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Abstract

Apparent occupancy levels of proteins bound to DNA in vivo can now be routinely measured on a genomic scale. A
challenge in relating these occupancy levels to assembly mechanisms that are defined with biochemically isolated
components lies in the veracity of assumptions made regarding the in vivo system. Assumptions regarding behavior of
molecules in vivo can neither be proven true nor false, and thus is necessarily subjective. Nevertheless, within those
confines, connecting in vivo protein-DNA interaction observations with defined biochemical mechanisms is an important
step towards fully defining and understanding assembly/disassembly mechanisms in vivo. To this end, we have developed a
computational program PathCom that models in vivo protein-DNA occupancy data as biochemical mechanisms under the
assumption that occupancy levels can be related to binding duration and explicitly defined assembly/disassembly reactions.
We exemplify the process with the assembly of the general transcription factors (TBP, TFIIB, TFIIE, TFIIF, TFIIH, and RNA
polymerase II) at the genes of the budding yeast Saccharomyces. Within the assumption inherent in the system our
modeling suggests that TBP occupancy at promoters is rather transient compared to other general factors, despite the
importance of TBP in nucleating assembly of the preinitiation complex. PathCom is suitable for modeling any assembly/
disassembly pathway, given that all the proteins (or species) come together to form a complex.
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Introduction

Eukaryotic genes are thought to be regulated by hundreds of

proteins that assemble into pre-initiation complexes (PIC’s) at

promoters using an ordered pathway. One aspect of the PIC

assembly pathway involves the recruitment of the general

transcription factors (GTF’s), such as TBP and TFIIB, by

sequence-specific activators. TBP and TFIIB then contribute to

the recruitment of RNA polymerase II (pol II) and other GTF’s,

which eventually start transcription.

A fundamental question concerning our understanding of gene

regulation is the extent to which each assembly and disassembly

step is distinct at every gene in a genome. Is the traditional

biochemical view that TBP ‘‘locks in’’ or commits to a promoter,

and in a recurring manner nucleates PIC formation valid in vivo?

And is the PIC disassembly process in vivo, simply the reverse of

the assembly process? Parts of the assembly/disassembly pathway

have been rigorously defined in vitro with a few purified proteins

and DNA, and this has provided us with our current parsimonious

view of PIC regulation [1,2,3,4]. In no case have assembly or

disassembly reactions been reconstituted in a way that fully

recapitulates the physiological setting (presence of sequence-

specific regulators, coactivators, specifically positioned nucleo-

somes, chromatin regulators, GTFs, etc) at every gene, and so

these questions remain open, in regards to the extent to which in

vitro defined reactions mimic the in vivo events occurring

throughout a genome. The answer to this question is not readily

addressed in vivo, since reactions are not as definable nor

quantifiable as in vitro biochemical reactions with purified

components. Nonetheless, assays do exist for measuring relative

levels of proteinNDNA complex formation in vivo, and so

mechanistic inferences will be sought.

The goal here is to evaluate in vivo occupancy data in light of

biochemical mechanisms that are intended to reflect the

corresponding in vivo reaction. The extent of biological insight

is predicated on rather subjective assessments of the assumptions

associated with interpretation of in vivo data. Within the context of

declared constraints and assumptions, we propose a means to

model in vivo protein-DNA occupancy data, so as to better

integrate and conceptualize massive genomic datasets. This study

is focused on the means of such modeling and the assumptions

inherent in the data, using specific examples of PIC assembly.

Currently, perhaps the most widely used assay to measure the

occupancy of proteins at genes in vivo is the chromatin immuno-

precipitation assay (ChIP). In ChIP, proteins are crosslinked to DNA,

the protein is then purified, and the bound DNA identified either

through directed PCR or through genome-wide detection platforms

(ChIP-chip and ChIP-seq). In this way, for example, the relative

occupancy level of TBP, TFIIB, pol II, and many other proteins at

every promoter in the genome in a population of cells can be assayed.
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Recent studies using differential ChIP and photobleaching

experiments have provided compelling evidence for a dynamic

state of PIC components in living cells [5,6,7]. Therefore, it is now

within a conceptual framework to expect factors like RNA

polymerase II, TBP, and other GTFs to undergo multiple

assembly and disassembly cycles at promoters for each productive

transcription event, rather than the traditional simple view that

GTF’s remain locked in place during multiple transcription cycles.

The existence and origins of distinct occupancy levels of PIC

components on genes has not been systematically explored, and

thus is the impetus for conducting the modeling studies described

here. Differential occupancy patterns for the GTFs have been

described [8], and may be caused by gene-specific regulators that

influence the recruitment or retention of specific general

transcription factors (among other proteins), and thus assembly/

disassembly mechanisms might differ from gene to gene (or sets of

genes). Here, we attempt to utilize ChIP-chip binding information

gleaned at every promoter in the yeast genome to either plausibly

infer or exclude PIC assembly/disassembly mechanisms. The

major limitation in any such approach is that the number of

permutations of possible assembly/disassembly mechanisms ex-

ceeds the amount of data available to constrain such mechanisms.

In other words, occupancy data, alone, is insufficient to uniquely

specify an ordered PIC assembly and disassembly pathway.

Imposition of additional constraints (or assumptions), such as

predefining either the assembly (or disassembly) pathway, might

however eliminate certain dissociation (or association) mechanisms

as incompatible with the data, and thus serves the purpose of

plausibly excluding mechanisms rather than uniquely identifying a

mechanism.

