Liu et al. BMC Bioinformatics (2017) 18:241
DOI 10.1186/5s12859-017-1657-1

A time series driven decomposed

BMC Bioinformatics

@ CrossMark

evolutionary optimization approach for
reconstructing large-scale gene requlatory
networks based on fuzzy cognitive maps

Jing Liu", Yaxiong Chi', Chen Zhu' and Yaochu Jin?

Abstract

Background: Reconstructing gene regulatory networks (GRNs) from expression data plays an important role in
understanding the fundamental cellular processes and revealing the underlying relations among genes. Although
many algorithms have been proposed to reconstruct GRNs, more rapid and efficient methods which can handle
large-scale problems still need to be developed. The process of reconstructing GRNs can be formulated as an
optimization problem, which is actually reconstructing GRNs from time series data, and the reconstructed GRNs
have good ability to simulate the observed time series. This is a typical big optimization problem, since the number
of variables needs to be optimized increases quadratically with the scale of GRNS, resulting an exponential increase
in the number of candidate solutions. Thus, there is a legitimate need to devise methods capable of automatically

reconstructing large-scale GRNs.

Results: In this paper, we use fuzzy cognitive maps (FCMs) to model GRNs, in which each node of FCMs represent
a single gene. However, most of the current training algorithms for FCMs are only able to train FCMs with dozens
of nodes. Here, a new evolutionary algorithm is proposed to train FCMs, which combines a dynamical multi-agent
genetic algorithm (dMAGA) with the decomposition-based model, and termed as dMAGA-FCMp, which is able to

deal with large-scale FCMs with up to 500 nodes. Both large-scale synthetic FCMs and the benchmark DREAM4 for
reconstructing biological GRNs are used in the experiments to validate the performance of dMAGA-FCMp.

Conclusions: The dMAGA-FCMp, is compared with the other four algorithms which are all state-of-the-art FCM
training algorithms, and the results show that the dMAGA-FCMp, performs the best. In addition, the experimental
results on FCMs with 500 nodes and DREAM4 project demonstrate that dMAGA-FCMp, is capable of effectively and
computationally efficiently training large-scale FCMs and GRNs.

Keywords: Gene regulatory networks, Fuzzy cognitive maps, Big data, Big optimization, Multi-agent genetic

algorithm, Decomposition

Background

In the age of big data, there is an urgent need to develop
effective and computationally efficient methods to convert
data into knowledge. When we extract knowledge from
big data, we often need to solve big optimization prob-
lems, which may involve thousands of, even millions of,

* Correspondence: neouma@mail.xidian.edu.cn

'Key Laboratory of Intelligent Perception and Image Understanding of
Ministry of Education, Xidian University, Xi'an 710071, China

Full list of author information is available at the end of the article

(BioMed Central

decision variables. For example, in the “Optimization
of Big Data Competition” organized at the IEEE 2015
Congress on Evolutionary Computation, a set of big
optimization benchmark problems were formulated,
which have up to 4864 decision variables extracted
from EEG data analyses [1, 2].

In biology, techniques of high-throughput experiment
such as DNA microarrays bring the “big data” in molecu-
lar biology and system biology, which is made up with a
large number of molecular entities and their products.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1657-1&domain=pdf
mailto:neouma@mail.xidian.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Liu et al. BMC Bioinformatics (2017) 18:241

Finding the interactions between these entities is a key
step to understand the governing mechanism of biological
systems. The so-called gene regulatory networks, or GRNs
in short, has been proved to be the most widely used
model to analyze the dynamic behavior of biological sys-
tems. GRNs model the molecular entities as networks
which consist of a group of nodes (representing genes,
proteins and small molecules) which influence each other.
And the objective of GRNSs is to capture the interconnec-
tions among these genes. By reconstructing the complex
interconnections within these GRNs, we can highlight
inhibitory or excitatory interactions, as well as how
intracellular or extracellular factors (environmental and
drug-induced effects) affect gene products or deregulate
cellular process. The reconstruction of a GRN based on
expression data is also called reverse engineering or net-
work inference.

In recent years, various algorithms, especially evolution-
ary algorithms (EAs) have been proposed to infer GRNs
by analyzing of gene expression data, such as genetic algo-
rithm (GA) [3], genetic programming (GP) [4], evolution
strategy (ES) [5], and ant colony optimization (ACO) [6].
However, the GRNs modeled by the above algorithms only
consist of a limited number of genes. How to reconstruct
the large scale GRNs is still an underdetermined problem
in biology.

Various models have been used to model GRNs. The
simplest models are based on Boolean networks. In the
reverse engineering, Boolean networks are used to infer
both the underlying topology and the Boolean functions
at the nodes from observed gene expression data [7].

In addition, continuous networks, an extension of the
Boolean networks, are also widely used to model GRNs.
Each gene is considered to be a node in the network,
while the edge represents the relationship between
genes. In biological systems, the activity level of genes is
considered in a continuous range, continuous represen-
tation captures this feature, while the Boolean model is
not work. Many methods based on continuous networks
have been proposed to the inference of GRNs. Such as
linear regression based, and the mutual information
(MI) based methods. ARACNE algorithm [8], the clas-
sical MI based method, calculate the value of MIs of all
gene pairs. If the calculated value exceeds the given
threshold, then one regulatory interaction is inferred [9].

Many probabilistic graphical models have been proposed
by researchers to measure the high-order dependency
among distinct gene expression patterns. The Bayesian net-
work is one of the most popular methods used in the infer-
ence of GRNs. In the Bayesian network, directed acyclic
graphs are used to indicate the conditional dependency
among random variables [10].

Despite that plenty of proposed models using gene
expression data to infer GRNs [11], these models only

Page 2 of 14

adopt scaled real values or Boolean values to indicate
the levels of gene expression [12]. FCMs use fuzzy
values, which integrate the benefits of both real values
and Boolean values, to figure out the real relationships
in GRNs [12]. Many researches [13] have validated that
FCMs are efficient and powerful tool when it comes to
modeling complex regulatory network systems.

Thus, within this context, we focus on developing a
new evolutionary approach framework to train GRNS,
which is based on fuzzy cognitive maps, or FCMs in
short. As a type of effective computation tool, fuzzy cog-
nitive maps (FCMs) were proposed by Kosko in [14] for
the first time. Many work have been demonstrated the
effective ability of FCMs in modeling complex systems.
An FCM is a network model to describe the relationship
between different concepts in the real world. Nodes in
the network stand for the concepts and weighted edges
are used to quantify the relationship between concepts.
Compared to traditional modeling techniques, FCMs are
more reasonable and intuitive description of human rea-
soning and have been successfully used in numerous
practical application areas, such as medical diagnosis
[15], metabolism network modeling [16], process control
[17], military science [18], and modeling of software de-
velopment [19, 20].

In recent years, lots of work has been carried out in
the research of train FCMs from data. In fact, given an
initial state of an FCM, which is represented by a set of
state values of constituent nodes, a trained FCM can
simulate the evolution of state values over time to pre-
dict the future state values. Thus, the objective of these
learning algorithms is to determine weights in FCMs so
that the response time sequences of each node in the
trained FCMs can fit the observed time sequences as far
as possible.

