GSE59102 datasets to screen for differentially expressed 
genes (DEGs). The P-values were then adjusted for FDR 
using the BH method. Genes with |logFC| ⩾ 1.0 and adj. 
P < .05 were identified as DEGs. The DEGs of the TCGA-
LSCC and GSE59102 datasets are presented as volcano plots, 
which were generated using the ggplot2 package in R x64 
v4.0.2.19 Subsequently, overlapping genes between DEGs and 
co-expression genes extracted from the co-expression network 
were used to identify potential prognostic genes and are shown 
in a Venn diagram using the R package VennDiagrams.20

Functional Annotation and Enrichment Analysis for 
Genes of Interest
To determine the Gene Ontology (GO) function of the 
selected genes, GO enrichment analysis was performed on 
genes of interest using the R package cluster Profiler,21 with a 
P-value-adjusted (Padj) <.05. The GO annotation system 
was classified into 3 categories: biological process (BP), cel-
lular component (CC), and molecular function (MF), which 
can identify the biological characteristics of genes and gene 
sets.22

PPI Network and Identification of Hub Genes
In this study, to construct a PPI network of selected genes, 
protein-protein interactions (PPIs) were assessed using the 
STRING tool.23 The STRING database was used to select 
genes with scores ⩾0.150 to construct the network model visu-
alized using Cytoscape (v3.9.0).24 The maximum cluster cen-
trality (MCC) algorithm is considered the most effective 
method for identifying hub nodes in a co-expression network.24 
We utilized CytoHubba, a plugin software of Cytoscape, to 
calculate the maximal clique centrality (MCC) in every protein 
node.25 In this study, the top 10 genes with MCC values were 
considered pivotal genes.

Survival Analysis
Clinical information on patients with LSCC was also obtained 
from TCGA. After excluding patients with no overall survival 
(OS) data and the DEGs expression profiles of the noncancer-
ous samples, 111 LSCC patients were included for survival 

analysis. Univariate Cox proportional hazards regression analy-
sis and multivariate Cox proportional hazards regression analy-
sis were applied to identify candidate genes that were strongly 
correlated with survival from the 10 hub genes. The survival-
related candidate genes with log-rank P-values <.05 were con-
sidered statistically significant.

Verification of the Expression Patterns, the 
Prognostic Values and Protein Expression of 
Prognosis-Related Genes
To support the reliability of the prognosis-related genes that 
were identified, mRNA expression of the prognosis-related 
genes in tumors and normal tissues was compared in the 
TCGA dataset. Next, box plots were generated to compare 
prognosis-related gene expression levels between tumor and 
nontumor tissues. Based on the data from the TCGA database, 
Kaplan–Meyer analysis and the log–rank test, the optimal cut-
off of SPINK5 was performed to explore the relationship 
between OS and prognosis-related genes in patients. LSCC 
belongs to HNSCC, therefore, the immunohistochemical 
(IHC) of HNSCC in the Human Protein Atlas database 
(HPA, https://www.proteinatlas.org/) was used to detect the 
protein expression of survival-related genes between LSCC 
and normal tissues. The HPA database provides researchers 
with a large amount of transcriptome and proteomics data on 
specific human tissues and cells.26 In addition, IHC-based pro-
tein expression profiles are the most commonly used immu-
nostaining method for detecting the relative position and 
abundance of proteins.27

GSEA Identifies Signaling Pathways of Prognosis-
Related Genes in LSCC
To explore the cancer-related pathways associated with the 
prognosis-related gene expression levels in LSCC, 111 patients 
with LSCC, whose data were downloaded from TCGA, were 
divided into high and low prognosis-related gene expression 
groups according to the median expression value of the prog-
nosis-related genes. GSEA was used to examine the highest-
ranked gene-enrichment pathways in both groups.28 For each 
analysis, the number of permutations in the gene collection was 
set to 1000. Nominal (NOM) P-values, false discovery rate 
(FDR), and normalized enrichment score (NES) were used to 
identify enrichment pathways in each phenotype.

Results
Characteristics of the study population

The TCGA database contained a total of 123 laryngeal sam-
ples, including 12 noncancerous samples and 111 LSCC 
samples with clinical and gene expression data. The clinical 
characteristics of 111 LSCC patients, including patients’ age, 
gender, and race as well as histological type, histologic grade, 
clinical stage, TNM classification, therapy were shown in 
Table 1.

https://www.proteinatlas.org/
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Table 1. The clinical characteristics of 111 LSCC patients from the 
TCGA database.

