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Abstract: The aim of this paper is to attract the attention of experimenters to the original Bell (OB)
inequality that was shadowed by the common consideration of the Clauser–Horne–Shimony–Holt
(CHSH) inequality. There are two reasons to test the OB inequality and not the CHSH inequality.
First of all, the OB inequality is a straightforward consequence to the Einstein–Podolsky–Rosen (EPR)
argumentation. In addition, only this inequality is directly related to the EPR–Bohr debate. The second
distinguishing feature of the OB inequality was emphasized by Itamar Pitowsky. He pointed out that
the OB inequality provides a higher degree of violations of classicality than the CHSH inequality.
For the CHSH inequality, the fraction of the quantum (Tsirelson) bound QCHSH = 2

√
2 to the classical

bound CCHSH = 2, i.e., FCHSH = QCHSH
CCHSH

=
√

2 is less than the fraction of the quantum bound for the

OB inequality QOB = 3
2 to the classical bound COB = 1, i.e., FOB = QOB

COB
= 3

2 . Thus, by violating the OB
inequality, it is possible to approach a higher degree of deviation from classicality. The main problem
is that the OB inequality is derived under the assumption of perfect (anti-) correlations. However,
the last few years have been characterized by the amazing development of quantum technologies.
Nowadays, there exist sources producing, with very high probability, the pairs of photons in the
singlet state. Moreover, the efficiency of photon detectors was improved tremendously. In any event,
one can start by proceeding with the fair sampling assumption. Another possibility is to use the
scheme of the Hensen et al. experiment for entangled electrons. Here, the detection efficiency is
very high.

Keywords: original Bell inequality; preparation of singlet states; possible experimental test

1. Introduction

In his paper [1] (see also [2]), Bell proposed the probabilistic test based on the EPR-argument [3].
The problem under consideration can be formulated as follows. Einstein, Podolsky, and Rosen proved
that quantum mechanics (QM) is incomplete, since its formalism does not represent the EPR elements
of reality. Suppose one wants to construct a subquantum theory completing QM. Such a theory should
match statistical predictions of QM and, at the same time, it should describe EPR’s elements of reality.
Can such a theory be local? (as EPR hoped).

Bell proposed a test based on an inequality for correlations. This inequality will be called
the original Bell inequality (OB inequality). This inequality was proved under the following crucial
assumption about coupling the Bell model with hidden variables and the EPR elements of reality.

For the singlet state (as for the original EPR state), spin projections are EPR’s elements of reality.
These elements of reality are equal to measurement outcomes (elements of reality for S2 are measurement
outcomes for S1). Hence, values of variables of a subquantum theory beyond the singlet state can be identified
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with possible outcomes of measurements. Therefore, for the singlet state, subquantum and quantum
correlations can be identified (see Appendixes B and C for further discussion).

However, this beautiful theoretical scheme supporting nonlocal hidden variable theories did not
match the experimental framework of that time, since the degree of (anti-)correlations (for the same
setting on both sides) was not so high. This problem was solved by transition from the OB inequality
to the CHSH inequality [4] or the similar inequalities: the CH74 inequality [5,6] or the Eberhard
inequality [7] (see [8] for comparison of these inequalities). Derivations of such inequalities are not
based on the assumption of perfect (anti-) correlations. (For convenience, later, we shall compare the OB
inequality only with the CHSH inequality, but a similar comparison can be done for other “CHSH-like
inequalities” as the CH74 inequality and the Eberhard inequality.) The foundational difference between
the OB and CHSH-like inequalities is discussed in Appendix B; see also Appendix C for the general
discussion about Bell type inequalities and interpretations of quantum mechanics.