Therefore, viewed from methodology, the learning ob-
jective of reconstructing FCM models from time series
data can be described as an optimum formula. And the
learning algorithm is to minimize the optimum formula
as far as possible, which is simulating the observed time
sequence. This will become a typical big optimization
problem when the scale of FCM expands to a high level,
since the number of decision variables, namely, the
number of weights needs to be determined, increases
quadratically with the number of nodes in FCMs. For
example, if we need to train an FCM with 500 nodes,
250 000 decision variables need to be optimized is a typ-
ical large-scale optimization problem.

Evolutionary algorithms (EAs) are a subset of generic
population-based optimization algorithms inspired by
the biological evolution. In real applications, EAs often
performs well to a wide range of problems. EAs and
other population based metaheuristics have been shown
to be powerful in training FCMs, including genetic

Liu et al. BMC Bioinformatics (2017) 18:241

algorithms (GAs) [21, 22], particle swarm optimizations
(PSOs) [23], simulated annealing (SA) [24], ant colony
optimization (ACO) algorithms [6, 25], and memetic al-
gorithms [26].

Stach et al. [21] proposed a method to optimize FCMs
using real-coded genetic algorithm (RCGA). The aim of
RCGA is to model the system structure from the time
sequence which was observed from the complex system.
Since time series data only at two adjacent time point
can be used as a training sample, the whole time se-
quence can be broken down into several pairs according
to time point ¢ and ¢+ 1. The estimated values of time
point £+ 1 can be calculated by the values of time point
t in each pair. The objective of learning algorithm is to
find a FCM that can reproduce the time sequence which
is the same as the observed time sequence. The RCGA
first established the error between the output data of es-
timated FCM and the observed time sequence as an
optimum formula, then, the operators of RCGA were
used to solve the optimum formula which is actually
minimize the error. The experiments results in [21]
show that RCGA have a big advantage over ES.

Subsequently, in order to train large scale FCMs, Stach
et al. in [22] applied a scalable divide and conquer strat-
egy to speed up RCGA. In divide and conquer RCGA,
the whole training data are divided into several subsets.
Then, a FCM model can be learned from each subset by
RCGA. And these learned FCM models are averaged as
the final solution.

Particle swarm optimization (PSO) was also extended
to solve the optimization problem of training FCM by
Parsopoulos et al. in [23]. The learning algorithm aims
to reduce the searching space continually and find a
small region of candidate FCM models which is close to
the real FCM model.

In addition of the above learning algorithms, other
population-based algorithms were also used to learning
FCMs. For example, a simulated annealing (SA) based
FCM learning algorithm was proposed by Alizadeh et al.
in [24]. In the learning algorithm, the optimal object is the
same as the one in [21], except that the optimization
algorithm is changed to SA. Chen et al. [25] proposed an
ant colony optimization (ACO) algorithm for training
FCMs with no more than 40 nodes, where the weights
were discretized. Additionally, FCMs were also applied to
solve many practical problems. In a recent work by Chen
et al., biological GRNs were modeled as FCMs, and the
author proposed a hybrid method which combines inher-
ently continuous ACO algorithm with a decomposition-
based optimization strategy to reconstruct biological
GRNs with 100 genes from gene expression data [6].

Acampora et al. [26] introduced a memetic algorithm
to generate FCM models from historical data without a
priori knowledge. Extensive comparative studies

Page 3 of 14

performed on both synthetic and real-world data verified
the competitive performance of the memetic algorithm.

However, FCMs learned by most existing algorithms
are always small-scale with dozens of nodes, and only
the ACOgp proposed in [6] used FCMs to reconstruct
gene regulatory networks (GRNs) with 100 nodes. Thus,
there is a demand to develop methods capable of training
large-scale FCMs based on time series data.

In our previous work, multi-agent systems and GAs are
combined to form a new algorithm named as a multi-agent
genetic algorithm (MAGA) for large-scale global numerical
optimization [27]. The results shown MAGA performed
well even for the optimization problems with 10 000
decision variables. In [28, 29], MAGA was also used as
the learning algorithm to solve constraint satisfaction
problems and combinatorial optimization problems, and
the experiment results show a good performance. MAGA
was extended to successfully solve the big optimization
problem extracted from EEG data analysis mentioned
above [30, 31]. Moreover, in [32], a new version of MAGA,
termed as dynamic MAGA (dMAGA), was proposed,
which can effectively train FCMs with 200 nodes (40 000
variables). However, AMAGA formulated the FCM train-
ing problem as one single optimization problem, where all
weights are determined simultaneously. Such formulation
prevents dMAGA from being able to efficiently handle
even larger FCMs, such as FCMs with 500 nodes.

In fact, to learn an FCM can be considered as to learn
how each node in the FCM is affected by other nodes.
Thus, in order to make a training algorithm for FCMs
scalable to a large number of nodes, we can decompose
an FCM learning problem into multiple optimization
problems, where each optimization problem corresponds
to the training of a single node. That is to say, for training
an FCM with N nodes, the original optimization problem
having N x N weights (decision variables), will be decom-
posed into N optimization problems with each having only
N decision variables. A similar idea has also been reported
in [6, 33] in reconstructing GRNs based on FCMs, which
successfully reduces the size of the optimization algorithm
and favors a distributed implementation. Nevertheless, ef-
ficiently solving N optimization problems with N decision
variables remains to be challenging, in particular when N
becomes large.

To take full advantages of both dAMAGA and the
above-mentioned decomposition-based optimization ap-
proach, this work proposes a new algorithm for training
larger FCMs by combining the decomposition based
approach with dAMAGA, which is termed as dMAGA-
FCMp. FCMs with various sizes are used to verify the
performance of the proposed dMAGA-FCMp. The re-
sults show that dAMAGA-FCMp, is able to effectively
train FCMs with 500 nodes and significantly enhance
the performance of the original AMAGA. Moreover,

Liu et al. BMC Bioinformatics (2017) 18:241

dMAGA-FCMjp, is employed to reconstruct a biological
GRN, which is a challenging real-world problem. The
proposed dMAGA-FCMp, is shown to outperform a
few state-of-the-art algorithms on the benchmark prob-
lem DREAM4 [34], which the Data Error is as low as
0.2, where the results of other algorithms are around
0.4. DREAM4 project is a GRNs inference challenge
which aims at reconstructing network structure from
simulated steady-state and time series data.

