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ABSTRACT The vaginal microbiota plays an essential role in vaginal health. The vagi-
nas of many reproductive-age women are dominated by one of the Lactobacillus spe-
cies. However, the vaginas of a large number of women are characterized by the colo-
nization of several other anaerobes. Notably, some women with the non-Lactobacillus-
dominated vaginal microbiota develop bacterial vaginosis, which has been correlated
with sexually transmitted infections and other adverse outcomes. However, interac-
tions and mechanisms linking the vaginal microbiota to host response are still under
investigation. There are studies suggesting a link between human microRNAs and gut
microbiota, but limited analysis has been carried out on the interplay of microRNAs
and vaginal microbiota. In this study, we performed a microRNA expression array
profiling on 67 vaginal samples from young Swedish women. MicroRNAs were clus-
tered into distinct groups according to vaginal microbiota composition. Interestingly,
182 microRNAs were significantly elevated in their expression in the non-Lactobacillus-
dominated community, suggesting an antagonistic relationship between Lactobacillus
and microRNAs. Of the elevated microRNAs, 10 microRNAs displayed excellent diag-
nostic potential, visualized by receiver operating characteristics analysis. We further
validated our findings in 34 independent samples where expression of top microRNA
candidates strongly separated the Lactobacillus-dominated community from the non-
Lactobacillus-dominated community in the vaginal microbiota. Notably, the Lactobacillus
crispatus-dominated community showed the most profound differential microRNA expres-
sion compared with the non-Lactobacillus-dominated community. In conclusion, we dem-
onstrate a strong relationship between the vaginal microbiota and numerous genital
microRNAs, which may facilitate a deeper mechanistic interplay in this biological niche.

IMPORTANCE Vaginal microbiota is correlated with women’s health, where a non-
Lactobacillus-dominated community predisposes women to a higher risk of disease,
including human papillomavirus (HPV). However, the molecular relationship between
the vaginal microbiota and host is largely unexplored. In this study, we investigated
a link between the vaginal microbiota and host microRNAs in a group of young
women. We uncovered an inverse correlation of the expression of microRNAs with
the abundance of Lactobacillus species in the vaginal microbiota. Particularly, the
expression of microRNA miR-23a-3p and miR-130a-3p, displaying significantly ele-
vated levels in non-Lactobacillus-dominated communities, predicted the bacterial
composition of the vaginal microbiota in an independent validation group. Since tar-
geting of microRNAs is explored in the clinical setting, our results warrant investigation
of whether microRNA modulation could be used for treating vaginosis recurrence and
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vaginosis-related diseases. Conversely, commensal bacteria could be used for treating
diseases with microRNA aberrations.

KEYWORDS vaginal microbiota, Lactobacillus-dominated, non-Lactobacillus-
dominated, microRNAs, human papillomavirus

The human gut microbiota plays an essential role in gut homeostasis. Gut dysbiosis
is functionally connected to both intestinal and “non-intestinal diseases” such as

cancer, diabetes, and various neurological disorders (1–6). Similarly, the vaginal micro-
biota plays an essential role in vaginal health (7, 8). The vaginas of many reproductive-
age women are dominated by one of the Lactobacillus species, including L. crispatus, L.
gasseri, L. jensenii, and L. iners (9, 10). The vaginas of a large number of women are also
characterized by the colonization of several other anaerobes, such as Gardnerella vagi-
nalis, Atopobium vaginae, and Prevotella bivia, together with a great reduction of the
Lactobacillus populations (9, 10). Notably, some of the women with the non-
Lactobacillus-dominated vaginal microbiota develop bacterial vaginosis, which has also
been correlated with sexually transmitted infections such as human immunodeficiency
virus (HIV) and human papillomavirus (HPV) (11–13). Non-Lactobacillus-dominated vag-
inal microbiota has also been associated with other adverse outcomes, including pre-
term birth, low birth weight, and potentially affect the microbiota of offspring (14–16).
However, despite the critical role of vaginal microbiota, studies linking the vaginal
microbiota to host response are still under investigation.

