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ABSTRACT: Design of allosteric regulators is an emergent field in the area of
drug discovery holding promise for currently untreated diseases. Allosteric
regulators bind to a protein in one location and affect a distant site. The
ubiquitous presence of allosteric effectors in biology and the success of
serendipitously identified allosteric compounds point to the potential they hold.
Although the mechanism of transmission of an allosteric signal is not unequivocally
determined, one hypothesis suggests that groups of evolutionarily covarying
residues within a protein, termed sectors, are conduits. A long-term goal of our lab
is to allosterically modulate the activity of proteins by binding small molecules at
points of allosteric control. However, methods to consistently identify such points
remain unclear. Sector residues on the surfaces of proteins are a promising source
of allosteric targets. Recently, we introduced molecular dynamics (MD)-based
sectors; MD sectors capitalize on covariance of motion, in place of evolutionary
covariance. By focusing on motional covariance, MD sectors tap into the framework of statistical mechanics afforded by the
Boltzmann ensemble of structural conformations comprising the underlying data set. We hypothesized that the method of MD
sectors can be used to identify a cohesive network of motionally covarying residues capable of transmitting an allosteric signal in a
protein. While our initial qualitative results showed promise for the method to predict sectors, that a network of cohesively covarying
residues had been produced remained an untested assumption. In this work, we apply network theory to rigorously analyze MD
sectors, allowing us to quantitatively assess the biologically relevant property of network cohesiveness of sectors in the context of the
tumor suppressor protein, p53. We revised the methodology for assessing and improving MD sectors. Specifically, we introduce a
metric to calculate the cohesive properties of the network. Our new approach separates residues into two categories: sector residues
and non-sector residues. The relatedness within each respective group is computed with a distance metric. Cohesive sector networks
are identified as those that have high relatedness among the sector residues which exceeds the relatedness of the residues to the non-
sector residues in terms of the correlation of motions. Our major finding was that the revised means of obtaining sectors was more
efficacious than previous iterations, as evidenced by the greater cohesion of the networks. These results are discussed in the context
of the development of allosteric regulators of p53 in particular and the expected applicability of the method to the drug design field
in general.

1. INTRODUCTION
Allosteric signaling in proteins occurs when an effector molecule
binds at one site and confers a functional change at a
topologically distinct location.1−4 The phenomenon has been
known for over half a century and pervades biology to the extent
that it has been dubbed “The second secret of life.”5

Nevertheless, the mechanism by which it traverses the protein
remains actively debated. Models broadly categorize mecha-
nisms as pathways,6−8 in which signals travel along spatially
proximal residues connecting the two sites, or energy landscapes
proposed by Cooper and Dryden9 acting via a reorganization of
the energy landscape over a long range.10−12

The emergence of allosteric drugs2,13−15 provides a glimpse
into an alternate modality of protein control and engineering
over current strategies. While the mechanism widely controls
biochemistry, most are discovered serendipitously because a
requisite understanding of the principles governing it remains
largely obscured. Allosteric drugs offer the promise to control an

active site distally, leaving it unoccluded to continue carrying out
a function. This is highly desirable when activity needs to be
modulated as opposed to abolished, the very crux of many yet
uncured diseases. Cancer is among these;2 reactivation of
mutant p53 to wild-type behavior as a pathway to tumor
eradication constitutes one such challenge undertaken by our
lab.
The full-length p53 protein is made up of 393 residues16 and

can be divided into three regions: theN-terminal, the C-terminal
and the core domain.17 The core domain of p53 has been
crystallized (PDB ID 1TUP18) and illustrates the binding
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interface between p53 and its cognate DNA. It encompasses the
most important hotspot mutations19−21 175, 248, 249, and 273,
all of which negatively affect p53’s tumor suppressing
capabilities (Figure 1).
Toward restoring native activity of hotspot mutations, the