Methods

Decomposition-based FCM for GRNs reconstruction

The relations between different concepts in a complex
system can be described as a directed graph which con-
sists of nodes and weighted edges. To adequately de-
scribe the concepts, it is necessary to use real number to
quantity the expression level of each concept. For an
FCM consists of N concept nodes, the state values of
these nodes are described as a vector C:

,Cn] (1)

where, Ci€[0, 1], i=(1, 2, ..., N). Once the state value of
each node is described, we need to describe the relations
between nodes. Here, we use a an N x N weight matrix
w to define the relations, which is also the candidate so-
lution to the FCM learning problem,

C=[C1,Cs, ...

wi1 Wiz ...
Wo1 W2

WIN
. WoN
O (2)

WN1 WN2 ... WNN

w =

A weight is assigned to an edge connecting any two
nodes to quantify the strength and the type of the relations
between the two nodes. The absolute value of a weight
represents how strong the source node affects the target
nodes, while the positive or negative sign of weights de-
notes an excitatory or inhibitory relation [25]. In (2), all
weights w;; are in the range of [-1, 1], representing the
causal relations between nodes i and j, i, j=1, 2, ..., N.
Fig. 1a shows a simple FCM with 5 nodes and 7 edges,
and the corresponding weight matrix is presented in
Fig. 1b, where, e.g., wi, = +0.34 indicates that there is an
excitatory edge pointing from node 1 to node 2 with a
strength of 0.34. ws4 = 0 means there is no causal relation
between nodes 5 and 4. Similarly, wyy = -0.9 suggests that
node 4 has a negative effect of feedback regulatory on it-
self. The higher the absolute values of the weights is, the
stronger the relations.

In fact, an FCM with N nodes can be decomposed into
N single sub-maps in the following way. For simplicity,
we focus on the input information of each node. Each
node and its input nodes can be regarded as a sub-map.
Every single map corresponds to a column vector in the
weight matrix. In other words, the weight matrix in

Page 4 of 14

a
+1 +0.34
+0.11
3
b

0 034 0 0 0
0 011 O 0

-0.2 -0.62
-0.15 0 0 -09 0
1 0 0 0 0

Fig. 1 A simple example of FCMs (a) FCM structure, (b) the weight matrix

(2) can be represented as w=[wy, w,, ..., wy], where
w; = (Wi, Wiay ... Win), £=1, 2, ..., N. For example, the
FCM in Fig. 1 can be decomposed into 5 sub-maps
shown in Fig. 2a and b shows the corresponding
weight relations of each single sub-map.

When the activation degree of nodes are produced, we
use the following equation to predict the activation
degree Ci™* ! based on the known values C,

N
ci (Z W,,.Cj) vie{1, 2, ..., N}
j=1
(3)

where C! is the state value node i at the ¢-th iteration in
one response, and g(-) is a sigmoid activation function
that maps the activation level to the unit interval [0, 1],

_ 1
Clte

g(x) (4)
where parameter A decides the slop of the function, and
a small value lead to highly nonlinear model. Logistic
transformation function is the most commonly used func-
tion in FCMs and offers significantly greater advantages
than other functions [35, 36]. According to the recom-
mendation in [37], we set 5 as the value of A in this paper.

Liu et al. BMC Bioinformatics (2017) 18:241

a

+1

() i @

+0.34

@

-0.62

©

(0,0.11,0,0,0)

@*-0.26‘@
-0.9

(0,0,0,-0.15,1) (0.34,0,0,0,0)

(0,0,-0.2,-0.9,0) (0,0,-0.62,0,0)

Fig. 2 The five single sub-maps for the example FCM in Fig. 1 (@) 5

single sub-maps, (b) the corresponding weight relations
.

FCM learning algorithms aims to find the relations be-
tween different concepts from response sequences. In
computation terms, the objective is to learn the best inter-
connection matrix which performs the best on simulating
the response sequences. Specifically, the error between the
responses generated by candidate FCM and observed re-
sponse sequences are formulated as an optimization ex-
pression, and learning algorithms are used to minimize it.
And the error mentioned above is labeled as Data_Error,

1 N
NN (N1) 2

Data_Error(w) =

where Nj is the number of response sequences, N; is the
number of time instants in the response sequences, C.,(s)
is the ¢-th desired state value of node # in the s-th re-
sponse sequence, and C/(s) is the ¢-th state value of node
n in the s-th generated response sequence.

From the decomposition point of view, Data_Error in
(5) is actually averaged over the data error of each node
and can be re-formulated as

(s

n=1

Data_Error(w) i%:l< (s)- C S)))

s=1 t=1

1
= Z: Data_Error,(w,)

(6)

Thus, the data error of node i can be represented as
follows,

Page 5 of 14

1 N, Ni-1
Data_Error;(w;) = N,(Ni-1) 2
When we calculate Ci(s), the state values of input
nodes to node i in the desired response sequences are
used. In this way, the data error of each node can be cal-
culated independently. In the following text, Eq. (7) is
used as the objective function for optimizing the weights
of the i-th sub-map.

Decomposition-based dMAGA for training FCMs

Different from the dMAGA proposed in [32], which is
used to optimize the whole weight matrix simultaneously,
dMAGA-FCMp proposed in this paper optimizes the
column vectors of the weight matrix independently. In
the following, we first define the agents used in AMAGA,
and then introduce the genetic operators to be performed
on the agents. Finally, the detailed implementation of
dMAGA-FCMp, is provided.

Definition of the agents

In dAMAGA-FCMp, each candidate weight column vector
w; is regarded as an agent, where i means the i-th single
sub-map.

Definition 1

For a FCM with N nodes, each agent is represented as
an N-dimensional vector. Once the representation of
agent is determined, the most important thing is to de-
fine the expression of energy of each agent. In this work,
the energy is the negative value of Data_Error defined in
(7). The dIMAGA-FCMp aims to increase the energy of
each agent as much as possible in order to survive in the
environment, which is equivalent to decrease the
Data_Error. To realize the local perceptivity of the
agents, the environment is organized in a lattice-like
structure, in which each agent competes or cooperates
with their neighbors. An agent interacts with its neigh-
bors, exchanging information with each other, thereby
achieving global information share. The lattice in which
all agents live is defined as follows.

Definition 2

All agents live in a lattice-like environment, L, which is
called an agent lattice. The size of L is L, x Lg,., where
L, is an integer. Each agent is fixed on a lattice-point
and can only interact with its neighbors. The agent lo-
cated at (a, b) is represented as L, ;, a, b=1, 2, ..., Ly,
then the neighbors of L, ,, Neighbors,,,, are defined as
follows.

Neighbors, ,<{Ly p,Lap/,Lap, La s} (8)
where

Liu et al. BMC Bioinformatics (2017) 18:241

4= a-1, a=1 b — b-1, b=1
Lyize, a = 1’ Ly, b=1’

. a+1, azLg, " b+1, b#Lg,,
a’ = ’ s and b = ’ .
{ 1, a = Lsz’ze 1, b= Lsize

As shown in Fig. 3, there are four agents at most in
the neighborhood for each agent. In the standard
MAGA, each agent has to compete with the other four
agents around it, in other words, the four agents around
it are all its neighbors, so the agents with low energy are
eliminated early, which make MAGA lost the diversity
of the population under the huge selection pressure.
Thus, in dAMAGA-FCMp, in order to tune the selection
pressure, each agent can select its neighbors dynamically
according to the energy. Namely, there is no need to com-
pete with all the agents around it. Thus, Neighbors,, in is
a subset of (8).