MicroRNAs (miRNAs) belong to a class of small noncoding RNAs, normally 20 to 22
nucleotides in length, with a central role in the posttranscriptional control of gene
expression. miRNAs present in body fluids differ in their expression when profiled from
healthy individuals compared to patients. Genetic and epigenetic alterations of specific
miRNAs have been demonstrated to have causative links to disease development, and
during recent years, miRNA therapies have come under development for a wide variety
of diseases (17). There is an increasing body of evidence suggesting that miRNAs have
crucial functions in responses to pathogenic infections (18–20). Furthermore, specific
miRNAs have been demonstrated to be repressed by pathogens, and expression of
such miRNAs may be restored by commensal bacteria (21, 22).

Studies performed in mice have suggested a link between the gut microbiota and
miRNAs (18, 23). The dominating message is that the microbiota modulates miRNA
expression, but the opposite has also been proposed, indicating a role of miRNAs shap-
ing the gut microbiota (24–28). However, there are limited data on the correlation
between the gut microbiota and miRNAs in humans. The alteration of miRNA expres-
sion has been tied to the gut microbiota in colorectal cancer patients (29). Other stud-
ies have suggested complex interactions between the composition of bacteria, host
miRNAs, and colorectal cancer development (30, 31). A recent study showed the inter-
play between the gut microbiota and miRNAs in patients with Crohn’s disease (32).

All of the studies above suggest an active participation of the gut microbiota in
reprogramming host gene expression, but there is a substantially smaller amount of in-
formation on the relationship between the vaginal microbiota and miRNAs. Thus, this
study aims to investigate the correlation between the vaginal microbiota and human
miRNAs. Vaginal swab samples were collected from 67 young women between 14 and
29 years of age. Human miRNA profiles were analyzed and compared according to vag-
inal microbiota composition. Furthermore, two differentially expressed miRNAs emerg-
ing from the test samples were validated in 34 independent samples.

RESULTS
An overall higher expression of miRNA profiles was observed in non-

Lactobacillus-dominated samples. In order to address the association of miRNA pro-
files with HPV status and the vaginal microbiota composition, we took 67 samples
from young women in Sweden, extracted RNA, and carried out a systematic miRNA
expression profiling. The HPV status and vaginal microbiota composition were
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obtained from a previously described study (11). Using hierarchical clustering analysis,
we uncovered a broad increase in miRNA expression in non-Lactobacillus-dominated
samples compared with Lactobacillus-dominated samples (Fig. 1A). In total, 182
miRNAs displayed significantly higher expression (.2-fold; false discovery rate [FDR]
of,0.01) in non-Lactobacillus-dominated samples compared with Lactobacillus-domi-
nated samples (Fig. 1B; see Table S1 in the supplemental material). In contrast to
Lactobacillus, HPV status showed no significant impact on miRNA expression (Fig. S1).
No miRNAs displayed differential expression (.2-fold; P , 0.05) when HPV-positive
and HPV-negative samples (see Fig. S1 in the supplemental material) were compared.

More than 85% (23 out of 27) of HPV-positive women were positive for at least one
high-risk (HR) HPV. Since our former data indicated that non-Lactobacillus-dominated
women had a higher risk of infection with HR HPV, we performed the analysis by fur-
ther comparing the HR HPV-positive group with the HPV-negative group. Similar
results were obtained with no HPV samples clustering according to miRNA expression
(Fig. 1A). By further dividing the samples into L. crispatus-dominated and L. iners-domi-
nated subgroups, the majority of L. iners-dominated samples were mixed with L. crispa-
tus-dominated samples but clearly separated from non-Lactobacillus-dominated sam-
ples (Fig. S2). Our data suggest that the miRNA landscape in vaginal tracts is associated
with microbiota composition without the influence of HPV status.