Thayer Lab is developing a pipeline incorporating mechanistic
details of allostery. Our ideas presently involve identification of
residues involved in allosteric control using machine learning to
generate small molecules, docking the molecules, and computa-
tionally observing the extent to which native dynamics of the
protein is restored in simulations. A major bottleneck in the
process is accurately identifying residues which allosterically
control the binding specificity of p53 to its target DNA
sequences. Such residues are of significant interest because the
change in binding specificity they cause can affect apoptosis or
cellular repair in p53, thereby preventing tumor growth. We
have turned to the idea of sectors to provide such information. In
their first incarnation, sectors characterized evolutionarily
covarying groups of residues hypothesized to transmit allosteric
signals, among other possible functions.22−24 We reimagined
them as molecular dynamics (MD)-based sectors (MD
sectors),25 motionally covarying residues based on the time
evolution of positional coordinates in MD simulations. By
focusing on the motion of residues, we ground MD sectors in
physical principles deriving from statistical mechanics of the
Boltzmann ensemble of thermally accessible structures. The
procedure follows that of the evolutionary sectors but
substitutes the motional covariance matrix for the original
evolutionarily covarying version. This then allows us to study the
conformational interchange of substates using Markov state
models26 derived from the trajectories obtained from MD

simulations (MD-MSM). In our pipeline, MD-MSMs constitute
a validated means to assess the extent to which an allosteric
effector has restored the target activity.27−29 We envision
utilizing MD sector residues as allosteric points of control from
which we will design small-molecule therapeutics. The efficacy
of these potential drugs will be further explored with MD-
MSMs.
While the aforementioned developments have made signifi-

cant inroads to link sector residues to first principles, the claim
that the sectors constitute a cohesive network, or a network at all,
has been an assumption rather than a fact. By cohesive, we refer
to the strength to which motions are correlated. We aim to
categorize residues as either in a network or not in a network
based on motional correlation to introduce objective
quantitation of cohesiveness. The measure of cohesiveness will
be used as the basis for our analysis on the extent to which MD
sectors comprise a network. The MD sector calculation is based
upon the pairwise correlationmatrix, and residues are chosen for
sector membership based on the overall correlation of its
motions to all other residues, subject to a spectral analysis
decomposition. We note, however, that therein lies an
inconsistency; a cohesive sector by definition ought to be
more correlated within the group than to residues outside the
group. Methods up to this point have not taken that into
consideration. In this work, we address the two key points raised,
namely, quantitating the extent of cohesion among residues in
an MD sector network and reformulating the cohesion measure
to reflect strength of correlation of members of the sector groups
among itself as compared to the expected lack of cohesion of
residues not in the sector.

Figure 1. p53 Hospots: 3-D visualization of p53 bound to DNA with hotspot residues 175, 248, 249, and 273 highlighted as red spheres. The 1TUP18

crystal structure highlights structural features of the p53 structure: backbone trace (cyan), bound DNA (thick sticks), coordinated essential zinc (gray
sphere), loop L1 residues 113−140 (green), loop L2 residues 163−195 (royal blue), loop L3 residues 236−251 (orange), strand loop helix residues
271−286 (magenta), and Ala mutation scan residues 158, 264, and 137 (purple spheres).
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2. METHODS AND COMPUTATIONAL DETAILS
2.1.MD Simulation.MD simulations provide an estimate of

the Boltzmann ensemble of molecular structures with atomic
detail. The AMBER suite of programs has been developed for
the purpose of simulating the behavior of biomolecules and has
undergone extensive development and testing.30−33 The
introduction of graphics processing unit (GPU) computing
has enabled routine simulations on the order of 100s of
nanoseconds to microseconds.30 The crystal structure of p5318

was used as the starting point, considering the central protein
bound to the DNA. MD simulations were carried out according
to standard protocol as follows: The AMBER 16 molecular
simulation package was implemented for parameterization and
modeling.33,34 The TIP3P potential was used for solvent
water,35,36 the force field ff99SB was used to model atomic
interactions,37 ions08 was used to model monovalent Cl− and
K+,38 and particle mesh Ewald summation with a cutoff of 10
Ångströms was implemented to maintain the accuracy of
electrostatic interactions.39 The SHAKE algorithm applied the
necessary constraints on hydrogen bond motions.40 The system
was energy-minimized and then heated to 300 K, and Berendsen
coupling to a heat bath maintained the temperature.41 After an
equilibration phase, the simulation was carried out to 200
nanoseconds using the pmemd code with the parallel computing
architecture.42−45