To dynamically determine the neighbor of each
agent, at the beginning of each generation, all agents
will be sorted according to a decreasing order of their
energy and evenly divided into four levels. And the
agents in the first/second/third/fourth level can select
four/three/two/one neighbor(s) randomly from (8). In
this way, an agent with a lower level of energy will
have a smaller number of neighbors, thereby improv-
ing its chance to survive than those in MAGA.

Genetic operators for agents

Four genetic operators are used to guide the evolu-
tionary search, which are the neighborhood competi-
tion, the crossover, the mutation, and the self-learning
operator, of which the neighborhood competition and
crossover operators account for competition and

Fig. 3 The topology of the defined agent neighborhood

Page 6 of 14

cooperator among agents, while the mutation and
self-learning operators are dedicated to improving the
agents’ ability of local search and making use of
knowledge to survive. Suppose the four operators are
performed on agent L,,= ({1, L, ..., Iy), and Max,,
= (my, my, ..., my) is the agent with the maximum
energy in neighbors of L, .

Neighborhood competition operator

If L,, satisfies Energy(L,,) > Energy(Max,;), which
means L,, defeats all the neighbors and keep the
current solution in lattice; otherwise, L,, lost the
change to survive and have to be replaced by Max,,
which is the energy with maximum energy in the
neighborhood. There are also two strategies determine
how the agent L,;, would be replaced. That is, if U(0,
1) < P,, strategy 1 is adopted; otherwise, strategy 2 is
used. Here, P, is a predefined probability, and U(0, 1)
is a random number uniformly distributed in the
interval of [0, 1].

Strategy 1
A new agent New,;,=(e;, €5 ..., ey) is generated as
follows:
-1, w<-1
=<1 w>1 , where 9)

w, otherwise
w=m;+ U(—l, 1) X (Wli—li), i= 1, 2, ,N

Since there might be still some useful information in
L,, even if it is a loser, Strategy 1 uses both L,, and
Max, ;, to generate a new agent, which is used to replace
L,,.

Strategy 2
Randomly select two integers k and s satisfying 1 < k<s <N,
then a new agent is generated as follows to replace L,

Newa,b = (mhmZa ooy M1y Mgy W51y oeny Mgy 1, Mgy Mgy, ...7Wl1\1)

(10)

Crossover and mutation operators

The orthogonal crossover and Gaussian mutation opera-
tors are applied on L,;, and Max, ;. The reader are re-
ferred to [32] for the details of these operators.

Self-learning operator

In MAGA, a small scale MAGA is introduced as the
self-learning operator for agents to be able to use know-
ledge, which however, is still a sort of random-based
local search strategy. Therefore, to make use of the
properties of FCMs, in dMAGA, a one dimensional

Liu et al. BMC Bioinformatics (2017) 18:241

search strategy is adopted to implement the self-learning
operator. In this work, we also perform this self-learning
operator on L, ;, and more details can be found in [32].

Implementation of dMAGA-FCMp

dMAGA-FCMp optimizes each sub-map sequentially.
For each sub-map, the neighbors of each agent is first
determined, then each agent compete with its neighbors
according to their energy, and the agent with a higher
level of energy survives in the population. Once the
competition is performed, the crossover and mutation
operators are performed on each agent with a probability
P, and P, respectively. Then, the best agent in the
current generation improves its energy through self-
learning operator.

Algorithm 1 shows more details of dAMAGA-FCMp,
where L represents the agent lattice at the t-th gener-
ation for the i-th single sub-map, CBest: represents the
best agent in the z-th generation for the i-th single sub-
map, and Best; represents the best agent found for
the i-th single sub-map.

Results

Experiments on synthetic FCMs

In this section, the dAMAGA-FCMp, is tested on syn-
thetic FCMs. For fully test the performance of the
dMAGA-FCMp, the scale of FCMs is varying from 5
to 500 nodes. In order to show the improvement of
dMAGA-FCMp over dAMAGA, extensive comparisons
are made between these two algorithms. In addition,
dMAGA-FCMp is compared with three representa-
tive existing methods based on evolutionary algo-
rithms, namely, RCGA [21], ACOpp (an improved
variant of ACO) [6] and differential evolution (DE)
[38], where the results of RCGA and DE are taken
from the literature. ACOgrp and dMAGA are run
under the same experimental settings as those of
dMAGA-FCMp. All experiments on dMAGA-FCMp
are conducted for the same parameter settings, which
are given in [32].

Data_Error, which is presented in (5), is an important
measure to evaluate the performance of different learn-
ing algorithms. Unlike the Data_Error is used to evalu-
ate the fitting ability of time sequences, Model_Error is a
direct comparison between the weights of the learned
model and the target model,

1 XN
Model _Error = Nz |wij—y (11)
=1 j=1

J

where 1;; is the learned weight of between nodes i to j.
In order to evaluate the performance of the algorithms

under comparison in predicting the existence of edges, the

problem of training FCMs is extended and transformed

Page 7 of 14

into a binary classification problem. That is, the target
FCM model and the learned FCM model are transformed
into binary networks according to a predefined threshold.
The absolute weights that are larger than the threshold
are transformed to 1; otherwise 0. Once the transform-
ational rule is determined, we need to choose a value of
the predefined threshold. In this paper, we choose 0.05 as
the value of the threshold which is the same value used in
[37]. In FCMs, we usually think that the causal relation
with strength less than 0.05 usually has no significance in
practical problems.

The author of [37] also gives the definition of positive
and negative edges. According to the definition, the
edges with absolute weights larger than 0.05 are identi-
fied as negative edges; otherwise, they are identified as
positive edges. The SS mean is employed to evaluate the
performance,

2 x Sensitivity x Specificity

S§S = 12
mean Sensitivity + Specificity (12)
where
N
Sensitivity = ———— (13)
N7p+ Ny
s N7y
Specificity = ——— 14
pecificity Now t Non (14)

where TP, FN, TN, and FP are defined in Table 1. T
(true) means the correctly identified edges. F (false)
means the edge is identified as the opposite character. P
(positive) means positive edge and N (negative) means
negative edge which has defined above (12). For ex-
ample, Ngp is the number of false positive edges, which
means the number of negative edges that are incorrectly
identified as positive edges.

In this paper, the artificial response time sequences
used to train FCM models are generated by a two-
step method proposed in [25]. First, random real
numbers which should be within the interval [-1, 1]
are assigned to the weights of the interconnection
matrix, an additional file shows this in more detail
(see Additional file 1). However, according to the
viewpoint in [25], which is if the weight between two
nodes is smaller than 0.05, the relation between these
two nodes can be ignored in practical application, we
check each weight whether its absolute value is
smaller than 0.05. If so, the weight will be set to 0.