MicroRNA gene signature distinguishes Lactobacillus-dominated and non-
Lactobacillus-dominated vaginal microbiota. To further investigate the correlation
between miRNA and microbiota composition, we looked into the 10 most differen-
tially expressed miRNAs in non-Lactobacillus-dominated samples compared with
Lactobacillus-dominated samples. All miRNAs were substantially elevated in non-
Lactobacillus-dominated samples (P , 0.0001) (Fig. 2A to J). Dividing the samples in
the Lactobacillus-dominated group further into L. crispatus-dominated and L. iners-
dominated subgroups did not alter the outcome. miRNA expression was signifi-
cantly lower in both L. crispatus-dominated and L. iners-dominated samples com-
pared with non-Lactobacillus-dominated samples (Fig. S3A to J). Differential expres-
sion of miRNAs between L. crispatus-dominated and L. iners-dominated subgroups
did not reach statistical significance (Fig. S3A to J).

We continued to analyze the diagnostic ability of the most differentially expressed
miRNAs. Among these, 10 miRNAs displayed excellent prediction scores and per-
formed specificity over 95% in receiver operating characteristics (ROC) analysis accord-
ing to an area under curve (AUC) calculation (Fig. 3A to J). miR-23a-3p and miR-130a-
3p emerged as the best performing miRNAs, reaching above 97% prediction accuracy
(AUC= 0.9783 and 0.9732, respectively) (Fig. 3A and B).

Prediction of miRNA signature target genes and pathways. We combined miR-
23a-3p and miR-130a-3p, which were the top two hits according to differential expres-
sion in Lactobacillus-dominated samples and non-Lactobacillus-dominated samples
and analyzed predicted target genes with miRTarBase 7.0. We found 2,144 potential
miRNA target genes. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of these genes found 56 related pathways. As shown in Fig. 4, all
top significantly changed pathways are involved in cancer development or infections.
Pathways that promote cell proliferation, including the phosphatidylinositol 3-kinase
(PI3K)2Akt signaling pathway, the mitogen-activated protein kinase (MAPK) signal
pathway, and the Ras signaling pathway, were all among top statistically significant
pathways. Furthermore, proteoglycans and transcriptional misregulation pathways,
which play an important role in cancer development, and pathways such as endocyto-
sis, actin cytoskeleton regulation, and focal adhesion were also enriched among the
predicted target genes of the top two differentially expressed miRNAs (Fig. 4A).

All of these pathways were located at the center node of the network. The miRNA-
mRNA-KEGG pathway network of the top 10 pathways was shown in Fig. 4B. The genes
that are targeted by miR-23a-3p and miR-130a-3p, which serve as the foundation for
the pathways, are listed in the network (Fig. 4B). We also performed a KEGG pathway
analysis for the top 10 miRNAs, with a specificity over 95% in ROC analysis. Similar
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FIG 1 Differential analysis of miRNA expression. (A) Hierarchical clustering analysis of miRNA expression in Lactobacillus-dominated
samples versus non-Lactobacillus-dominated samples, human papillomavirus (HPV)-positive samples versus HPV-negative samples, and

(Continued on next page)
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pathways, including the PI3K-Akt signaling pathway, the MAPK signal pathway, and
HPV infection were uncovered as the top enriched pathways (Fig. S4).

Validation samples confirmed the prediction of the vaginal microbiota to be
dictated by miRNA expression. To validate our finding, we analyzed an independent
group of 34 samples by reverse transcription-quantitative PCR (RT-qPCR). Nearly all
samples clustered into two distinct groups of Lactobacillus-dominated versus non-
Lactobacillus-dominated groups by the expression level of miR-23a-3p and miR-130a-
3p (Fig. 5A). As shown in Fig. 5B and C, the Lactobacillus species relative abundance is
increasing with decreased expression of miR-23a-3p and miR-130a-3p. The
Lactobacillus-dominated and non-Lactobacillus-dominated samples were separated
clearly based on miR-23a-3p and miR-130a-3p expression (Fig. 5B and C). When
Lactobacillus-dominated and non-Lactobacillus-dominated groups were divided, a sig-
nificantly higher level was observed in the non-Lactobacillus-dominated group com-
pared with the Lactobacillus-dominated group for both miR-23a-3p (P , 0.0001) and
miR-130a-3p (P, 0.0001) (Fig. 5D and E).