CHARACTERiSTiCS TOTAL (n = 111)

n %

Age

 <60 38 34.23

 ⩾60 73 65.77

Gender

 Male 91 81.98

 Female 20 18.02

Race

 White 86 77.48

 Black 19 17.12

 Other 2 1.80

 Unknown 4 3.60

Grade

 G1 6 5.41

 G2 68 61.26

 G3 32 28.83

 G4 1 0.90

 Gx 4 3.60

Clinical stage

 i 3 2.70

 ii 11 9.91

 iii 26 23.42

 iVA+iVB+iVC 67 60.36

 Unknown 4 3.61

T stage

 T1+T2 20 18.02

 T3+ T4 87 78.38

 Tx 3 2.70

 Unknown 1 0.90

n stage

 n0 55 36.04

 n1-3 50 46.85

 nx 5 15.31

 Unknown 1 1.80

CHARACTERiSTiCS TOTAL (n = 111)

n %

M stage

 M0 104 93.70

 M1 2 1.80

 Mx 3 2.70

 Unknown 2 1.80

Treatment type

 Pharmaceutical therapy 58 52.25

 Radiation therapy 53 47.75

Abbreviations: LSCC, laryngeal squamous cell carcinoma; Other, American 
indian or Alaska native/Asian.

(continued)

Table 1. (Continued)

Construction of weighted gene co-expression 
network modules

In this study, 16 modules were identified by the TCGA-
LSCC (Figure 2A) consensus, and 21 modules were identi-
fied by the GSE59102 (Figure 3A) consensus using the 
WGCNA package, each color represents a module. Next, 
module-trait relationship heat maps were drawn to assess the 
association between each module and 2 clinical features 
(cancer and normal). The results of the module-trait rela-
tionships are shown in Figures 2B and 3B, demonstrating 
that the blue module in TCGA-LSCC and the red module 
in GSE59102 had the highest association with normal tis-
sues (blue module: r = .8, P = 4e−29; red module: r = .6, 
P = 3e−05), while the cyan module in TCGA-LSCC and the 
blue module in GSE59102 had the highest association with 
tumor tissues (cyan module: r = .39, P = 1e−05; blue module: 
r = .88, P = 2e−14).

Identif ication of genes in the DEG lists and co-
expression modules

Based on the cut-off criteria of |logFC| ⩾1.0 and adj. 
P < .05, there were 2774 DEGs in the TCGA dataset (Figure 
4A) and 2759 DEGs in the GSE59102 dataset (Figure 4B) 
that were abnormally regulated according to limma encapsu-
lation in tumor tissues. As shown in Figure 4C, 3910 and 
666 negatively correlated co-expression genes were observed 
in the blue module of TCGA dataset and the red module of 
GSE59102, and 73 overlapping genes were extracted to ver-
ify the genes of the negatively correlated co-expression mod-
ules (Figure 4C). As shown in Figure 4D, 258 and 4536 
positively correlated co-expression genes were identified in 
the cyan module of TCGA data set and the blue module of 
GSE59102, respectively. Eight overlapping genes were 
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Figure 2. Co-expression analysis for the clinical information in the TCGA-LSCC database: (A) differentially expressed genes were clustered into different 

colors modules and (B) correlation between modules and clinical trait according to Pearson correlation.



6 Evolutionary Bioinformatics 

Figure 3. Co-expression analysis for the clinical information in the GSE59102 dataset: (A) differentially expressed genes were clustered into different 

colors modules and (B) correlation between modules and clinical trait according to Pearson correlation.
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extracted to verify the genes of positively correlated co-
expression modules (Figure 4D). A total of 81 genes were 
extracted to verify genes of the co-expression module.

Functional annotation and enrichment analysis for 
the 81 genes

To better understand the potential function of 81 genes that 
overlap with the DEG list and these co-expression modules, 
gene ontology (GO) enrichment analysis was performed using 
the software package ClusterProfiler. After GO enrichment 
analysis and screening, the enriched gene sets are indicated in 
Figure 5. The biological processes (BPs) of 81 genes were pri-
marily enriched during epidermal development and eicosane 
metabolism. The results of cell component (CC) studies 
showed that these genes were primarily involved in extracellu-
lar components, focal adhesion, and cell-substrate junctions. In 
addition, molecular function (MF) analysis showed that these 
81 genes were related to peptidase regulatory activity and phos-
phatidylserine binding.