Although the authors think that only a violation of the OB-inequality can be used as the argument
in favor of quantum nonlocality, this viewpoint does not match the conventional views. Therefore to
stimulate experimenters to perform experiments to violate the OB inequality, we want to highlight that,
as was stressed by Itamar Pitowsky [9], the OB inequality provides a higher degree of violations of classicality
than the CHSH inequality. For the CHSH inequality, the fraction of the quantum (Tsirelson) bound

QTsirelson = 2
√

2 (1)

to the classical bound CCHSH = 2, i.e.,

FTsirelson =
QCHSH

CCHSH
=
√

2 (2)

is less than the fraction of the quantum bound for the OB inequality

QPitowsky =
3
2

(3)

to the classical bound COB = 1, i.e.,

FPitowsky =
QOB

COB
=

3
2

. (4)

Thus, by violating the OB inequality, it is possible to approach a higher degree of deviation
from classicality (see Appendix A for Pitowsky’s comparison of measures of nonclassicality given
by quantities FTsirelson and FPitowsky). However, the main message of Pitowsky was not just that
FPitowsky > FTsirelson, but that, for multi-dimensional generalizations of the OB inequality,

FPitowsky → ∞.

(However, for multi-dimensional generalizations of the CHSH-like inequalities, FTsirelson = KG(n),
where KG(n) is the Grothendieck constant of the order n, and, as was shown by Grothendieck,
there exists

lim
n→∞

KG(n) = KG,

the Grothendieck constant, see Appendix A).
Thus, by appealing to multi-dimensional analogs of the OB inequality, experimenters can,

in principle, approach an arbitrary large value of the “quantum/classical fraction”.
The main problem for performing an experimental test is that the OB inequality is derived under

the assumption of perfect (anti-) correlations. Therefore, it was impossible to perform experiments to
check violation of the OB inequality. However, the last few years were characterized by the amazing
development of quantum technologies. Technological improvements led to the loophole free tests of
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the Bell-type inequalities (It may be interesting for the reader that the weblinks to the video-records
of the talks of the leaders of all these experimental groups accompanied with the talks of Gregor
Weihs and two talks of Philippe Grangier (at the special session BIG EVENT: Final Bells test, at the
conference Quantum and Beyond, Växjö, Sweden, June 2016) can be found at the webpage of one of
the authors of this paper: https://lnu.se/en/staff/andrei.khrennikov/) (the CHSH, Eberhard, and
Clauser–Horne inequalities) [10–12] (see also [13–18] for previous steps towards these long-aspired
experiments) (As was expected by Bell, these experiments did not change the views of those who did
not accept the conventional interpretation of experimental outputs, see, e.g., [19]).

One possibility to test violation of the OB inequality is to follow the quantum optics path initiated
by Aspect [14]. Nowadays, there exist sources producing with very high probability the pairs of photons
in the singlet state. Moreover, the efficiency of photon detectors was improved tremendously. Therefore,
one can hope to violate the OB inequality, although this is still the real challenge (see Section 6).
In any event, one can proceed under the fair sampling assumption, i.e., to solve first the problem of
(anti-) correlations.

Another possibility is to test the OB inequality by using the scheme of the Hensen et al.
experiment [10]. This experimental scheme does not suffer from inefficiency of detection. However,
it seems that the quality of preparation of the singlet state is still insufficient to perform the experimental
test to violate the OB inequality (see Section 6).

This paper is a short review based on the results of Pitowsky [9], Ryff [20], and Larsson [21].
Its aim is to collect these results in one text and consider experimental consequences of a combination
of the results from Ryff [20] and Larsson [21] in the light of recent tremendous achievements of modern
quantum information technologies.

In Section 3, we present probabilistic calculations to estimate the probability of preparation of the
singlet state that is sufficient to test violation of the OB-inequality under the assumption of 100% of the
detection efficiency. Theorem 2 implies that experimenters have to be able to prepare an ensemble in
which more than 75% of pairs are in the singlet state (see also Ryff’s paper [20]). Thus, the existing
photon sources of high quality provide the possibility to test the OB inequality, at least under the
assumption of fair sampling. In Section 4, we present probabilistic calculations to estimate the minimal
efficiency of detection that is sufficient to test violation of the OB-inequality under the assumption
of 100% fidelity in preparation of the singlet state. By Theorem 3, the efficiency of the joint detection
should be higher than 88,9% (see Larsson’s paper [21] for the original derivation of this bound).
In addition, finally, in Section 5, we combined the results of Sections 3 and 4. By combining 98% level
of anti-correlations with 90% level of detection efficiency, one can test violation of the OB inequality.