Table 1 Definition of TP, FN, TN, and FP

Target networks

0 1
Learned networks 0 TP FP
1 FN TN

Liu et al. BMC Bioinformatics (2017) 18:241

Page 8 of 14

—_— 20%
—_— 40%

Data_Error
e
o

I
S

0.2

0.0

—_— 20%
—_— 40%

0.8

e
)

Model_Error

e
S

0.2

0.0

0.0 0.2 04 0.6 0.8 L0

C

Lo

0.0 0.2 0.4 0.6 0.8 Lo
Threshold value

Threshold value
—_— 20%
—_— 40%

0.8

SS mean
e
>

e
IS

0.2

0.0

0.0 0.2

Threshold value

Fig. 4 Comparison in terms of (a) Data_Error, (b) Model_Error and (c) SS mean on FCMs (10 nodes) with various of threshold value which ranges
from 0 to 1. The red line and blue line show the comparison experiments for FCMs with 20% density and 40% density, respectively

0.6 0.8 1.0

Second, the state value of response time sequences at
the initial time point are assigned by random value
ranging from O to 1. Then, the subsequent time se-
quences can be generated according to (3) based on
the FCM model and initial state values.

Here, the threshold value (0.05) used in this work is al-
ways a default parameter in many work [6, 12, 25] about
FCMs. However, different threshold value will affect the
algorithm performance. In order to explore the impact
of the threshold value on algorithm performance, we

conduct the following experiment. When the network
(10 Node, 20% density and 40% density) was learned, we
set the value of threshold ranges from 0 to 1 in the step
of 0.05 and get a series of networks. Then we calculate
the Data_Error, Model_Error and SS mean for networks
with different threshold values. From Fig. 4, we can see
that the value of threshold affect the algorithm perform-
ance greatly, no matter what the density of the network,
the performance of the algorithm decreases with the in-
crease of threshold value. When the threshold value is

Fig. 5 a The original FCM with 10 nodes, b the learned FCM by dMAGA-FCMp

Liu et al. BMC Bioinformatics (2017) 18:241

Data_Error

Data_Error

002 l 0.02

» l
o oo oolle ool o osiell ool ool
120 54 40-10 120] 40-10
Response-Time Response-Time
oo (©)) o “)
[AGAFON, - ARV,
035 = anca 35 = ansca
? = rcor : = G
= Ao, == Ao,
030 = o 030 = o
L 025 L 025
& 5
= 0.20] = 0.20]
S o1s S os
010 010
005 005
000 3 o 3 000 3 o o
120) 40-10 120 54 20-10
Response-Time Response-Time

Data_Error
g8 B
«_Error
e o

EIE N
s s o
8 3 3

120 54 40-10 120 54 40-10
Response-Time Response-Time

) , ®

Data_Error

120 4 40-10 120 54 40-10
Response-Time Response-Time

® , 10

(- MAGAFCM,
= avaGA
== RCGA
= ACO,
DE

Data_Error

-4 E]
Response-Time Response-Time

(1) (12)

- MAGATCN,
= avaca
05 = reGA
== ACO,
DE

Data_Error
-

120 54 40-10
Response-Time

Fig. 6 Comparison in terms of Data_Error on FCMs with various number
of nodes. (1) 5 nodes, density = 20%. (2) 5 nodes, density = 40%. (3) 10
nodes, density = 20%. (4) 10 nodes, density = 40%. (5) 20 nodes, density =
20%. (6) 20 nodes, density = 40%. (7) 40 nodes, density = 20%. (8) 40 nodes,
density = 40%. (9) 100 nodes, density = 20%. (10) 100 nodes, density = 40%.
(11) 200 nodes, density = 20%. (12) 200 nodes, Density =40%

Page 9 of 14

bigger than 0.6, the value of SS mean is even 0 which
means there is no existence of edge in this network is pre-
dicted correctly. Thus, it is important to select an appro-
priate threshold for the performance of the algorithm.

In real-world, the network structures of FCMs are al-
ways sparse. There are only a fraction of links between
nodes in FCMs. For this reason, we need to control the
density of the random FCM model. When we generate
the FCM models by the method mentioned above, a large
part of weights are assigned to 0 and the others are set to
nonzero random real numbers. For example, if the edge
density of 20% is expected for an FCM with 10 nodes, 20
random edges (there are 10 x 10 = 100 edges with the full
connected graph, then 20% of 100 edges is 20) will be se-
lected and random values will be assigned to these edges.

The size of generated FCM varies from 5 to 500 (N =5,
10, 20, 40, 100, 200, 300, and 500), and for each size,
the edge density of 20% and 40% are used. In order to
compare with other algorithms, experiments on three
scenarios are conducted. The first scenario has one re-
sponse sequence with 20 time points each (N; = 1, N, = 20),
the second scenario has five response sequences with four
time points each (N =5, N;=4), and the third scenario has
40 response sequences with 10 time points each (N =40,
N, =10). Figure 5a shows an original FCM with 10 nodes
with 20% edge density and Fig. 5b shows the corresponding
FCM learned by dMAGA-FCMp,. By comparing the ori-
ginal and learned FCMs, we see that the network structure
is fully correctly learned and the errors between the original
and learned weights are smaller than 0.02. Comprehensive
comparative results in terms of Data_Error on FCMs with
5 ~ 200 nodes are presented in Fig. 6, and a detailed com-
parison of the FCMs with 300 and 500 nodes is reported in
Table 2. The comparison in terms of Model_Error is given
in Fig. 7 and Table 3. The results are averaged over 30

Table 2 Comparison in terms of Data Error on larger synthetic
FCMs (Average + Standard deviation)

#Nodes Edge density NN, dMAGA-FCMp dMAGA
300 20% 1-20 0.105+0.021 0297 +0.102
5-4 0.125£0.053 0.247 £ 0.031
40-10 0.118+0.037 0.336+0.025
40% 1-20 0.121 £ 0.082 0.214+0.112
5-4 0.063 £0.019 0351 +0.051
40-10 0.139+ 0070 0298 +0.042
500 20% 1-20 0.145£0.107 0368 +0.114
5-4 0.186 £ 0.034 0420+ 0.027
40-10 0.156 +0.072 0395 +0.064
40% 1-20 0.130£0.056 0348 £0.108
5-4 0.164 +£0.081 0416 +0.086
40-10 0.173+0.022 0.404 +0.053

Liu et al. BMC Bioinformatics (2017) 18:241

@ , @)

— VAGAFCN, — VAGATCN,
= auaca = auaca

== ReoA = reoa

08 g ACOL, 08 g ACO,,
= — o

Model_Error

Model_Error

C e C e

= o = auncr

= reor = reor

05| mm Aco,, 08l AcO,,
= — o

Model_Error
Model_Error

- OMAGATOM,
=3 MAGA
= RCGA

Model_Error

Model_Error

Model_Error

120 54 40-10
Response-Time

Fig. 7 Comparison in terms of Model_Error on FCMs with various
number of nodes. (1) 5 nodes, density = 20%. (2) 5 nodes, density =
40%. (3) 10 nodes, density = 20%. (4) 10 nodes, density = 40%. (5) 20
nodes, density = 20%. (6) 20 nodes, density = 40%. (/) 40 nodes,
density = 20%. (8) 40 nodes, density = 40%. (9) 100 nodes, density =
20%. (10) 100 nodes, density =40%. (17) 200 nodes, density = 20%.
(72) 200 nodes, density =40%