Here, we develop a ChIP modeling program, termed PathCom,

in the context of a fixed PIC assembly pathway to infer allowable

dissociation mechanisms. We validate the simulation using an

existing chemical kinetics simulator COPASI [9]. Within the

declared constraints, we discern the compatibility of different PIC

disassembly mechanisms at nearly every transcriptionally-active

gene in the yeast genome with existing ChIP-chip occupancy data.

Results

Genome-wide occupancy modeling of two factors
The overall goal here is to inter-relate ChIP in vivo occupancy

data with biochemical assembly/disassembly mechanisms, in a

way that attempts to support or dispute such mechanisms. Such

inter-relationships can be complex when one considers that

hundreds of proteins are involved in transcriptional regulation.

Therefore, we start by modeling only two factors (the GTF’s TBP

and TFIIB), and increase complexity by adding more GTFs one at

a time up to six factors. While we focus on PIC assembly/

disassembly mechanisms on a genomic scale, any number of

factors and combination of assembly/disassembly steps in gene

regulation may be considered, given that all proteins (or species)

come together to form a complex.

TBP (T) binds to DNA (D) to form a protein-DNA (TD)

complex, and in the presence of TFIIB (B) form a TDB ternary

complex (Figure 1A) [10,11,12]. In the presence of sufficient

levels of these proteins, their DNA occupancy level will vary from

0% to 100% as dictated by the context of each promoter. In

principle, there are two pathways by which TBP and TFIIB

assemble step-wise onto DNA (Figure 1B) [13]: A) TBP binds to

DNA, then TFIIB binds; or B) TFIIB binds DNA first, then TBP.

Their reversal constitutes two pathways for dissociation.

The constant availability of energy to drive directional processes

allows the pairing of any association and dissociation mechanism.

Consequently, there are four paths by which an in vivo occupancy

level is achieved for a two-component reaction. The availability of

only two experimental constraints (TBP and TFIIB occupancy

levels on DNA) is insufficient to specify the predominant

association and dissociation pathways. In the absence of a

necessary additional experimental constraint, we created a

hypothetical constraint for the purposes of modeling, in which

we eliminated all but one association pathway. That allowed us to

evaluate the two possible dissociation pathways. The reciprocal

modeling could also be done, by eliminating all but one

dissociation mechanism. Since the purpose of this study is to

demonstrate how the modeling works and to discuss its

assumptions, caveats, and utility, we illustrate the process using a

single association pathway that has good experimental support and

model all possible dissociation pathways.

Biochemical [1] and crystallographic [13] evidence shows that

TBP binds DNA first, followed by TFIIB, which makes

cooperative contacts with both TBP and the DNA (Figure 1A).

On this basis, we fixed assembly pathway ‘‘A’’ (Figure 1B), which

sufficiently constrains the system so that measured TBP and TFIIB

occupancy levels can distinguish between the two dissociation

pathways, ‘‘1’’ and ‘‘2’’. In this context, dissociation pathway ‘‘1’’

allows either TBP or TFIIB occupancy to be greater than the

other, but pathway 2 is only plausible if TBP occupancy is greater.

Using published genomic datasets of TBP and TFIIB

occupancy [14], we modeled four groups of genes, each having

either a high (H) or low (L) experimentally measured level of TBP

and TFIIB (Figure 1C, and Figure S1). These occupancy levels

were reproducible and verified by a second data source

(Affymetrix high density tiling arrays) also present in the previous

study (Figure S2) [14]. We chose four subdivisions so as to

separately consider different types of occupancy patterns. In

principle, each gene could be treated independently. However,

grouping of similarly behaving genes had the advantage of

creating more robust occupancy values that are based upon

hundreds of measurements, rather than just one. Aggregating the

data dampened the variability caused by gene-specific differences

in crosslinking efficiency and detection. It also served to identify

predominant occupancy patterns that might reveal underlying

themes in gene regulation. One limitation of such grouping is that

it assumes a single underlying mechanism exists for an individual

gene and for an entire group of genes, which may be unlikely in

detail but reasonable for purposes of demonstration.

Author Summary

For proper cell function, cells need to precisely coordinate
the expression of their genes on their DNA at precise
times. In order to better understand how the cell works, it
is important to understand how, when, and why a cell
needs to turn on or off certain genes at certain times. In
order to assist the cell to properly express its genes, there
are hundreds of proteins that can bind and access DNA.
Each protein has a unique function and these proteins
assemble together into a very large complex to turn on
genes. The assembly of these proteins has defined to some
extent, however the whole process of assembly and
disassembly of this complex in the cell is still poorly
understood. In our modeling analysis, we have attempted
to utilize genome-wide binding data to better understand
how the transcription machinery that ‘‘reads’’ genes might
disassemble, in light of what is known about the assembly
process. This knowledge helps us better understand how
cells coordinate their on/off-switching of their genes.

Modeling ChIP-chip Data
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To compare occupancy levels between proteins, it was necessary

to place them on the same scale. We achieved this by scaling ChIP

occupancy values (fold over background) for each factor from 0%

to 100%. Our rationale, assumptions, and method for doing this

are described in the Methods section.