We remark that generalized (perturbed) Bell’s inequalities that are similar to inequalities obtained
in Theorems 2–4 were actively used by one of the coauthors in foundational studies [22–25].

Successful experimental testing of violation of the OB inequality would be an important (although
very challenging) contribution to clarification of quantum foundations.

2. Classical and Quantum Bounds for the Original Bell Inequality

We proceed in accordance with Bell’s paper [1]. Let p be a probability measure on the space
of hidden variables Λ. (Bell used the symbol ρ.) We model measurements on a pair of systems S1

and S2 with the aid of random variables As(λ) and Bs(λ), where the parameter s labels settings of
measurement devices, s = a, b, c.

Consider correlations of these random variables given by the integrals:

P(a, b) =
∫

Λ
Aa(λ)Bb(λ)dp(λ). (5)

It is assumed that these random variables take values ±1 and that the random variables corresponding
to measurements on S1 and S2 are anti-correlated:

https://lnu.se/en/staff/andrei.khrennikov/
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P(a, a) =
∫

Λ
Aa(λ)Ba(λ)dp(λ) = −1. (6)

Under these assumptions, Bell derived [1,2] the following inequality:

|P(a, b)− P(a, c)| − P(b, c) ≤ 1 (7)

(see also Section 3 for details). We call it the original Bell inequality or OB inequality.
This hidden variable model was confronted with spin measurements represented in QM by the

spin operators σ · s. In this case, s is the unit vector in R3 representing the axis of spin projection.
Thus, pairwise correlations for spin operators are compared with correlations for random variables.
To distinguish measurements on systems S1 and S2, we shall use symbols σ1 · a and σ2 · b.

The OB inequality implies that, for classical correlations, the upper bound COB for the expression
∆ = |P(a, b) − P(a, c)| − P(b, c) equals one. Now, consider the the quantum case. To get perfect
anti-correlations, we proceed with the singlet state

Ψ = (|+−〉 − | −+〉)/
√

2. (8)

For this state, we have
PQ(a, b) = 〈σ1 · a⊗ σ2 · b〉 = −〈a|b〉. (9)

One can find the quantum bound for the expression

∆Q(a, b, c) = |PQ(a, b)− PQ(a, c)| − PQ(b, c) = |〈a|b〉 − 〈a|c〉|+ 〈b|c〉.

Theorem 1. QOB = maxa,b,c ∆Q(a, b, c) = 3
2 .

Proof. Under the suitable parametrization ∆Q(a, b, c) can be represented as

∆Q(φ1, φ2, θ) = 2| sin φ1 sin φ2 sin θ|+ 1− 2 sin2 φ1. (10)

It is easy to find that the maximal value of this function equals to 3/2.

Consider, for example, three vectors in the same plane, a = (1, 0), b = (1/2,−
√

3/2),
c = (−1/2,−

√
3/2). Then, P(a, b) = −〈a|b〉 = −1/2, P(a, c) = −〈a|c〉 = 1/2, P(b, c) = −〈b|c〉 = −1/2.

Hence, ∆Q(a, b, c) = 3/2.
Hence, we proved the equality (4), FOB = 3/2.
Itamar Pitowsky [9] presented the same argument by using a slight modification of the OB

inequality (7).

3. Original Bell Inequality: Taking into Account Imperfection of Anti-Correlations

Here, we proceed in Bell’s framework based on classical probability under the assumption that
the random variables corresponding to measurements on S1 and S2 are anti-correlated. As Bell pointed
out, this is possible only if the following equality holds

Aa(λ) = −Ba(λ), (11)

except a set of measure zero. Bell derived inequality (7) under this assumption of perfect (up to measure
zero) anti-correlation. It is easy to modify this equality under assumption of imperfect anti-correlations.
Here, we follow the original paper [20], but we proceed in measure theoretic framework. Using the
frequentist approach (as in paper [20]) has been objected to by a few authors (see, e.g., [22]).