Page 10 of 14

Table 3 Comparison in terms of Model_Error on larger
synthetic FCMs (Average + Standard deviation)

#Nodes Edge density NN, dMAGA-FCMp dMAGA

300 20% 1-20 0.305+0.024 0.371£0.062
5-4 0.321+0.072 0.382+0.028

40-10 0.241£0.010 0.298 £0.091

40% 1-20 0.352+0016 0.386 +0.083

5-4 0.257 £0.051 0.296 + 0.024

40-10 0.310+0.027 0.390+0.109

500 20% 1-20 0.323+£0.032 0401 £0.102
5-4 03170017 0414 +0.023

40-10 0.321+£0.045 0.374+0.127

40% 1-20 0.285 +0.081 0.339+0.134

5-4 0.379+0.015 0430+ 0.085

40-10 0.392+0.029 0407 £0.141

independent runs for FCMs with 5 ~ 200 nodes and 10 in-
dependent runs for FCMs with 300 and 500 nodes.

As can be seen, in terms of Data_Error, AIMAGA-FCMp,
dMAGA and ACOgp all reach 0.000 for FCMs with 5
nodes, no matter whether the edge density is 20% or 40%.
For FCMs with 10 and 20 nodes, although Data_Error of
dMAGA-FCMp is larger than that of ACOgp, it is much
smaller than those of RCGA and DE. For FCMs with 40 ~
200 nodes, AMAGA-FCMp, outperforms ACOgp on 13 out
of 16 FCMs and outperforms all other methods with differ-
ent edge densities and N;-N, combinations. Moreover,
Table 2 shows that AMAGA-FCMp, clearly outperforms
dMAGA on FCMs with 300 and 500 nodes.

The comparison in terms of Model Error shows that
for FCMs with 5~200 nodes, dAMAGA-FCMp, always
outperforms dMAGA, RCGA, and DE. For FCMs with
10 nodes, ACOgp performs better than AMAGA-FCMp,
but for FCMs with 20 and 40 nodes, dMAGA-FCMp
outperforms ACOgp on 9 out of all the 12 cases regard-
less the edge density and N,-N; combination. Moreover,
all the averaged Model Error of dMAGA-FCMp for
FCMs with 300 and 500 nodes is smaller than 0.4,which
is consistently smaller than that of IMAGA.

In addition, the above results show that the performance
of AMAGA-FCMy, in terms of Data_Error and Model Er-
ror is not very sensitive to the number of nodes, the num-
ber of response sequences, and the number of time points
in a certain range, where at least four time-points are re-
quired and the number of nodes are limited less than 500.
It indicates that AMAGA-FCMyp, is robust and is scalable
to the size of FCMs to a certain extent.

Note also that, the experimental results of AMAGA-
FCMp are obtained with less than 1.5x10° fitness
function evaluations (see Fig. 8), whereas the results of
compared algorithms use 3 x 10° fitness function evalua-
tions, which are much larger than that of dMAGA-

Liu et al. BMC Bioinformatics (2017) 18:241

Page 11 of 14

30
— dMAGA-FCMj,

e o dMAGA

S

X

z

g2

E

s

315

=}

5

2

Z 10

o

o0

g

s

“

0 L
0 5 10 20 40 100 200 300 500 700
Network scale (Number of nodes)

Fig. 8 The number of fitness evaluations consumed by dMAGA-
FCMp and dMAGA, respectively

FCMp. As can be seen from Fig. 8, AIMAGA-FCMp, effi-
ciently reduces the computational cost compared with
dMAGA, especially for large-scale FCMs. Therefore,
dMAGA-FCMp has exhibited better performance with
lower computational cost compared to the state-of-the-
art, demonstrating that the algorithm is very competitive
for solving large-scale problems.

Figure 9 report the performance of AMAGA-FCMp, in
terms of SS Mean. As we can see, for FCMs with 5~ 20
nodes, AMAGA-FCMp, consistently outperforms dAMAGA,
RCGA and DE, and also outperforms ACOgp on 12 out of
all the 18 cases. For FCMs with 40 ~ 200 nodes, AMAGA-
FCMp performs better than all the other learning algo-
rithms on all cases. Table 4 shows the comparative results
in terms of SS mean of AMAGA-FCMp and dMAGA for
FCMs with 300 and 500 nodes. As can be seen, compared
with dAMAGA, dMAGA-FCMp, significantly enhances the
ability of AMAGA in training larger FCMs.

Experiments on DREAM4 in silico network challenge

Gene regulatory networks (GRNs) have been widely used
to model, analyze and predict the behavior of biological
organisms. A GRN aims to build the relationships be-
tween a set of molecular entities and is often modeled as
a network composed of nodes (representing genes, pro-
teins or metabolites) and edges (representing molecular
interactions such as protein-DNA and protein—protein
interactions or rather indirect relationships between
genes) [39]. In this section, we employ the proposed
dMAGA-FCMp, to reconstruct a biological GRN based
on gene expression time series data, known as DREAM4
[34], a widely used benchmark for evaluating reverse en-
gineering methods [40]. The gene expression time series
data were generated based on the network structures of
Escherichia coli and Saccha-romyces cerevisiae. Time
series database contains a variety of network sizes with

@ @

1o avarra, o [G,
= & = ano

= reor = rean

12l AcO,, 12 e AcOL,

DE DE

@

1.4|[mm aAGATCN, 14| [avAGATCM,

=3 oG = aiaGa
= RCGA = RCGA
121w ACO,, 12} ACOL,
DE =

04 04
02 02
00 00

120 54 40-10 120 54 4010
Response-Time Response-Time

Fig. 9 Comparison in terms of SS Mean on FCMs with various number of
nodes. (1) 5 nodes Density = 20%, (2) 5 nodes Density = 40%, (3) 10 nodes,
density = 20%, (4) 10 nodes, density = 40%, (5) 20 nodes, density = 20%,

(6) 20 nodes, density =40%, (7) 40 nodes, density = 20%, (8) 40 nodes,
density =40%, (9) 100 nodes, density = 20%, (10) 100 nodes, density =
40%, (17) 200 nodes, density = 20%, (12) 200 nodes, density = 40%

Liu et al. BMC Bioinformatics (2017) 18:241

Table 4 Comparison in terms of SS mean on larger synthetic

FCMs
#Nodes Edge density Ng-N; dMAGA-FCMp dMAGA
300 20% 1-20 0329 0309
5-4 0.303 0.215
40-10 0425 0302
40% 1-20 0.374 0.290
5-4 0.384 0.296
40-10 0455 0388
500 20% 1-20 0.237 0.163
5-4 0.243 0177
40-10 0341 0.139
40% 1-20 0.290 0.193
5-4 0.246 0.186
40-10 0.342 0.151

10 and 100 genes. Perturbation and noise on expression
profiles are generated by differential equations. There
are five separate networks for each type of networks.