Figure 1D shows a cluster-plot of the genes with their TBP and

TFIIB percent occupancies. Since the ‘‘(L, L)’’ group (Figure 1F)

had low levels of both factors, TBP and TFIIB did not

substantially occupy these genes. Consequently, modeling would

not be informative for this group, and thus was not examined

further. In addition, the ‘‘(H, L)’’ group comprised ,1% of all

genes, and so it too was not examined further. For the remaining

two groups, TFIIB occupancy was greater than TBP occupancy.

When assembly pathway A was fixed, in which TFIIB assembles

last, then the observed higher level of TFIIB occupancy over TBP

can only be accommodated by a situation where TFIIB dissociates

last. Thus, for both groups ((L, H) and (H, H)), the data reject

dissociation pathway 2 (TFIIB dissociates first) and accept pathway

1. These outcomes are illustrated in Figure 1D, by the black

(incompatible) and green (compatible) squares. Note that when the

alternative assembly pathway B is fixed, both dissociation

pathways were compatible. This simple case illustrated how

different starting assumptions (assembly pathway A vs B) resulted

in a different set of compatibility outcomes.

From this analysis, several insights were obtained: 1) Some

occupancy levels simply do not distinguish among mechanisms. 2) In

contrast to the simplified in vitro derived biochemical mechanism,

TFIIB might remain at most promoters after TBP has dissociated

(although TFIIB may nevertheless be dynamic). How TFIIB does so

is a matter of speculation that the data do not address.

Based upon known TBP/TFIIB/DNA biochemical interac-

tions, the notion that TFIIB might dissociate after TBP would

seem untenable. However, the additional complexity that exists in

vivo might accommodate such a mechanism if other proteins not

explicitly defined in this model retained TFIIB at the promoter,

after TBP had dissociated. TFIIB engages pol II at promoters via

specific interactions [15,16,17]. Pol II tightly associates with DNA

in an ‘‘open’’ promoter complex [18,19], and tends to accumulate

at the 59 ends of genes [14,20,21,22]. If an active mechanism

removes TBP, such as through the well-established ATP-

dependent mechanism of Mot1 [23], then TFIIB might remain

on promoter DNA via pol II and in the absence of TBP.

Development of PathCom to model three factor
occupancy

Towards our goal of modeling the assemblage of many proteins,

we next consider a three-factor assemblage. The interaction of

TFIIB with pol II (P) and TBP is structurally and biochemically

well defined [13,15]. As in the two-step modeling, based upon

biochemical precedent, we constrain the system to the following

assembly pathway: TBP R TFIIB R pol II (Figure 2A, black

arrows). Since there are three factors, there are six possible

dissociation pathways. Modeling three factors through six

mechanisms for eight groups of genes became conceptually

challenging to work through in the intuitive manner described

for two factors. However, we determined that the plausibility of

any mechanism could be evaluated by two basic rules:

Rule 1: Does the mechanism make it unconditional
that one protein’s occupancy level must be greater than
another? For example, in the two factor mechanism, if TFIIB

Figure 1. Two factor (TBP and TFIIB) modeling of genome-wide ChIP occupancy data. A, Crystal structure models of a TBPNTATA complex
[11,12] and a TBPNDNANTFIIB complex [13]. B, Alternative association/dissociations mechanisms of TBP (T), TFIIB (B), and DNA (D). C, Cluster-plot
showing the occupancies of TBP and TFIIB at individual genes (rows), scaled from 0% (black) to 100% (red). D, Shown are data for four gene groups
defined by their high (H) or low (L) factor occupancy level. For example, (L,H) group contains 2105 genes having low TBP occupancy (,10% of the
maximum) and high TFIIB occupancy (.10% of the maximum). Horizontal blue bar graphs indicate the number of genes in each of the four groups.
Pie charts indicate the median occupancy level (red for TBP and blue for TFIIB) for the indicated gene groups. The table of black/green squares
represents PathCom output for incompatibility (black) or compatibility (green) with the indicated mechanism (described in panel B). Median
transcription frequencies for genes in each group are shown as horizontal red bars [34].
doi:10.1371/journal.pcbi.1000733.g001

Modeling ChIP-chip Data
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enters last and leaves first (Figure 2B, left path), then such a

mechanism requires that TFIIB occupancy be less than TBP

occupancy. On the other hand, if TFIIB leaves last (Figure 2B,

right path), then such a mechanism allows both TBP and TFIIB to

occupy the DNA independent of the other. This mechanism will

therefore accommodate any occupancy levels observed for these

proteins.

Rule 2: Does the occupancy of one protein, other than
the first and last proteins to assemble, have an occupancy
level greater than the summed occupancy of any
previously-associating protein and any subsequently-
associating protein? If so, does the mechanism give the
possibility that the protein’s occupancy is greater than
the combined occupancies of these two other proteins?
This rule is applicable towards modeling of more than two factors.

When this condition is met, then the protein must at some point

occupy DNA without the other two proteins, and thus must be the

last of the three to dissociate (but not necessarily the last to dissociate

overall if the mechanism has more than three proteins). When

iterated over all factors in a mechanism, this rule determines the

allowable orders of dissociation. For example, consider a fixed

assembly order with TBP first, then TFIIB, then pol II (Figure 2C):

If TFIIB occupancy is greater than the sum of TBP and pol II

occupancy, then only those dissociation mechanisms that have

TFIIB dissociate last are compatible. If this condition is not true,

then any dissociation mechanism can be accommodated by this

rule, including the ones having TFIIB dissociate last (but some

might be disallowed in the context of rule 1).