Suppose that, for each a, there exists a subset Λa of Λ such that Equation (11) holds for all λ from
Λa and, for the set Λ′a = Λ \Λa, we have:
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p(Λ′a) ≤ ε. (12)

Since random variables are dichotomous, on the set Λ′a

Aa(λ) = Ba(λ). (13)

Now, on Λb, we have:

Aa(λ)Bc(λ)− Aa(λ)Bb(λ) = Aa(λ)Ab(λ)Ab(λ)Bc(λ) + Aa(λ)Ab(λ)

= Aa(λ)Ab(λ)[1 + Ab(λ)Bc(λ)].

On Λ′b, we have:
Aa(λ)Bc(λ)− Aa(λ)Bb(λ) =

Aa(λ)Ab(λ)Ab(λ)Bc(λ) + Aa(λ)Ab(λ)− 2Aa(λ)Ab(λ)

= Aa(λ)Ab(λ)[1 + Ab(λ)Bc(λ)]− 2Aa(λ)Ab(λ).

Thus,

P(a, c)− P(a, b) =
∫

Λ
Aa(λ)Ab(λ)[1 + Ab(λ)Bc(λ)]dp(λ)− 2

∫
Λ′b

Aa(λ)Bb(λ)dp(λ).

Hence, we proved the following theorem:

Theorem 2 (Ryff [20]). (Generalization of the OB inequality for imperfect anti-correlations). Under assumption (12),
the following inequality for classical correlations holds:

|P(a, b)− P(a, c)| − P(b, c) ≤ 1 + 2ε. (14)

By introducing the parameter γ = 1− ε, we write (15) as

|P(a, b)− P(a, c)| − P(b, c) ≤ 3− 2γ. (15)

By Theorem 1, we have the inequality: 3− 2γ < 1, 5, i.e., γ > 3/4 = 0, 75. Thus, to be able to
properly test the OB inequality, one has to be able to produce an ensemble of pairs of quantum systems
in which the percentage of precisely (anti-) correlated pairs will be higher than

γ = 75%. (16)

4. Original Bell Inequality: Taking into Account the Detection Efficiency

For the OB inequality, the issue of the detection efficiency was studied in detail by
J.-A. Larsson [21]. Here, we present similar consideration, but in slightly different form, which is
consistent with the above presentation of the role of imperfection of correlations. Denote the set of
hidden variables for which the pair Aa(λ), Bb(λ) is detected by the symbol Γab. The main parameter
of the experimental interest is the probability of joint detection of a pair, p(Γab). For simplicity of
considerations, we assume that this probability does not depend on the pair of settings, i.e.,

η ≡ p(Γab). (17)

Then, correlation conditioned on the pairwise detection is given by

P̃(a, b) =
1
η

∫
Γab

Aa(λ)Bb(λ)dp(λ). (18)
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Theorem 3. Under the assumptions of 100% perfect anti-correlations and set-independent joint detection
efficiency (see (17)), the following OB inequality for detectable correlations holds:

|P̃(a, b)− P̃(b, c)| − P̃(a, c) ≤ (4− 3η)

η
. (19)

Proof. From (18), we get: ηP̃(a, b) = P(a, b)− uab, where

uab =
∫

Λ\Γab

Aa(λ)Bb(λ)dp(λ)

and, hence, |uab| ≤ (1− η). We have

η
(
|P̃(a, b)− P̃(b, c)| − P̃(a, c)

)
≤ |P(a, b)− P(b, c)| − P(b, c) + 3(1− η) ≤ 1 + 3(1− η).

By dividing both sides of this inequality by η, we obtain (19).

To be able to violate inequality (19), the experimenter has to have sufficiently high the detection
efficiency, such that (4−3η)

η < 3
2 , i.e., η > 8/9 = 0.889. Thus, the efficiency of the joint detection should

be higher than 88.9%. This result coincides with the corresponding result from ([21], p. 57). Thus,
the detection efficiency should be higher than in the experimental tests for the CHSH inequality [21,26].