Further division by L. crispatus-dominated and L. iners-dominated subgroups dem-
onstrated L. crispatus-dominated samples with the lowest expression of miR-23a-3p
and miR-130a-3p, and L. iners-dominated samples with moderate expression of miR-
23a-3p and miR-130a-3p, compared with the highest expression level in non-
Lactobacillus-dominated samples (Fig. S5A and B). Similar to the tested group, both the
L. crispatus-dominated and L. iners-dominated subgroups had significantly lower
expression of miR-23a-3p and miR-130a-3p compared with non-Lactobacillus-domi-
nated samples in the validation group. Differential expression between L. crispatus-
dominated and L. iners-dominated samples did not reach statistical significance
(Fig. S5C and D).

DISCUSSION

In this study, we observed a higher miRNA expression in non-Lactobacillus-domi-
nated vaginal samples compared with Lactobacillus-dominated vaginal samples.
Differential expression was particularly obvious when comparing non-Lactobacillus-
dominated samples with L. crispatus-dominated samples. We propose a panel of differ-
entially expressed miRNAs that distinguishes Lactobacillus-dominated from non-
Lactobacillus-dominated communities. Notably, the 10 miRNAs displayed excellent
diagnostic prediction values (AUC of .0.95) for vaginal microbiota. Furthermore, the
top two differentially expressed miRNAs were validated in a separate group of 34 sam-
ples by RT-qPCR with a highly significant prediction rate.

This study establishes a link between human miRNAs and vaginal microbiota which
may partly explain how microbes influence the host or vice versa. We observed a substan-
tial increase in expression of numerous miRNAs in the non-Lactobacillus-dominated group.
A previous report showed that miR-193b, miR-203b, miR-320b-1, miR-223, and miR-183
were found to correlate with the abundance of the Lactobacillus species in a study utilizing
small RNA transcriptome sequencing (33). The study further suggests that Lactobacillus
spp. control the cell cycle by a global mechanism, which is in line with our findings of
broad expression changes in the miRNA landscape (33). We also observed miR-223 and
miR-183 to be significantly altered in our group of samples. However, we did not observe
miR-193b, miR-203b, and miR-320b-1 to be differentially expressed, which may be due to
differences in sample types or in the methodology for miRNA expression analysis. Another
study demonstrated changes in miRNA expression following HPV infection (34). However,
we did not find any miRNA differences between HPV-positive and HPV-negative individu-
als in our study, which rules out a potential influence of HPV status on our microbiota
results.

FIG 1 Legend (Continued)
different status considering only high-risk (HR) HPV types. Color scale depicts standard deviations from the mean of each row. hsa,
Homo sapiens. (B) Volcano plot of downregulated and upregulated miRNAs in Lactobacillus-dominated samples compared with non-
Lactobacillus-dominated samples. The significantly changed miRNAs (.2-fold; false discovery rate: FDR, 0.01) are marked in red color.
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FIG 2 (A to J) Scatterplots of the 10 most differentially expressed miRNAs in Lactobacillus-dominated
samples versus non-Lactobacillus-dominated samples. Data are presented as medians with interquartile
ranges (error bars) on a log10 scale of normalized expression counts. ****, P value of ,0.0001.
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FIG 3 (A to J) Receiver operating characteristics (ROC) curves of the 10 most differentially expressed miRNAs in Lactobacillus-
dominated samples versus non-Lactobacillus-dominated samples. Values for area under curve (AUC) are displayed in each plot,
as a measure of the diagnostic potential of each miRNA.