In the DREAM4 data, under the perturbations of in-
ternal noise and measurement noise, there are five time
series for each gene. Each time series contains 21 time
points. The first 10 time points evaluate the response of
gene networks in the presence of perturbations. The per-
turbations are revoked at the 11-th time instant. So the
last 11 time points reflect the response of gene networks
after the wild type network is restored. In this experiment,
we use the last 11 time points and test the performance of
dMAGA-FCMp, in terms of Data_Error and SS mean.

In the experiments, we perform several efficient
evolutionary-based algorithms, dMAGA, RCGA, D&C
RCGA and DE, one DREAM data. We also perform
Lasso [41] for comparison. The experimental results are
shown in Fig. 10. As can be seen, Data_Error of
dMAGA-FCMp perform the best for GRNs with 10
genes except one case (Exp_3). For GRNs with 100
genes, Lasso is better than AMAGA-FCMp in terms of
Data_Error, and dAMAGA-FCMp performs better than
other evolutionary-based algorithms. We can also see
that the decomposition strategy is always useful, because
the IMAGA-FCMp, is always better than dAMAGA, D&C
RCGA, which is RCGA with decomposition strategy, is
always better than RCGA no matter the number of
genes is 10 or 100.

Discussion

The proposed algorithm dMAGA-FCMp, enhances pre-
diction, which is valuable for machine learning. As the
decomposition strategy, AIMAGA-FCMp, has reduced the
computational cost. Reconstructed FCMs can be mod-
eled as a big data optimization problem. Previous studies
indicate that the number of variables needs to be

Page 12 of 14

0.5 :
== Lasso
== dMAGA
04} dMAGA-FCMp
= ACORgp
—— RCGA
5 031 = D&C RCGA
=1
53}
=
<
Q02
0.1}
0.0
0
1.0 -
== Lasso
-=- dMAGA
0.8} dMAGA-FCMp
— ACOgDp
-~ RCGA
. 0.6} = D&C RCGA
o
S
a
oal .DM
0.’?
®-- .. g *--ua. - ---=" °
0.0
0 Exp 1 Exp 2 Exp 3 Exp 4 Exp 5
2
Fig. 10 Experimental results in terms of Data_Error for GRNs with (7)
10 genes and (2) 100 genes. (1) Five experiments for GRNs with 10
genes. (2) Five experiments for GRNs with 100 genes

optimized increases quadratically with the scale of
FCMs, resulting an exponential increase in the number
of candidate solutions. Currently, most learning algo-
rithms can only handle small scale FCMs which number
of nodes is smaller than 100. In this work, we show that
the dAMAGA-FCMp can handle large FCMs with 300
and 500 nodes (see Table 2, 3 and 4). The experiment re-
sults also show that AMAGA-FCMp, efficiently reduces
the computational cost compared with our previous
work dMAGA, especially for large-scale FCMs, which
demonstrating that the algorithm is very competitive for
solving large-scale problems.

In the DREAM4 data, the dAMAGA-FCMp performs
better than the other evolutionary-based learning algo-
rithms. However, in the five experiments for GRNs with
100 genes, the Lasso is better than dAMAGA-FCMp_ The
performed Lasso takes into account the sparseness of
the network. Therefore, the properties of Lasso

Liu et al. BMC Bioinformatics (2017) 18:241

algorithm provide a good direction for us to improve the
dMAGA-FCMp.

Conclusions

In this paper, we propose a new algorithm, termed as
dMAGA-FCMp, to train large-scale GRNs based on FCMs
using time series data by introducing the decomposition
based optimization approach into the dynamical multi-
agent genetic algorithm. The dAMAGA-FCMp, has shown to
be well suited for learning causal relations of complex sys-
tems. Extensive experiments are conducted on both syn-
thetic FCMs and DREAM4, a challenge to reverse GRNs
from simulated time series data. Experimental results show
that IMAGA-FCMp is able to effectively train FCMs with
up to 500 nodes and improves ability of reconstructing
GRNs with high accuracy, outperforming the compared
state-of-the-art learning algorithms. Our results also indi-
cate that dAMAGA-FCMp, is promising for solving larger-
scale GRNs, which will be considered in our future work.

Additional file

Additional file 1: Synthetic FCMs. In this work, the scale of synthetic
FCMs is varying from 5 to 500 nodes, and the density is 20% and 40% for
each scale. The method used to generate FCMs is as the same as the
method proposed in Ref. [25], we also described the method in “Results”
section, page 14. (DOCX 33 kb)

Abbreviations

dMAGA-FCMp: Dynamical multi-agent genetic algorithm with the
decomposition-based model; FCM: Fuzzy cognitive maps; GRN: Gene
regulatory networks

Acknowledgements
Not applicable.

Funding

This work is partially supported by the Outstanding Young Scholar Program
of National Natural Science Foundation of China (NSFC) under Grant
61522311 and the Overseas, Hong Kong & Macao Scholars Collaborated
Research Program of NSFC under Grant 61528205.

Availability of data and materials
The DREAM4 data sets used in this article are available at http://
gnw.sourceforge.net/dreamchallenge.html#dream4challenge

Authors’ contributions

JL conceived the new algorithm. YC and CZ conducted all the experiments.
YJ advised on the design of experiments. All authors contributed to writing
the manuscript All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 13 of 14

Author details

'Key Laboratory of Intelligent Perception and Image Understanding of
Ministry of Education, Xidian University, Xian 710071, China. “Department of
Computer Science, University of Surrey, Guildford GU2 7XH, UK.

Received: 11 July 2016 Accepted: 26 April 2017
Published online: 08 May 2017

References

1. Abbass HA. Calibrating independent component analysis with Laplacian
reference for real-time EEG artifact removal. 21st International Conference
on Neural Information Processing. 2014. p. 68-75.

2. Goh SK, Abbass HA, Tan KC. Artifact removal from EEG using a multi-
objective independent component analysis model. 21st International
Conference on Neural Information Processing. 2014. p. 570-577.

3. Repsilber D, Lilienstrom H, Andersson SGE. Reverse engineering of
regulatory networks: simulation studies on a genetic algorithm approach for
ranking hypotheses. Biosystems. 2002,66(1):31-41.

4. Eriksson R, Olsson B. Adapting genetic regulatory models by genetic
programming. Biosystems. 2004;76(1):217-27.

5. Fomekong-Nanfack Y, Kaandorp JA, Blom J. Efficient parameter estimation
for spatio-temporal models of pattern formation: case study of Drosophila
melanogaster. Bioinformatics. 2007;23(24):3356-63.

6. Chen Y, Mazlack LJ, Lu LJ. Inferring fuzzy cognitive map models for gene
regulatory networks from gene expression data. IEEE International
Conference on Bioinformatics and Biomedicine. 2012. p. 589-601

7. Kauffman SA. The origins of order: self organization and selection in
evolution. J Evol Biol. 1992;13(1):133-44.

8. Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman |, Califano A. Reverse
engineering cellular networks. Nat Protoc. 2006;1(2):662-71.