PPI network construction and identif ication of hub 
genes

The STRING database was used to establish the PPI 
network among overlapping genes, with a total of 74 
nodes and 157 edges (Figure 6A). The hub genes in the 
PPI network chosen based on the MCC algorithm using 
the cytoHubba app are shown in Figure 6B. According 
to the MCC sores, the top 10 highest-scoring genes, 
including Keratin 78 (KRT78), Sciellin (SCEL), 
Cornulin (CRNN), Serine peptidase inhibitor Kazal 
type 5 (SPINK5), Periplakin (PPL), Serpin family B 
member 13 (SERPINB13), Alpha-2-macroglobulin like 
1 (A2ML1), Protein tyrosine kinase 7 (PTK7), Agrin 
(AGRN), and Allograft inflammatory factor 1 like 
(AIF1L), were selected as hub genes.

Survival analysis

Findings for univariate and multivariate Cox regression analy-
sis of pivotal genes for the OS in LSCC patients in the TCGA 

Figure 4. identification of DEGs among the TCGA and GSE59102 database of LSCC: (A) the volcano plot of DEGs in the TCGA database, (B) the 

volcano plot of DEGs in the GSE59102 dataset, (C) the Venn diagram of genes among DEGs lists and the negatively correlated co-expression module. in 

total, 73 overlapping genes in the intersection of DEGs lists and negatively correlated co-expression modules. (D) The Venn diagram of genes among 

DEGs lists and the positively correlated co-expression module. in total, 8 overlapping genes in the intersection of DEGs lists and positively correlated 

co-expression modules.
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cohort are presented in Table 2. We found that SPINK5 was 
significantly correlated with survival time in LSCC patients 
(P < .05). Among these 10 genes, SPINK5 with HR < 1 was 
identified as a protective prognostic gene, so SPINK5 may rep-
resent a prognostic biomarker in LSCC.

Verification of the expression patterns, the 
prognostic values and protein expression of 
prognosis-related genes
We assessed the expression levels of prognosis-related 
genes based on the TCGA database and found that the 

Figure 5. Functional Annotation and Enrichment analysis for the 81 Genes. The color represents the adjusted P-values (BH), and the size of the spots 

represents the gene number.

Figure 6. Protein-protein interaction (PPi) network and the candidate hub genes: (A) PPi network of the relevant genes and (B) identification of the hub 

genes from the PPi network.
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SPINK5 gene was significantly downregulated in LSCC 
compared to normal tissues, as shown in Figure 7A and B. 
In addition, Kaplan–Meyer analysis and the log–rank test, 
the optimal cut-off of SPINK5 showed the lower expres-
sion level of SPINK5 was significantly associated with 
worse OS of the LSCC patients (P < .05), as shown in 
Figure 7C. Taking a further step, protein expression of the 
SPINK5 gene between HNSCC and normal tissues was 

determined to indirectly verify the protein expression 
between LSCC and normal tissues. According to the HPA 
database, the protein levels of the SPINK5 gene were sig-
nificantly lower in tumor tissues than in normal tissues, as 
shown in Figure 8A and B. The above observations all con-
firmed that downregulation of SPINK5 expression is asso-
ciated with poor prognosis and reduced OS in LSCC 
patients.

Table 2. Prognostic value of the 10 genes in the LSCC patients of the TCGA cohort.

GEnE SyMBOL UniVARiATE AnALySiS MULTiVARiATE AnALySiS

HAZARD RATE  
(95% COnFiDEnCE inTERVAL)

P VALUE HAZARD RATE  
(95% COnFiDEnCE inTERVAL)

P VALUE

KRT78 0.984 (0.851-1.134) .827 1.00 (0.994-1.008) .810

SCEL 1.046 (0.881-1.243) .606 1.00 (0.997-1.012) .243

CRnn 1.013 (0.903-1.138) .822 1.00 (0.997-1.005) .570

SPinK5 0.868 (0.765-0.985) .028 0.995 (0.991-1.000) .030

PPL 1.028 (0.865-1.222) .751 1.00 (1.000-1.003) .044

SERPinB13 1.084 (0.924-1.272) .324 1.00 (0.997-1.009) .311

A2ML1 0.900 (0.796-1.017) .092 0.997 (0.994-0.999) .013

PTK7 0.998 (0.775-1.285) .986 1.00 (0.997-1.008) .353

AGRn 1.042 (0.854-1.270) .686 1.00 (0.999-1.001) .825

AiF1L 0.995 (0.801-1.236) .963 0.978 (0.948-1.009 .158

Figure 7. The expression level of SPinK5 is downregulated in Laryngeal squamous cell carcinoma (LSCC): (A) SPinK5 mRnA levels in LSCC tissues 

and normal larynx tissues in TCGA, (B) SPinK5 mRnA levels in LSCC tissues and matched normal tissues in the TCGA, and (C) Kaplan-Meier curves for 