MicroRNA and Vaginal Microbiota

May/June 2021 Volume 6 Issue 3 e00175-21 msystems.asm.org 7

https://msystems.asm.org


FIG 4 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of miR-23a-3p and miR-130a-3p
predicted target genes. (A) Dot plot of the KEGG pathways ranked according to the numbers of miR-23a-3p and

(Continued on next page)
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In addition, the study of a single pathogen and its linkage to alterations of miRNAs
also provides support for the interaction between host and bacteria (19). However, to
our knowledge, miR-23a-3p and miR-130a-3p have not been studied in relation to vaginal
microbes, possibly since most previous studies were carried out on gut microbiota or
pathogens. miR-23a-3p has been related to cancers, cervical shortening, and preterm birth,

FIG 5 Validation of miR-23a-3p and miR-130a-3p expression in Lactobacillus-dominated samples versus non-Lactobacillus-dominated samples from a
distinct group of vaginal samples. (A) Hierarchical clustering of miR-23a-3p and miR-130a-3p expression in Lactobacillus-dominated samples versus non-
Lactobacillus-dominated samples. The color scale depicts standard deviations from the mean of each row. (B and C) Scatterplots displaying the association
between miR-23a-3p and miR-130a-3p expression with Lactobacillus species abundance. (D and E) Comparison of miR-23a-3p and miR-130a-3p expression
in Lactobacillus-dominated samples versus non-Lactobacillus-dominated samples. Data are presented as median with interquartile range on a log10 scale.
y-axis values depict the percentage of expression in relation to U6 snRNA. ****, P value of ,0.0001.

FIG 4 Legend (Continued)
miR-130a-3p predicted target genes (TargetScan 7.2) in each pathway. The color of each dot reflects the level of statistical
significance. The size of the dots reflects the number of miRNA-predicted target genes in each pathway. (B) The
interaction network of miR-23a-3p and miR-130a-3p, their respective predicted target genes (TargetScan 7.2), and the top
10 KEGG pathways from panel A.
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diseases which are linked to non-Lactobacillus-dominated vaginal microbiota (35–38).
There is also literature suggesting that miR-23a-3p may regulate Notch signaling pathway,
with a higher expression in cervical cancer patients (36, 37). miR-130a-3p has also been
shown to be involved in the proliferation and apoptosis of cancer cells and to assist cancer
metastasis and invasion (39). Most importantly, through signaling pathways, including Wnt
and phosphatase and tensin homolog (PTEN), miR-130a-3p could affect drug susceptibility
and has been proposed as a new therapeutic target for cancers (39). Furthermore, miR-
130a-3p has been shown as a regulator of Dicer expression in cervical cancer and was sig-
nificantly associated with poor disease-free survival (40).

From our network analysis on both the top two and top ten miRNAs, the most
strongly related pathways were the PI3K-Akt signaling, MAPK signaling, and Ras signal-
ing pathways. These are pathways containing essential players for initiating cell cycle
progression. Somatic mutations in these pathways often occur in many tumors (41,
42). Moreover, the proteoglycans and transcriptional misregulation pathways are also
of importance in cancer development (43, 44). A higher involvement of these pathways
among the non-Lactobacillus-dominated group suggests the possibility that the non-
Lactobacillus species in the vaginal tract may lead to the promotion of carcinogenesis.
This is supported by published data that non-Lactobacillus-dominated vaginal micro-
biota was correlated with cervical intraepithelial neoplasia and cervical cancer (45).
Moreover, alteration of endocytosis, actin cytoskeleton regulation, and focal adhesion
in the pathways could also benefit non-Lactobacillus bacteria to establish their niches
in the vaginal tract and potentially to fight against host defense and colonization re-
sistance from other bacteria. However, our network analysis is solely based on in silico
prediction of miRNA targets and does not necessarily reflect a true biological outcome
of the vaginal microbiota.