These two rules, together, determine which dissociation

mechanisms will be compatible with the data given an assumed

association pathway. Note that depending on the actual percent

occupancies, these rules will have varying effectiveness in

narrowing down the dissociation mechanisms. If the rank order

of observed occupancy is the same as the order of association, then

all dissociation mechanisms will work.

We transformed these queries into a program termed PathCom

(short for Pathway Compatibility), which was used to generate the

compatibility chart in Figure 2D (green = compatible, black =

incompatible). This software is available in Protocol S1 and

Protocol S2 for Windows and Mac users, respectively. Using the

rationale from the two-step model, we generated eight groups of

genes corresponding to either high or low occupancy of each of the

factors (Figure 2D).

We sought to validate the approach taken by PathCom, to

ensure that it reflected enzymological concepts for which this

modeling attempts to emulate. Our validation employed COPASI,

a freely available program that simulates biochemical kinetics [9].

Reaction mechanisms and concentrations (the latter equivalent to

the occupancy levels described here) represent input parameters.

For each mechanism and each group of genes, COPASI iteratively

‘‘guesses and checks’’ in an attempt to find a set of rate constants

that delivers the observed occupancy levels for TBP, TFIIB, and

pol II. It then reports a goodness-of-fit by measuring the square

difference between the observed and the optimized occupancies,

reporting this as an E-value (see Methods).

To maximize the parameter search space and avoid local

minima, COPASI imposes some randomness in moving through

the decision-making process. Since the system is under-constrained

and randomness is involved, each repeated modeling run

converges on a different solution for each mechanism (i.e., many

different combinations of rate constant values can produce the

observed occupancy levels, if a solution can be found). The values

of the underlying rate constants generated by the Parameter

Estimator in COPASI are not meaningful; rather the resulting E-

value provides a quantitative measure of the suitability of a

mechanism to fit the data. Re-running COPASI on the same

dataset returns essentially the same E value (not shown). Thus,

COPASI provides a robust means of evaluating alternative

mechanisms and validating PathCom.

Figure 2D shows the compatibility findings of all eight possible

clusters using three factors against the six possible dissociation

mechanisms using PathCom. Figure 2E shows the corresponding

log10 E-value assessments using COPASI. In all cases, the

COPASI-reported E-values matched the Boolean decisions made

by PathCom (compare Figure 2D and E). Log10 E-values

generated by COPASI were bimodal (Figure 2E, bottom bar

graph), providing a demarcation between compatible and

incompatible outcomes. Thus, the simplified Boolean process

associated with PathCom was validated by a kinetic mechanism

simulator (COPASI).

Importantly, the analysis indicates that given a fixed association

mechanism, there are a limited number of dissociation mecha-

nisms (green squares in Figure 2D) that can account for the

observed occupancy data. Fixing different association pathways

generates different mechanism compatibility patterns (Figure S3).

In Figure 2D, clusters of genes that had very few members (e.g.,

(H, L, L) and (H, L, H)), or had very low occupancy of all tested

factors (e.g. (L, L, L)) may not be particularly robust, and thus less

reliably interpreted. For the remaining clusters, one to two

mechanisms were found to be compatible. A common theme was

that TBP dissociated first, then pol II, and then TFIIB, which was

consistent with the conclusions drawn from the two-factor

assembly analysis described above.

In principle, dissociation of pol II may proceed via removal into

the bulk nucleoplasm and/or translocation down the DNA upon

transcription, where ChIP occupancy would not be detected by

microarray probes at the 59 ends of genes. Consistent with the

latter possibility, high transcription frequencies are observed at the

(H, H, L) set, which has high TBP and TFIIB occupancy but

relatively low occupancy of pol II (Figure 2C). These genes are

also enriched with pol II in the body of the gene (not shown).

The suggestion that TFIIB dissociates after both TBP and pol II

dissociation is consistent with some reports in the literature [24],

and suggests that perhaps other factors retain TFIIB at promoters

in the absence of TBP and pol II. TFIIB and TFIIF are known to

interact with each other [25], and potentially with activators

[24,26,27,28].

We further examined the plausibility that TBP might not be

fully bound at ‘‘high’’ occupancy promoters by looking at

experimentally determined ‘‘digital footprints’’ of TBP bound at

those promoters having the highest TBP occupancy (Figure S4)

[29]. Indeed, in all cases, no TBP footprint was detected over the

TATA box, which is consistent with the notion that TBP does not

fully occupy even its most highly occupied sites.

Groups of genes that had very few members (e.g., (H, L, L) and

(H, L, H)), or had very low occupancy of all tested factors (e.g. (L,

L, L)) are expected to have higher variation, and thus less reliably

interpreted. Therefore, these groups were not examined further.

For the remaining groups, one to two mechanisms were found to

be compatible. A common theme was that TBP dissociated first,

then pol II, and then TFIIB, which was consistent with the

conclusions drawn from the two-factor assembly analysis described

above.

Four, five and six factor PIC assembly
As more factors were added to the modeling, and genes grouped

according to low or high occupancy levels of each protein, the

number of possible groups grew exponentially (2n, where is the

Modeling ChIP-chip Data
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Figure 2. Three factor (TBP, TFIIB, and Pol II) modeling of genome-wide ChIP occupancy data. A, Alternative dissociation pathways
modeled are shown. The fixed assembly pathway is illustrated with the black arrows. B, The first rule of compatibility is pictorially represented. Note
that, given the assembly pathway, the disassembly pathway on the left requires TBP occupancy to be greater than TFIIB occupancy, whereas the
disassembly pathway on the right can support either TBP or TFIIB occupancy being greater. C, The second rule of compatibility is illustrated. If TFIIB

Modeling ChIP-chip Data
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number of modeled proteins). Consequently, membership in each

group diminished, some to negligible levels. Those with negligible

membership did not represent predominant patterns and may

have arisen by chance as a consequence of noisy occupancy levels.