LSCC according to the optimal cut-off of SPinK5 (P < .05).
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GSEA identif ies signaling pathways of prognosis-
related genes in LSCC

To explore the potential molecular function of SPINK5 in 
laryngeal squamous cell carcinoma, we conducted GSEA 
between samples with low and high SPINK5 expression to 
predict SPINK5-related signaling pathways. A total of 108 
out of 178 signaling pathways were upregulated, and 4 sign-
aling pathways were significantly enriched at NOM P < .05 
and FDR < 0.1 (Table 3). The significantly upregulated 
term enriched in the low SPINK5 group involved in tumo-
rigenesis was “BASAL CELL CARCINOMA,” whereas 
the associated terms involved in DNA damage and repair 
included “DNA replication,” “mismatch repair,” and “homol-
ogous recombination.” A summary of the enrichment results 
is shown in Figure 9.

Discussion
In the past 20 years, with the emergence of individualized pre-
cision therapy, including radical resection, radiotherapy and 
chemotherapy, alone or in combination, the prognosis of LSCC 
patients has improved; however, LSCC has not shown an 
increase in the overall or long-term survival rates and is among 
the most frequent malignant tumors in the world.29,30 Effective 
diagnostic and prognostic biomarkers for identifying early-
stage LSCC patients are urgently needed to develop valid 
treatments and improve the poor prognosis.

In this study, GSE59102 was selected from the GEO data-
base, and the gene expression profile of LSCC was downloaded 
from TCGA. By integrating bioinformatics analysis, we identi-
fied 81 significant genes with the same expression trend in 
both TCGA and GSE59102 databases. We also analyzed GO 
functions using the software package ClusterProfiler, and these 
genes were primarily concentrated in epidermal development 
and eicosane metabolism. Furthermore, we screened the top 10 

LSCC-related genes according to MCC scores from the 
CytoHubba plugin in Cytoscape. They are keratin 78 (KRT78), 
sciellin (SCEL), cornulin (CRNN), serine peptidase inhibitor 
Kazal type 5 (SPINK5), periplakin (PPL), serpin family B 
member 13 (SERPINB13), alpha-2-macroglobulin like 1 
(A2ML1), protein tyrosine kinase 7 (PTK7), agrin (AGRN), 
and allograft inflammatory factor 1 like (AIF1L). Next, the 
survival analysis based on TCGA databases revealed that 
SPINK5 was significantly correlated with survival time in 
LSCC patients, lower SPINK5 expression is associated with 
poor prognosis. and they acted as protective prognostic genes. 
Finally, the expression patterns and immunohistochemical 
analysis of SPINK5 were examined. These results suggest that 
SPINK5 may serve as a protective factor or tumor suppressor 
and inhibit LSCC carcinogenesis.

The serine protease inhibitor Kazal type (SPINK) family 
is a branch of the serine protease inhibitor family.31 SPINK5, 
serine peptidase inhibitor Kazal type 5, also known as lym-
pho-epithelial Kazal-type-related inhibitor, is a member of 
the serine protease inhibitor Kazal type family, is located in 
the 5q32 region of the chromosome and contains 15 poten-
tial inhibitory domains.32 Previous research has shown that 
SPINK5 is related to Netherton syndrome (NS) and may 
have an active biological role in blood coagulation.33,34 Later 
research began to focus on the relationship between SPINK5 
and the biological behavior of tumors. It was reported earlier 
that, SPINK5 was downregulated by 9.7-fold in 22 head and 
neck squamous cell carcinoma tissues compared to the paired 
adjacent normal tissues,35 Subsequent study by the same 
team demonstrated the downregulated SPINK5 promoted 
HNSCC cells proliferation, colony formation and invasion.36 
In addition, LEKTI, a large protein encoded by SPINK5 
gene, was revealed to be reduced in oral squamous cell carci-
noma, with increased KLK5/SPINK5 mRNA ratio being 
related to a shorter OS.37 Subsequently, several lines of 

Figure 8. immunohistochemistry of the SPinK5 gene in HnSCC and normal tissues from the human protein atlas (HPA) database: (A) protein levels of 