Our study provides support of the interplay between non-Lactobacillus species and
miRNAs. However, insight into the mechanism of how the vaginal microbiota is linked
to human miRNAs needs further laboratory efforts. Most of our current knowledge
between microbiota and miRNAs is obtained from miRNA profiles in germfree mice
versus conventional mice. One possible mechanism could be that microbes interact
with cell surface receptors and influence the cell cycle pathway which further affects
miRNA expression (33). Interestingly, numerous miRNAs are enriched in targeting the
cell cycle machinery, and such miRNAs may be specifically blocked by the interaction
of microbes with the host (46). Microbes could also interact with the host by triggering
or blocking host immune response (21, 31, 47, 48). One study suggested that commen-
sal microbiota-induced miRNAs could affect intestinal epithelial permeability (25).
Furthermore, the interaction might be indirect through metabolites or proteins
secreted by microbes, or conversely, that host miRNAs favor specific microbes and
thus change the trajectory of bacterial composition (28). A major limitation of our
study is that we do not know the biological mechanism contributing to the increased
expression of numerous miRNAs. The differential expression of multiple miRNAs could
be a passenger event of non-Lactobacillus infection, such as an altered cellular land-
scape due to infiltrating components from the immune system. Future investigations
of the full transcriptome in this type of samples, or cellular analysis on freshly collected
samples, may help to decipher the cellular composition in the Lactobacillus-dominated
versus non-Lactobacillus-dominated groups. Another limitation is the scarcity of clinical
data, including missing data on vaginal pH and sexual activity.

It is well-known that the vaginal microbiota has an important role in the fight against
sexually transmitted viruses and non-Lactobacillus-dominated communities have been
linked to a higher risk of cervical cancer lesions (11, 33, 45, 49, 50). Our study provides a
hint of broad alteration of miRNAs related to non-Lactobacillus-dominated vaginal micro-
biota compared with Lactobacillus-dominated vaginal microbiota. Future studies should
investigate whether alterations of these miRNAs reflect a causality link between the vagi-
nal microbiota and miRNAs rather than a passenger event. A better understanding of the

Cheng et al.

May/June 2021 Volume 6 Issue 3 e00175-21 msystems.asm.org 10

https://msystems.asm.org


interplay between vaginal microbiota and host response would aid the development of
novel therapeutics to protect women from infection and diseases.

MATERIALS ANDMETHODS
Study population. Previously described young women between 14 and 29 years from a youth clinic

(n= 32) and cervical screening (n= 35) were selected. Vaginal swabs were collected either by clinical staff
or self-collected (11). The collection swabs were preserved with 0.8ml DNA/RNA-shield (Zymo Research,
USA) in FluidX tubes (Brooks Life Sciences, USA). Information regarding HPV vaccination status, age, and
antibiotic usage within the past 3 months was included with the sample. All participation was voluntary,
and written informed consent was obtained before sample collection.

DNA extraction, HPV genotyping, and microbiota sequencing on the V3-V4 regions of the 16S rRNA
genes were performed as before (11, 51). Information of HPV status and microbiota composition was
obtained from the previous study (11, 51). Out of the 67 samples, 5 were excluded due to antibiotic
usage during the past 3 months, and a further 6 were excluded for low sequencing reads (operational
taxonomic unit [OTU], 20,000). In the end, 56 samples were included in the final analysis, in which 27
samples were HPV positive and 29 were HPV negative. Vaginal microbiota of 14 samples were domi-
nated by L. crispatus, 14 samples were dominated by L. iners, and 28 samples were non-Lactobacillus-
dominated samples.

An additional 34 samples from youth clinic were used to validate the prediction association model,
in which three samples were excluded in the final analysis due to low sequencing reads. Details of the
participants both in the test group and the validation group are listed in Table S2 in the supplemental
material. Ethical approval was granted by the Stockholm Regional Ethics Committee and Uppsala
Regional Ethics Committee in Sweden to examine the youths without parental consent.