5. Original Bell Inequality: Taking into Account Imperfection of Anti-Correlations and the
Detection Efficiency

Theorem 4. Under the assumptions (17) and (12), the following experimentally testable version of the OB
inequality holds:

|P̃(a, b)− P̃(b, c)| − P̃(a, c) ≤ (4 + 2ε− 3η)

η
. (20)

Proof. We have

η
(
|P̃(a, b)− P̃(b, c)| − P̃(a, c)

)
≤ |P(a, b)− P(b, c)| − P(b, c) + 3(1− η)

≤ 1 + 2ε + 3(1− η).

To be able to violate inequality (20), experimenter has to have sufficiently high anti-correlations
and the detection efficiency, such that 4+2ε−3η

η < 3
2 . It is convenient to introduce a new parameter

κ = 1− ε. Then, the generalized OB inequality has the form:

|P̃(a, b)− P̃(b, c)| − P̃(a, c) ≤ (6− 2γ− 3η)

η
(21)

and the condition for possible violation can written as

4γ + 9η > 12. (22)

For example, let γ = 0.98. Then, η > 0.9. Thus, by approaching the 98% level of anti-correlations
and the 90% level of detection efficiency, the experimenter can test the OB inequality.
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6. Conclusions

The modern quantum technology provides the sources producing photons in the singlet state
with very high probability, up to 98% of generated ensemble of pairs. From this viewpoint, it is
promising to perform the experimental test for the OB inequality by using entangled photons, cf.
with experiments [11,12] to violate the CHSH-like inequalities (the Eberhard and CH inequalities).
However, as we have seen, tests for the OB inequality demand higher detection efficiency than tests for
the CHSH inequality. We remind readers (see also [8] for discussion) that the detection efficiency is not
reduced to the efficiency of photo-detectors. Although nowadays there are available photo-detectors
having close to 100% efficiency, this does not solve the problem of the detection efficiency. A weak
element of the experimental setup based on quantum optics is a polarization beam splitter, where
one can lose 8–13% of photons. This loss can play a crucial role in attempts to lift the detection
efficiency from 83% [21,26] in the tests for the CHSH inequality to approximately 90% in the planned
experimental test for the OB inequality.

It may be reasonable to proceed under the assumption of fair sampling. In addition, such a project
seems to be realizable.

If one wants to proceed without the fair sampling assumption, then it is very promising to test
violation of the OB inequality by using entangled electron spins, i.e., the scheme of the Hensen et. al. [10]
experiment that was done for the CHSH inequality. As was reported in [10], the parameter γ in
inequality (21) can be selected as γ ≈ 0.92. It exceeds the bound γ = 0, 75 (see Equation (16)). Therefore,
it seems that such an experiment can already be performed today.
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Appendix A

Here, we follow the paper of Pitowsky [9]:
We recall that the Grothendieck constant of the order n (denoted by KG(n)) is defined as the least real

number such that

|
m

∑
i=1

m

∑
j=1

aij〈xi|yj〉| ≤ KG(n) sup
Xi,Yj=±1

|
m

∑
i=1

m

∑
j=1

aijXiYj|, (A1)

for every natural number m , every choice of real matrix elements aij, i, j = 1, ..., m, and every choice of
unit vectors x1, ..., xm, y1, ...ym ∈ Rn. It was proved by Grothendieck that there exists

KG = lim
n→∞

KG(n). (A2)

Tsirelson proved that KG(2) =
√

2 if all vectors belong to the same plane; he also connected this result
with the CHSH-inequality.

Tsirelson also proved the following theorem connecting the inequality (A1) to quantum theory:

Theorem A1. The following conditions on m×m matrix (rij) are equivalent:

• There exists a finite-dimensional Hilbert space H and Hermitian operators A1, ..., Am and B1, ..., Bm acting
in H and having the spectrum in [−1,+1], and a state W on H⊗ H such that rij = TrW(Ai ⊗ Bj).

• There exist unit vectors x1, ..., xm, y1, ...ym ∈ R2m such that rij = 〈xi|yj〉.
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Thus, the fraction

FTsirelson ≡ sup
m,aij,xi,yj(unit vectors)

|∑m
i=1 ∑m

j=1 aij〈xi|yj〉|
supXi,Yj=±1 |∑

m
i=1 ∑m

j=1 aijXiYj|
(A3)

can be used as a measure of quantumness (see also [27] and references herein for related studies about
the “quantum/classical fraction”.).