9. Butte AJ, Kohane IS. Mutual information relevance networks: functional
genomic clustering using pairwise entropy measurements. In Pac Symp
Biocomput. 2000;5:418-29.

10. Friedman N, Linial M, Nachman |, Pe'er D. Using bayesian networks to
analyze expression data. J Comput Biol. 2000;7(3-4):601-20.

11. Marbach D, Costello JC, Kuffner R, Vega NM, Prill RJ, Camacho DM, et al. Wisdom
of crowds for robust gene network inference. Nat Methods. 2012,9(8):796-804.

12. Chen'Y, Mazlack LJ, Ali AM, Long LJ. Inferring causal networks using fuzzy
cognitive maps and evolutionary algorithms with application to gene
regulatory network reconstruction. Appl Soft Comput. 2015;37:667-79.

13. Papageorgiou El. Learning algorithms for fuzzy cognitive maps - a review
study. IEEE Trans Syst Man Cybern Part C. 2012;42(2):150-63.

14. Kosko B. Fuzzy cognitive maps. Int J Man Mach Stud. 1986;24:65-75.

15. Georgopoulos VC, Malandraki GA, Stylios CD. A fuzzy cognitive map
approach to differential diagnosis of specific language impairment. J Artif
Intel Med. 2003;29(3):261-78.

16. Dickerson JA, Cox Z, Wurtele ES, Fulmer AW. Creating metabolic and
regulatory network models using fuzzy cognitive maps. North Am Fuzzy
Inform Proc Conf (NAFIPS). 2001;4:2171-6.

17. Papageorgiou E, Groumpos P. A weight adaptation method for fuzzy
cognitive maps to a process control problem. Berlin: Lecture Notes in
Computer Science, Springer; 2004. p. 3037.

18. Bakken BT, Gilllam M. Training to improve decision-making-system dynamics
applied to higher level military operations. In: 20th International System
Dynamics Conference. Palermo; 2002.

19. Stach W, Kurgan L. Modeling software development project using fuzzy
cognitive maps. Proc. 4th ASERC Workshop on Quantitative and Soft
Software Engineering (QSSE'04). 2004. p. 55-60.

20. Stach W, Kurgan L, Pedrycz W, Reformat M. Parallel fuzzy cognitive maps as a
tool for modeling software development project. Proc. 2004 North American
Fuzzy Information Processing Society Conf. (NAFIPS'04), Banff; 2004. p. 28-33

21, Stac W, Kurgan L, Pedrycz W, Reformat M. Genetic learning of fuzzy
cognitive maps. Fuzzy Sets Syst. 2005;153:371-401.

22, Stach W, Kurgan L, Pedrycz W. A divide and conquer method for learning
large fuzzy cognitive maps. Fuzzy Sets Syst. 2010;161:2515-32.

23. Papageorgiou El, Parsopoulos KE, Stylios CS, Groumpos PP, Vrahatis MN.
Fuzzy cognitive maps learning using particle swarm optimization. J Intell Inf
Syst. 2005;25:95-121.

24. Ghazanfari M, Alizadeh S, Fathian M, Koulouriotis DE. Comparing simulated
annealing and genetic algorithm in learning FCM. Appl Math Comput. 2007;
192:56-68.

dx.doi.org/10.1186/s12859-017-1657-1
http://gnw.sourceforge.net/dreamchallenge.html#dream4challenge
http://gnw.sourceforge.net/dreamchallenge.html#dream4challenge

Liu et al. BMC Bioinformatics (2017) 18:241

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

Chen Y, Mazlack LJ, Lu LJ. Learning fuzzy cognitive maps from data by ant
colony optimization. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO). 2012. p. 9-16.

Acampora G, Pedrycz W, Vitiello A. A competent memetic algorithm for
learning fuzzy cognitive maps. IEEE Trans Fuzzy Systems. 2015;23(6):2397-411.
Zhong W, Liu J, Xue M, Jiao L. A multiagent genetic algorithm for global
numerical optimization. IEEE Trans Syst Man Cybern Part B. 2004;34(2):1128-41.
Liu J, Zhong W, Jiao L. A multiagent evolutionary algorithm for constraint
satisfaction problems. IEEE Trans Syst Man Cybern Part B. 2006;36(1):54-73.
Liu J, Zhong W, Jiao L. A multiagent evolutionary algorithm for
combinatorial optimization problems. IEEE Trans Syst Man Cybern Part B.
2010;40(1):229-40.

Zhang Y, Zhou M, Jiang Z, Liu J. A multi-agent genetic algorithm for big
optimization problems. IEEE Congr Evol Comput (CEC). 2015;703-7.

Zhang Y, Liu J, Zhou M, Jiang Z. A multi-objective memetic algorithm based on

decomposition for big optimization problems. Memetic Comput. 2016,8(1):45-61.

Liu J, Chi Y, Zhu C. A dynamic multi-agent genetic algorithm for gene
regulatory network reconstruction based on fuzzy cognitive maps. IEEE
Trans Fuzzy Systems. 2016; 24(2):419-31.

Chi'Y, Liu J. Reconstructing gene regulatory networks with a memetic-neural
hybrid based on fuzzy cognitive maps. Natural Computing. 2016. In press.
Greenfield A, Madar A, Ostrer H, Bonneau R. DREAM4: combining genetic
and dynamic information to identify biological networks and dynamical
models. PLoS One. 2010;5:213397.

Aguilar J. A survey about fuzzy cognitive maps papers. Int J Comput
Cognition. 2005;3(2):27-33.

Bueno S, Salmeron JL. Benchmarking main activation functions in fuzzy
cognitive maps. Expert Syst Appl. 2009;36(3):5221-9.

Stach W. Learning and aggregation of fuzzy cognitive maps - an
evolutionary approach. PhD Dissertation: University of Alberta; 2010.
Papageorgiou El, Groumpos PP. Optimization of fuzzy cognitive map model
in clinical radiotherapy through the differential evolution algorithm. Biomed
Soft Comput Human Sci. 2004,9(2):25-31.

Hecker M, Lambeck S, Toepfer S, Someren E, Guthke R. Gene regulatory
network inference: data integration in dynamic models-a review.
Biosystems. 2009,96(1):86-103.

Thomas SA, Jin Y. Reconstructing gene regulatory networks: where
optimization meets big data. Evol Intel. 2014;7(1):29-47.

Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat
Soc Series B (Methodological). 1996;58:267-88.

Page 14 of 14

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

* Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Decomposition-based FCM for GRNs reconstruction
	Decomposition-based dMAGA for training FCMs
	Definition of the agents
	Definition 1
	Definition 2

	Genetic operators for agents
	Neighborhood competition operator
	Strategy 1
	Strategy 2
	Crossover and mutation operators
	Self-learning operator

	Implementation of dMAGA-FCMD

	Results
	Experiments on synthetic FCMs
	Experiments on DREAM4 in silico network challenge

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