MicroRNA extraction and systematic expression assay. Total RNA (including miRNAs) was isolated
from vaginal sample collections using a mirVana miRNA isolation kit (catalog no. AM1560; ThermoFisher,
USA) following the manufacturer’s protocol. For miRNA expression analysis, nCounter Human v3 miRNA
Expression Assay, interrogating the expression of 798 distinct human miRNAs (NanoString Technologies,
USA) was used according to the protocol. Briefly, capture and barcoded target probes were hybridized
to 100 ng of native total RNA in 3ml, followed by immobilization on an image surface that is scanned for
fluorescence. The number of bound barcoded target probes dictates the fluorescence raw data for each
target. Raw data were normalized using the top 100 most abundantly expressed genes. Finally, only
miRNAs with an average normalized count exceeding 50 were subjects for analysis.

MicroRNA expression analysis. Comparative analysis between the HPV-positive and -negative sam-
ples and between Lactobacillus-dominated and non-Lactobacillus-dominated samples was carried out
using fold change and the Wilcox rank sum test. The Kruskal-Wallis H test was utilized to analyze differ-
ential expression in L. crispatus-, L. iners-, and non-Lactobacillus-dominated samples. The FDR was
obtained by adjusting the P value using the Benjamini-Hochberg algorithm. The requirements for filter-
ing miRNAs were as follows: (i) miRNAs of the two types of samples with a greater than two-fold change
compared with the median; (ii) miRNAs of the two types of samples with a corrected P value (FDR) lower
than 0.01 for microbiota groups and with an uncorrected P value lower than 0.05 for HPV groups.
Hierarchical clustering was conducted with the settings of Euclidean distance with complete linkage.
Visualization as well as a calculation of statistical significance were generated through R statistical lan-
guage v. 3.6.3. A heatmap of miRNA expression with annotation of HPV status and microbiota composi-
tion was constructed by the “pheatmap” package of R. Expression of the 10 most differentially expressed
miRNAs in non-Lactobacillus-dominated samples versus Lactobacillus-dominated samples was visualized
by GraphPad Prism software. AUC-ROC analysis was conducted to analyze the sensitivity and specificity of
the 10 most differentially expressed miRNAs and visualized by GraphPad Prism software. Expression of
these 10 most differentially expressed miRNAs among L. crispatus-, L. iners-, and non-Lactobacillus-domi-
nated samples was analyzed by Kruskal-Wallis H test with post hoc tests using Dunn's multiple-comparison
test and visualized with GraphPad Prism software.

KEGG pathway analysis. Predicted target genes of differentially expressed miRNAs were extracted
from TargetScanHuman 7.2 (52). The target gene set was subjected to KEGG pathway analysis. The KEGG
pathway enrichment of these genes was analyzed and visualized by the clusterProfiler package in R. A P
value of ,0.05 was set as the cutoff criterion for the significant enrichment. Cytoscape (v. 3.8.2) was
used to visualize the network of miRNAs, mRNAs, and KEGG pathways.

MicroRNA RT-qPCR. For the verification of the top two differentially expressed miRNAs in non-
Lactobacillus-dominated samples versus Lactobacillus-dominated samples, miRNA-specific stem-loop
cDNA was synthesized from total RNA, extracted by mirVana miRNA isolation kit (catalog no. AM1560;
ThermoFisher, USA), and quantified on a NanoDrop 1000 spectrophotometer, using TaqMan miRNA
assays (ThermoFisher, USA). The expression of selected miRNAs, miR-23a-3p and miR-130a-3p, were
detected. U6 snRNA was used as a reference gene for normalization according to DCT calculation, and
miRNA expression was presented as percentage expression of U6 snRNA. A comparative analysis
between Lactobacillus-dominated and non-Lactobacillus-dominated samples was carried out using fold
change and the Wilcox rank sum test. The Kruskal-Wallis H test, followed by a Dunn’s multiple-compari-
son post hoc test, was utilized to analyze differences among L. crispatus-, L. iners-, and non-Lactobacillus-
dominated samples. A visualization of differentially expressed miRNAs was carried out using GraphPad
Prism software.

Data availability. All data generated or analyzed in this study are included in this published article
(and the supplemental material).
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TABLE S1, XLSX file, 0.1 MB.
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