Therefore, we combined groups of genes that lacked a viable

membership level (see Methods for membership criteria).

Using the in vitro model for PIC assembly, we next added

TFIIH (H) to the mechanism: TBP R TFIIB R pol IIR TFIIH.

This mechanism is applicable even if pol II and TFIIH were

entering together. As shown in Figure 3A, the groups with the

highest membership of genes included those with low TBP

occupancy levels, and either low or high levels of the other GTFs

(indicated by asterisks for gene groups that had at least two high

occupancy GTFs). A group having high levels of all GTFs

predominated among those groups having high TBP occupancy,

denoted (H, H, H, H). In the context of the modeled assembly

pathway, these results suggest that TBP is removed from most

measured genes before the other GTFs, except in cases where PIC

assembly is maximal. The latter could be interpreted to reflect

continuous reloading of TBP, which has recently been shown to be

fairly dynamic [6,7]. Our modeling studies with PathCom suggest

that the most plausible mechanisms for gene groups with abundant

membership and at least two high abundance GTFs include early

TBP dissociation (Figure 3B). However for one abundant gene

set (L, H, L, H), the data are also compatible with an early

dissociation of pol II followed by TBP (or simultaneous with it)

(Figure 3B, dissociation mechanisms 13 and 14).

In the four-factor mechanism, groups having a relatively large

gene membership typically were limited to being compatible with

only one or two of the 24 theoretically possible dissociation

mechanisms (Figure 3A, compatibility chart). Thus, the modeling

of more factors increased the number of potential mechanisms in a

factorial relationship (n!) with the number (n) of proteins being

modeled. However, the number of plausible mechanisms

remained largely fixed at one to two, with a few exceptions.

We next added TFIIF (F) (Figure 4) and TFIIE (E) (Figure 5
and 6). While evidence suggests that TFIIF fits into the following

fixed assembly pathway (including simultaneous recruitment with

pol II) [3]: TBP R TFIIB R pol II R TFIIF R TFIIH [1,3] the

literature reports seeming conflicting evidence for TFIIE entry

[1,8,30], and thus we chose to pursue to two alternative assembly

mechanisms: TBP R TFIIB R pol IIR TFIIF R TFIIE R
TFIIH (Figure 5) and one where TFIIE enters prior to pol II

(Figure 6). We focused on the few clusters that had the most

members and had multiple factors with high occupancy (indicated

by asterisks). These included clusters with 687, 580, and 252

members (Figs. 4, 5, and 6). The membership for these particular

clusters remained unchanged as more factors were included in the

modeling because they failed to generate new gene groups that

had sufficient membership to avoid consolidation. Thus, the

occupancy data and the associated mechanisms displayed robust

consistency as multiple GTF’s were added on, which is consistent

with them working together in a PIC.

The occupancy levels in the five-factor modeling were

compatible with mechanisms that had TBP and pol II dissociate

early and TFIIB and TFIIF dissociating late (Figure 4B).

Interestingly, groups with few genes tended to have a larger

number of compatible mechanisms (more green boxes in

Figure 4A). While the significance of this is unclear, it might

reflect a cellular design that avoids ambiguity in the PIC

disassembly pathway. That is multiple, alternative dissociation

pathways may be problematic to control.

In modeling six factors (Figure 5), the predominant compatible

disassembly pathways for the two alternative assembly path-

ways retained the dissociation of TBP and pol II as early steps

in all mechanisms. Whether we define TFIIE assembly as early

(upper panel) or late (lower panel), the occupancy data supp-

orted the following two predominant dissociation mechanisms:

PRTRHRBR(E,F) and TRPR(E,F,H)RB, although when E

associated early, the following pathway was also acceptable:

TRPR(F,H)R(E,B). Spot checks of our results using COPASI

confirmed our findings (not shown).

Discussion

Genome-wide occupancy data for the many hundreds of

proteins involved in gene regulation is now accumulating. One

major challenge has been to inter-relate such occupancy data and

conceptualize it in light of models about how these proteins

function together. Such models, as in the case of the assembly of

the transcription machinery at promoters, are derived from

biochemical experiments conducted on isolated components of

the transcription machinery. The extent to which inferred

biochemical mechanisms reflect in vivo processes is not known.

We are not aware of any means of modeling genome-wide

occupancy data to determine whether it is compatible with

biochemical mechanisms. To this end, we developed the software

tool PathCom. PathCom is generic in that it will determine

whether any number of user-defined mechanisms is compatible

with measured occupancy data of any number of relevant proteins.

We applied PathCom to transcription complex assembly/disas-

sembly, which has been extensively defined biochemically and for

which genome-wide ChIP-chip occupancy data is available for.

Biological insight gleaned from the modeling is subject to the

veracity of the assumptions regarding what in vivo ChIP

occupancy data actually measures, and the quality of the data

being modeled.

Eukaryotic protein coding genes utilize a common set of general

transcription factors to assemble RNA polymerase II at promoters.