However, as was emphasized by Pitowsky [9], for the OB inequality, we can get the higher value
for the “quantum/classical fraction” (see Theorem 1). (We remark that Theorem 1 is easily generalized
to the Bell state: Ψ = (|+−〉+ | −+〉)/

√
2.) This simple result stimulated Pitowsky to consider the

general scheme for estimation of the “quantum/classical fraction” for perfectly correlated observables.
Define A(n) as the least real number such that

∑
1≤i<j≤n

aij〈xi|xj〉 ≤ A(n) sup
Xi=±1

∑
1≤i<j≤n

aijXiXj. (A4)

In contrast to the sequence of the Grothendieck constants KG(n), the sequence A(n) is unbounded and
A(n) = O(log n). Moreover, this is the best bound, i.e., there exists a positive constant c such that

∑
1≤i<j≤n

aij〈xi|xj〉 > c log n sup
Xi=±1

∑
1≤i<j≤n

aijXiXj (A5)

for all n and aij. Thus, the “quantum/classical fraction” approaches infinity! Finally, to connect this
result with quantum physics, Pitowsky pointed to the following result following from Theorem A1:

Corollary A1. Given unit vectors x1, ..., xn ∈ Rn, there exists a finite-dimensional Hilbert space H and
traceless Hermitian operators A1, ..., An and B1, ..., Bn acting in H and having the spectrum ±1, and a state W
on H⊗ H such that TrW(Ai ⊗ I) = 0, TrW(I⊗ Bj) = 0 and TrW(Ai ⊗ Bj) = 〈xi|yj〉.

We remark that these observables are perfectly correlated in the state W.
By Corollary A1, the fraction

FPitowsky(n) ≡= sup
aij,xi(unit vectors)

∑1≤i<j≤n aij〈xi|xj〉
supXi=±1 ∑1≤i<j≤n aijXiYj

(A6)

can be used used as a measure of “quantumness”.
Thus, by using the multidimensional analogs of the OB inequality, one can approach very

high values of the “quantum/classical fraction”. In addition, it is impossible to do this with
CHSH-like inequalities.

Appendix B. From the EPR Argument to the Original Bell Inequality

The original Bell project can be formulated as the following:

• Einstein, Podolsky, and Rosen proved the existence of elements of reality (for the very special state).
• This implies that QM is not complete and it has to be considered as emergent from some theory

with hidden variables.
• Einstein, Podolsky, and Rosen expected that such a theory would be local. (They did not construct

such a theory, but they dreamed for it.)
• Bell’s message based on violation of the OB inequality by (theoretical) quantum correlations:

unfortunately, EPR realism is not compatible with locality.

We cite Bell ([1], p. 195): “Since we can predict in advance the result of measuring any chosen
component of σ2, by previously measuring the same component of σ1, it follows that the result of
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any such measurement must actually be predetermined. Since the initial quantum mechanical wave
function does not determine the result of an individual measurement, this predetermination implies
the possibility of a more complete specification of the state.” Thus, Bell’s study was aimed at checking
reazability the EPR project: to construct a subquantum model that would match statistical predictions
of QM and at the same time describe the EPR elements of reality.

We remark that one could respond straightforwardly to EPR’s argument by saying that
measurement of the system without disturbance is impossible because a faster-than-light signal can
move from S1 to S2. We remark that, for Einstein, Podolsky, and Rosen as well as Bohr, such explanation
was not acceptable. In addition, this is the important point (We can mention Bohr’s response to the
EPR paper [28]. However, it seems that Bohr did not understand the EPR argument. In any event his
reply does not explain the origin of perfect correlations.).

However, Bell proved (see [1], p. 199): “In a theory in which parameters are added to quantum
mechanics to determine the results of individual measurements, without changing the statistical
predictions, there must be a mechanism whereby the setting of one measuring device can influence
the reading of another instrument, however remote. Moreover, the signal involved must propagate
instantaneously, so that such a theory could not be Lorentz invariant.” Thus, he treated violation of
the OB inequality as the proof of nonlocality of any theory with hidden variables.