In this case, four simulations using the above protocol were
carried out on various forms of p53: wt and the three alanine
mutations R158A, L264A, and L137A. All simulations were
within 2 Ångströms of dispersion from the crystal structure as
expected,46 and the convergence of each simulation was
monitored with standard tools such as the Euclidean distance-
based measure root-mean-square deviation (rmsd) as well as
ensemble-based analysis.47 Various lab analysis methods were
used: concatenating multiple trajectories for MD-MSMs and
calculating covariance values for MD sectors.48−51 MD-MSMs
have been developed and validated previously, and we follow the
protocol as described therein. The results are analyzed in terms
of the population of trajectory snapshots assigned to the
centroids, and the time evolution of the transition of the
snapshots between centroids. To avoid over-interpretation, we
chose not to analyze the transition matrix because it was
observed to be very sparse and instead focus on the cluster
membership.
2.2. SCA Sectors. Intra-protein interactions between amino

acids provide insight into how proteins fold, bind, and adapt. An
underlying assumption of SCA sectors is that groups of
residues�termed sectors�which change together across
evolution may provide insight into protein functions. The
innate characteristics (evolutionary covariance and evolutionary
conservation) defining an SCA sector do not necessitate a
functionally cohesive network of residues; thus, the practical
significance of sectors obtained via SCA sectors remains an
active area of research. MD sectors, our sector methodology, is
innovative due to its ability to identify and test for residues of
allosteric control in silico through an analysis based strictly on
the ensemble of dynamic structures adopted by a protein.
2.3. MD Sectors. To perform MD sectors,50 pairwise

distance covariance was computed from MD simulation
trajectories. Two residues covary with one another if their
positions tend to deviate in any direction at the same time over
the course of an entire trajectory. A pairwise motion covariance
matrix (MCM) can be computed (Figure S1). We set the

covariance of bonded residues to 0 (white cells in the matrix),
which screens this information out as not meaningful. High
covariance (darker blue cells) between the bonded residues
would be expected and likely significant enough to overshadow
the information gleaned by observing non-bonded residue
covariance. Note that the matrix is symmetric about the
diagonal.
Spectral decomposition analysis was applied to the covariance

matrix to identify a network of residues that share covarying
motions. This measure of covariance is distinct from pairwise
covariance which involves only two residues; here, we observe
covariance on a more global scale for groups of residues. The
symmetric motion correlation matrix is decomposed into a
product of its diagonal eigenvalue matrix and corresponding
eigenvector matrices

= · ·V D VMCM (1)

where MCM stands for the motion correlation matrix, D is the
diagonal eigenvalue matrix, V is the eigenvector matrix
corresponding to D, and V is the transpose of V. The resulting
eigenvalues represent the magnitude of information captured;
larger eigenvalues are indicative of the most important linear
combinations of variables. The eigenvalue distribution was
compared against a randomized eigenvalue distribution to
screen out noise and determine the number of significant
eigenvalues. The further use of independent component analysis
(ICS) ensured statistical independence between selected
residues. ICS takes the eigenvalues and outputs Vpica values,
the final ‘scores’ assigned to each residue.48Vpica values report
on the degree to which a residue covaries motionally in the
context of the entire system. TheMD sector is defined by taking
the 20% of residues with the highest Vpica values, mirroring the
SCAmethodology. At this point, we have a complete sector, and
analysis of the sector residues follows.50

In contrast to slow and costly high-throughput methods such
as screen-based assays, MD sectors can efficiently identify
potentially functionally significant residues at a minimal cost.52

We feel, however, that analyzing the MD sector as a network of
residues would further validate the sector hypothesis and
improve our ability to pinpoint allosteric pathways and pockets
to target. Such network analysis would allowMD sectors to offer
a robust means of identifying not only a group of allosteric
residues but also the network properties of such residues, which
is valuable information to be carried forth into the drug design
process.
Furthermore, using MD sectors in conjunction with our MD-

MSM conformational analysis enables us to precisely detect the
impact of manipulating sector residues by casting mutations or
binding small-molecule ligands. An updated implementation of
MD sectors allows for broad and simplified use which fits
seamlessly into our drug discovery pipeline. This implementa-
tion of MD sectors represents a substantive deviation from
screen-based allosteric drug discovery. In the realm of drug
design, MD sector analysis holds a unique promise of generating
a rich dynamics-based explanation of specific allosteric control
that is not available in other network-finding methods.
2.4. Graph Theory and Networks. Sectors are hypothe-

sized to function as cohesive networks capable of influencing
protein functions. However, formal network theory has not yet
been applied to sectors obtained from the various methods. To
test the sector hypothesis, we reformatted biological systems
into graph-centric systems or networks. Residues were taken as
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nodes, and bidirectional edges were drawn between all possible
edges to represent covariance interactions.
A graph G is a tuple (V, E) where V is a set of vertices, or

nodes, and E is a set of edges. Typically, we sayN = |V| andM = |
E|. A simple graph where M = N(N − 1)/2 is said to be a
complete graph since the graph contains all possible edges
(Figure S2).53