A long-standing question that biochemistry has attempted to

explain is the order of assembly of the transcription machinery and

what happens to individual components during multiple tran-

scription cycles. As far as the general transcription machinery is

concerned, in vitro ordered assembly starts with TBP followed by

TFIIB, then pol II and TFIIF, and then TFIIE and TFIIH [1,3].

In vivo ChIP occupancy data alone cannot discern whether such

an assembly pathway is correct at any or all genes, and thus is a

premise of the modeling example employed here. In the context of

such a fixed assembly pathway, we explored different occupancy

patterns of the general transcription machinery observed across

the yeast genome, and interpret such occupancy patterns to

potentially reflect alternative dissociation mechanisms. Should

occupancy is greater than the combined occupancy of TBP and pol II, then only the disassembly pathways shown will work. D, Membership bar
graphs, occupancy pie graphs, and the PathCom compatibility cluster plot are described in Figure 1D. TBP binding was found to be highest at tRNA
genes and we wanted to assess if removing these genes would substantially alter the compatibility pattern. We found that only 3 of 48 tests were
affected (indicated by opposing green and black dots). Note that given the rules of compatibility, some columns (mechanisms) are more constrained
than others. E, Transcription frequency bar graphs for each group is shown, along side the COPASI compatibility cluster plot. Below that, is a
histogram showing the distribution of log10 E-values. It is clearly bimodal. The group of bars at the very left represent incompatible E-values, while
the rest of them represent compatible E-values.
doi:10.1371/journal.pcbi.1000733.g002
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alternative association mechanisms be considered, then alternative

dissociation mechanisms are likely.

In regards to the genome-wide distribution of the GTF’s, we did

not see a random partitioning of genes into high vs low occupancy

states for each factor. Principal component analysis (PCA)

indicates the presence of a single major component (not shown),

and several minor ones. This would be consistent with the strong

tendency of the GTF’s to work together. What is interesting about

the PCA is that TFIIB, pol II, TFIIF, and TFIIH were the main

drivers in the first principal component, despite pol II having

relatively low occupancy at the promoter region. TBP contributed

the least to the principal components (Dataset S1 and Figure
S5). In addition, we determined whether genes with ,10%

occupancy or $10% occupancy had a tendency toward having

TATA versus TATA-less promoters, using data from [31]. We

found that approximately 20% of genes with ,10% or $10%

occupancy levels were TATA-containing genes. Therefore, neither

group had a bias toward TATA or TATA-less genes. Also we took

the very highest TBP binding genes (at least 50% binding) and

they also had 20% TATA-box genes. It does not seem likely that

factor percent binding shows any correlation with the percent of

genes that have TATA-boxes or sequence-effects in general.

When clustering all GTF’s and pol II, three high occupancy

states stood out as having a large membership. These included

genes with high levels of 1) all GTF’s, 2) all GTF’s except TBP,

and 3) all GTF’s except TBP and pol II. The group having high

levels of all GTF’s was by far the most highly transcribed, which is

not surprising. This group included the ribosomal protein genes.

However, for the major groups, low levels of TBP were more

closely linked to low levels of transcription than the occupancy

Figure 3. Four factor (TBP, TFIIB, Pol II, and TFIIH) modeling of genome-wide ChIP occupancy data. A–B, See Figures 1 and 2 for panel
descriptions.
doi:10.1371/journal.pcbi.1000733.g003
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level of any of the other factors including pol II. This confirms on a

genomic scale the earlier notion established on a few genes that

TBP recruitment or retention is rate-limiting in transcription [32].

However, since pol II and the other GTF’s are commonly found at

high levels at many promoters even when TBP levels are low, it

also seems likely that steps after TBP recruitment will be rate-

limiting at certain genes. Otherwise, a rapid initiation and

elongation phase would be expected to result in low pol II

occupancy at all promoters.

While the number of dissociation mechanisms scale factorially

(n!) with the number (n) of proteins involved, we did not see an

equal distribution of genes into each type of mechanism, and we

did not see a corresponding increase in the number of compatible

dissociation mechanisms. Instead, the number of compatible

mechanisms remained rather fixed at one to two, for a given

association mechanism. The general pattern observed for most

genes, was that if TBP, TFIIB, pol II, and the other GTFs

assembled in the listed order, then the dissociation order was

generally TBP, then pol II, then the other GTFs, with the latter

being less resolved.

Methods

Occupancy and grouping of genes
Background normalization. Factor occupancy data was ob-

tained from ArrayExpress (http://www.ebi.ac.uk/arrayexpress/)

using the accession numbers E-MEXP-1676 and E-MEXP-1677

(low-density tiling microarray probes). High-density tiling micro-

array data was obtained from material in [14]. The 25uC YPD

media occupancy data for the TSS probe (in the low-density data)

was used for modeling, representing occupancy values near the TSS

for 5743 genes. The probe for the TSS was designed for regions

between 30 bp and 90 bp upstream from the start of the actual

ORF. However, all raw data (from ,20,000 probes) was processed

as follows: First, a background dataset was calculated. Each BY4741

background dataset was normalized to the median value of the

entire dataset. Then replicates were combined by computing the

median value for each probe. Second, each factor ChIP dataset was

divided by the background BY4741 dataset, on a probe-by-probe

basis, then divided by the median value for all probe signals

located in T-T regions (‘‘tail-to-tail’’ intergenic regions between

Figure 4. Five factor (TBP, TFIIB, Pol II, TFIIF, and TFIIH) modeling of genome-wide ChIP occupancy data. A–B, See Figures 1 and 2 for
panel descriptions.
doi:10.1371/journal.pcbi.1000733.g004
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convergently transcribed genes, which are expected to be devoid

of bound factors). The resulting occupancy levels represent fold

over background, centered so that the ratio in nonpromoter

regions equals 1. For further information on the experimental

design, see [14].