Now, we point to the crucial connection between the EPR argument and the OB inequality.
For the singlet state (as for the original EPR state), spin projections are EPR’s elements of reality.
These elements per definition are equal to measurement outcomes (elements of reality for S2 are
measurement outcomes for S1). Hence, values of variables of a subquantum theory beyond the singlet
state can be identified with possible outcomes of measurements. Therefore, for the singlet state,
subquantum and quantum correlations can be identified.

There are no reasons to assume this for a non-singlet state. Therefore, CHSH-like projects that are
not straightforwardly based on the perfect (anti-)correlations can be objected from the viewpoint that
there is no reason to identify the values of subquantum and quantum variables and hence subquantum
and quantum correlations. Subquantum correlations satisfy CHSH-inequality, but quantum correlations
violate it. (In particular, this was the viewpoint of De Broglie [29], see also [30] for details and references.).
By rephrasing Bell, we can say “that what is proved, by impossibility proofs, is lack of imagination” of
possible couplings beween subquantum and quantum correlations (cf. [31]).

Therefore, it is important to perform experimental tests for the OB inequality. This and only this
test would imply that the issue of nonlocality has to be considered seriously.

Appendix C. Interpretations of Violations of Bell Type Inequalities and Interpretations of
Quantum Mechanics

De Broglie’s viewpoint [29] on interrelation between subquantum and quantum correlations
(see Appendix B) can be generally formulated in the framework of the ontic-epistemic representation
of quantum phenomena (see Atmanspacher and Primas [32]). This is the framework of the two-level
description of natural phenomena. Besides an epistemic model representing outputs of measurements,
one can consider an ontic model of reality as it is when nobody performs measurements. The quantum
model is treated as an epistemic model (one of possible models describing knowledge that can be
gained through measurements). Possible models with hidden variables are possible ontic models
behind the quantum epistemic model.

We remark that the very common (especially among philosophers) statement that “an ontic model
is about reality as it is” has to interpreted with caution. Scientists can speak only about models of
reality, typically mathematical models. It may be better to follow Hertz, Boltzmann, and Schrödinger
(see [33] and also [30]) and to speak about a theoretical model presenting a consistent picture of
natural phenomena and an epistemic model representing the results of measurements. We remark that
the quantum model cannot be considered as a theoretical model (in the sense of Hertz, Boltzmann,
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and Schrödinger), because, in particular, the measurement problem has not yet been solved (cf. with
the claim of Allahverdyan, Balian, Nieuwenhuizen [34] that they solved this problem).

In such two-level framework, De Broglie’s position [29] is justified. In general, there is no reason
to identify the subquantum correlations with quantum ones, especially for the CHSH-like inequalities.
In particular, a theoretical model can be based on the continuous description of the field-type,
cf. with “Einstein’s dream” [35]. Subquantum correlations are correlations of such subquantum
fields. Such correlations trivially violate Bell’s inequality because the range of values of fields is
unbounded. The concrete model of this type, prequantum classical statistical field theory (PCSFT),
was developed in the series of works [31,36–38]. It generates correlations coinciding with the quantum
correlations. (Here, a wave function determines the covariance operator of a prequantum random
field.) The corresponding epistemic model is the threshold detection model [39].

We stress that generally interpretations of violation of Bell type inequalities are rigidly coupled
to interpretations of the quantum mechanics (see, e.g., De Muynck [40,41], Fuchs [42,43], Fuchs and
Schack [44], Grangier [45,46], ’t Hooft [47,48], De Raedt et al. [49,50] Long, Qin, Yang et al. [51]),
or more generally to interrelations between classical (Kolmogorovean) and quantum probabilities
(see, e.g., Accardi [52,53], Ballentine [54–56], Khrennikov [22,25,57], Hess and Philipp [58], Hess [59]).
Finally, we point to works of Khrennikov [60] and Kupczynski [61].
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