SPinK5 in HnSCC tissues and (B) protein levels of SPinK5 in normal oral mucosa tissues.
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reports focused on its relationship with other types of tumors 
derived from other anatomical sites. Wang et  al,38 revealed 
that SPINK5 was downregulated in esophageal cancer com-
pared to adjacent control tissues, and SPINK5 may be 
involved in the development of esophageal cancer as a tumor 

suppressor gene. However, there are no relevant reports about 
the relationship between SPINK5 and LSCC, the potential 
role of SPINK5 in LSCC. In our research, we found that 
SPINK5 was downregulated in tumor tissues compared to 
normal tissues, showing a significant correlation with LSCC, 

Table 3. GSEA pathways upregulated due to low expression of SPinK5.

GS<BR> FOLLOW LinK TO MSiGDB SiZE nES nOM P-VAL FDR q-VAL

KEGG_HOMOLOGOUS_RECOMBinATiOn 28 −2.21 .000 .002

KEGG_DnA_REPLiCATiOn 36 −2.01 .000 .020

KEGG_MiSMATCH_REPAiR 23 −1.97 .000 .023

KEGG_BASAL_CELL_CARCinOMA 55 −1.85 .000 .082

Abbreviations: FDR, false discovery rate; nES, normalized enrichment score; nOM, nominal.
Gene sets with nOM P-value <.05 and FDR q-value <.1 are considered as significant.

Figure 9. GSEA pathways enriched in samples with low SPinK5 expression: (A) homologous recombination, (B) DnA replication, (C) mismatch repair, 

and (D) BASAL CELL CARCinOMA.
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and these findings should be investigated in-depth in LSCC 
in the future.

The occurrence and development of malignant tumors is 
strongly associated with activation of tumor suppressor path-
ways and/or suppression of oncogenic pathways.39 During the 
process of tumor development, activation of the Wnt/β-catenin 
signaling pathway involves the degradation of β-catenin and 
the transcription of target genes, such as c-myc and cyclin D1, 
which regulate cell proliferation, survival, and cell migration.40 
There is experimental evidence that SPINK5 inhibits the 
Wnt/β-catenin signaling pathway to inhibit the proliferation, 
migration, invasion and metastasis of esophageal cancer cells in 
cell cultures as well as in laboratory animals.38 According to the 
experimental results of Wang et  al, it was found that higher 
SPINK5 expression could repress EMT and cisplatin resist-
ance in nasopharyngeal carcinoma cells.41 However, only 
SPINK5 has been assessed thus far, and little is known about 
which pathways primarily control tumor cell invasion in LSCC. 
To explore the underlying molecular functions and mecha-
nisms of SPINK5 in laryngeal squamous cell carcinoma, we 
performed GSEA in LSCC for SPINK5. The results showed 
that SPINK5 is correlated with the tumorigenesis pathways 
“BASAL CELL CARCINOMA” and the DNA damage and 
repair pathways. In our study, low expression of SPINK5 pre-
dicted worse outcomes and poor survival in LSCC patients. It 
is possible that SPINK5 plays a role in LSCC by affecting 
these signaling pathways, contributing to a poor prognosis in 
LSCC patients. Although there were notable discoveries in 
this study, we recognize that our work also has several limita-
tions. First, although we found that protein expression of the 
SPINK5 gene was lowly expressed in in tumor tissue in the 
HPA database in which most patients in the United States 
were White, Hispanic or Black, we did not include Asian in 
our analysis, so the expression of the SPINK5 gene between 
LSCC and normal tissues in Asian populations could be a 
future direction for a subsequent study. Second, although we 
found a candidate gene, SPINK5 using bioinformatics analy-
ses, the knockdown or overexpression system to model the 
functional impact of SPINK5 in cell and animal experiments 
have not yet been implemented. Thus, the base-added experi-
ment to elucidate the biological functions and pathological 
importance of SPINK5 in LSCC is the main focuses of our 
future work.

Conclusion
In summary, based on the results of a series of bioinformatics 
analyses, our study demonstrated that SPINK5 may represent 
a very useful biomarker that has potential for prognosis predic-
tion in LSCC. Patients with downregulated SPINK5 expres-
sion levels had a poor prognosis with respect to OS. The 
underlying molecular mechanisms may affect malignant trans-
formation and tumorigenesis. Our study provides a valuable 
basis for future detection of the role of SPINK5 in LSCC.
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