Scaling datasets from 0 to 100% occupancy. This scaling

was necessary to compare occupancy levels across different

factor datasets. In principle such scaling eliminates differences in

crosslinking efficiencies and ChIP yields between factors. Fold-

over-background values equal to or less than 1 represent

background and thus were re-coded as 0% occupancy. Several

limitations of the ChIP assay precluded accurate assessment of

100% occupancy. First, ChIP hybridization signals generally

correlated with actual occupancy levels but were not tightly

linked (see below), and so the maximum detected fold

enrichment over background could not simply be set to 100%,

inasmuch as the variance might be quite substantial. Second,

ChIP assays do not measure absolute binding, and so even if

Figure 5. Six factor (TBP, TFIIB, Pol II, TFIIF, TFIIE, and TFIIH) modeling of genome-wide ChIP occupancy data using the assembly
pathway TBP R TFIIB R pol IIR TFIIF R TFIIE R TFIIH. See Figures 1 and 2 for panel descriptions.
doi:10.1371/journal.pcbi.1000733.g005
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the variance were eliminated, we could not be certain that

the maximum detected level of binding represented 100%

occupancy. Nonetheless, if all factors are held to the same

standard, and data from groups of similarly behaving genes are

aggregated, then approximations can be made. Therefore, we

coded any value above the 99th percentile rank (top 200 probes)

as 100% (setting the 100% mark to the upper 98th percentile

gave essentially the same results). All remaining data were scaled

between 0 and 100% occupancy by subtracting background (1.0)

from all data, and dividing through by the value at the 99th

percentile rank.

Assumption of linearity of occupancy levels. It is

generally assumed that ChIP signals scale linearly with actual

occupancy level. However, it is possible that a factor bound to one

type of DNA sequence may crosslink more readily than when

bound to a different sequence. To test the effect of underlying

DNA sequence on crosslinking efficiency, we examined the distri-

bution of TBP occupancy levels at each of the eight TATA box

subtypes [31], TATA(A/T)A(A/T)(A/G). As presented in Data-
set S2, a chi-square test demonstrated that TBP occupancy levels

were independent of DNA sequence (p-value = 0.48). Next we

tested TFIIB, which binds both TBP and DNA, and also found it

to be independent of the sequence of the TATA box (p-value =

0.76). Nevertheless, to minimize the influence of crosslinking

efficiency on measured occupancy levels, similarly behaving genes

were grouped, and their median occupancy level was used in the

modeling. In addition, we focused on those groups having high

gene membership, which should further alleviate fluctuations

associated with individual genes.

Grouping of genes into low and high occupancy

levels. To increase the robustness of the occupancy values, as

well as focus the modeling on predominant patterns, we grouped

Figure 6. This figure is the same as Figure 5, except the assembly pathway is TBP R TFIIB R TFIIE R pol II R TFIIF R TFIIH.
doi:10.1371/journal.pcbi.1000733.g006

Modeling ChIP-chip Data

PLoS Computational Biology | www.ploscompbiol.org 10 April 2010 | Volume 6 | Issue 4 | e1000733



genes in accordance with their occupancy level for each factor.

Genes (probes) having a GTF occupancy below 10% were parsed

into low (L) occupancy groups. All others were parsed into high

(H) occupancy groups, resulting in 2n theoretically possible groups,

where ‘‘n’’ is the number of GTFs being modeled. Parsing the data

at a 15% cutoff, or into three groups (low, medium, high using the

10% and 20% for the low-medium and medium-high cutoffs,

respectively) did not substantially alter the outcomes, and its main

conclusions.

Groups having low membership do not represent predominant

patterns and so were consolidated as follows: Groups having .100

genes were exempt from consolidation because they have

substantial membership, and groups having ,10 genes were

required to be consolidated for lack of viable membership.

Otherwise, if the membership of an existing group was split by

more than a 4:1 ratio when an additional factor was added to the

model (e.g. from 2-factor models to 3-factor models), then the two

resulting clusters were consolidated (i.e., not split; note that the

label of the consolidated clusters was assigned the label of the

larger cluster). The final occupancy median calculations can be

found in Dataset S3. Because of consolidation, the number of

actual clusters is less than 2n. Note that consolidation was not

performed when we were analyzing the two- and three-factor

models in order to make the modeling explanations more clear.

PathCom
PathCom requires the user to enter occupancies of proteins in a

tab-delimited text file followed by the name of the cluster line by

line. In a header, before the occupancies are entered, users enter

one-letter codes to denote protein identities (of the user’s choice)

followed by a number to indicate the order in which the proteins

assemble (See Text S1 for information how PathCom was designed

and how it was intended to be used). Below each protein in the

header, the user enters the percent occupancies calculated along

with the name of each cluster (or gene). After execution, the

program then reads each cluster’s occupancies on each line. Given

the fixed order of association of proteins specified by the user in the

header, the program generates all possible dissociation sequences.

Note that if the user changes the association order, the pool of

dissociation reactions will remain the same, but the numbering of

each dissociation reaction will be different, because PathCom uses

the specific association to generate the dissociation sequences. The

program processes each dissociation sequence, pairing it with the

fixed association sequence, and given the rules of compatibility

(discussed in the paper), computes whether the input protein

occupancies are compatible with the mechanism (association +
dissociation) it is testing. PathCom processes all possible dissociation

sequences for all groups entered. PathCom writes the results to a

tab-delimited text file. In this file, the horizontal axis is labeled with

every mechanism identification number and the vertical axis is

labeled with every cluster name. Also, PathCom writes a file that

matches each dissociation sequence with its dissociation sequence

identification number. Every time a set of occupancies and a

mechanism are compatible, the program reports ‘‘21’’, and when

they are not, the program reports ‘‘0.’’ Results can be clustered

through Cluster then visualized graphically in Treeview [33] The

code is given in Protocol S1 and S2 for users of Windows and

Mac OS, respectively.

COPASI
COPASI conducts chemical kinetic and stochastic simulations

[9], and is freely available for download at www.copasi.org.

Reactions were set to be irreversible for simplicity. Initial input

protein and DNA concentrations were set to be equal, having an

arbitrary value of 10 (setting the DNA concentration to 1 gave the

exact same results in terms of compatibility, Figure S6). Since the

observed occupancy levels for a factor represent the sum of all

intermediate species having that factor, it was necessary to employ

the Parameter Estimation function to optimize this sum, using the

free protein concentration equal to (1 – Occ/100)610, where

‘‘Occ’’ is the measured percent occupancy level, and had a

practical lower limit of 0.1% (this formula is only valid when all

species concentrations were set to 10). The Parameter Estimator

may converge on a local minimum, which may not represent the

optimal solution. Running the estimator multiple times alleviated

the local minimum, since it employs a random search component.

COPASI creates an objective value (E) used to measure goodness

of fit between simulated and measured values:

E~
X

i

wi xi{yið Þ2

where ‘‘i’’ represents each of the protein factors involved in the

modeling, ‘‘w’’ is the weight that is given to a particular protein in

the optimization procedure, which is calculated automatically by

COPASI, ‘‘x’’ is the measured occupancy, and ‘‘y’’ is the

simulated occupancy. Since COPASI aims to minimize this sum

of squares, lower E values (more negative log10 E) reflect better

congruence between modeled and measured data.

Since each modeling run has a manual component and

becomes computationally draining with a large number of factors,

it became impractical to run COPASI to fully generate the

compatibility charts for four or more factors. Nonetheless, we

employed COPASI to spot check these charts, and found 100%

agreement with PathCom.

Supporting Information

Figure S1 Scatter plot showing the distribution of percent of

maximally measured occupancy of TBP and TFIIB.

Found at: doi:10.1371/journal.pcbi.1000733.s001 (0.16 MB TIF)

Figure S2 Scatter plots showing the occupancy level of each

replicate. Also shown are two plots comparing the median percent

occupancies of TBP and TFIIB in the four two-factor clusters

using both the low and high density tiling array data.

Found at: doi:10.1371/journal.pcbi.1000733.s002 (0.26 MB TIF)

Figure S3 All six possible three-factor assembly pathways are

shown and their corresponding PathCom compatibility cluster

plots are shown, detailing which possible disassembly pathways

arise under each possible assembly pathway. See Figure 2A to see

which numbers correspond to which disassembly mechanisms.

Found at: doi:10.1371/journal.pcbi.1000733.s003 (0.23 MB TIF)

Figure S4 Shown are the experimentally determined digital

footprints of genes having the highest occupancy of TBP (with

TATA-boxes). The bases boxed in red highlight the TATA-boxes.

The lack of discernable footprints suggests that TBP does not fully

occupy its most occupied sites.

Found at: doi:10.1371/journal.pcbi.1000733.s004 (0.28 MB TIF)

Figure S5 The two strongest principal components in a

Principal Components Analysis (PCA) done on the six general

transcription factors. They are plotted to show each factor’s

relative contribution to the principal components.

Found at: doi:10.1371/journal.pcbi.1000733.s005 (0.11 MB TIF)

Figure S6 Compatibility chart for three factor modeling using

COPASI, in which the DNA concentration was reduced from 10

to 1.
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Found at: doi:10.1371/journal.pcbi.1000733.s006 (0.20 MB TIF)

Protocol S1 PathCom code for Windows users.

Found at: doi:10.1371/journal.pcbi.1000733.s007 (0.01 MB

TXT)

Protocol S2 PathCom code for Mac OSX users.

Found at: doi:10.1371/journal.pcbi.1000733.s008 (0.01 MB

TXT)

Text S1 Instruction on how to use PathCom.

Found at: doi:10.1371/journal.pcbi.1000733.s009 (0.52 MB

DOC)

Dataset S1 Principal Component Analysis (PCA) of the six

GTF’s

Found at: doi:10.1371/journal.pcbi.1000733.s010 (0.01 MB XLS)

Dataset S2 The results of chi-square testes on whether

underlying TATA-sequence variation might have had any effect

on the cross-linking efficiencies of TBP and TFIIB.

Found at: doi:10.1371/journal.pcbi.1000733.s011 (0.04 MB XLS)

Dataset S3 Median occupancy levels for gene groups

Found at: doi:10.1371/journal.pcbi.1000733.s012 (0.03 MB XLS)
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