Graphs are defined to be directed if edges are given direction;
for each =e v v( , )i ji , the pair of vertices is ordered.53 A subgraph
of G = (V,E) is defined as a graph G′ = (V′,E′) in which V′ ⊆ V
and E′ ⊆ E.54
A common property observed in a graph is the degree of a

node. For a node vi in an undirected graph, the degree d v( )i of a
node is the number of edges connected to, or incident to, the
node. In Figure S2a, d(a) = 2 and in 2b, d(a) = 4.53

Two nodes vi and vj are connected if there exists a path which
can be traversed from vj to vi. A connected componentC of some
graph G = (V,E) is a set of vertices{ }v v v V, , ..., k1 2 in which
all vi ∈C are connected to one another and not connected to any
vi ∉ C (Figure S3b).53 We say a graph is connected if it contains

at least one connected component.55 A bridge is any edge e
whose deletion splits the graph into more components than it
previously had (Figure S3c).56

The probability that a pair of nodes vj and vk are directly
connected given they are both directly connected to some other
node vi is known as the clustering coefficient of vi. The clustering
coefficient ci of node vi is calculated using the following
formula53

=

= #

c
d d

d

v

2

( 1)
for 2;

of edges between nodes in the neighborhood of

i
i

i i
i

i i

(2)

The average clustering coefficient of a network, denoted by c,̅
is given by

=
=

c
N

c1

i

N

i
1 (3)

Figure 2.Covariance Heat maps: (a) pairwise covariance values between p53 residues are shown. (b) Heat map of pairwise covariance values between
sector residues in p53. (c) Heat map of pairwise covariance values between non-sector residues in p53.
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To utilize network theory statistics and render related images,
the open source network visualization tool Cytoscape was
used.57

3. RESULTS AND DISCUSSION
3.1. MD Sector Analysis on p53.We will now examine the

results of running the updated implementation ofMD sectors on
the p53 tumor suppressor protein. The main results to be

analyzed here relate to pairwise covariance values, Vpica values,
sector overlaps, and sector cohesion.
Figure 2 presents a heat map of pairwise covariance from 200

ns MD simulations of the p53 DNA binding domain. Lighter
yellow sections correspond to low correlation, while darker blue
sections correspond to high correlation. The bottom-left to top-
right diagonal contains only values of 0, reflecting a step in which
the pairwise covariance values between all neighboring residues

Figure 3. Vpica Histogram: Histogram of number of p53 residues having various Vpica values. The vertical green dotted line represents the cutoff for
sector membership, while the black line overlaid on the histogram models a normal distribution.

Figure 4. Sector Venn Diagrams: (a) Venn diagram of MDS1.0 and MDS2.0 membership. The high level of overlap confirms that the two
implementations are reporting on similar protein behaviors. (b) Venn diagram of MDS2.0 (38 residues total), the SCA sector (45 residues total), and
MSR (52 residues total) membership in p53.
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were set to 0. A wide distribution in the correlated motions that
tend to have higher pairwise covariance and lower pairwise
covariance exists within p53. The pairwise matrix is spectrally
decomposed to pick out the 20% of residues which covary the
most. Their level of covariance is quantified as a Vpica value. A
chart of Vpica values by position is shown in Figure S4. A
histogram ofVpica values (Figure 3) was used to ascertain sector
residue membership. Residues to the right of the vertical line,
which signals higher Vpica values, comprise the sector.
Taking the top 20% of residues in the p53 core domain based

on Vpica values, the following 38-member sector constituting
the MD sector is obtained: P128, A129, L130, N131, V143,
R158, A159, M160, P177, S183, D184, S185, D186, G187,
L188, A189, P190, P191, Q192, H193, R196, D207, D208,
R209, N210, S215, V216, V217, V218,M237, I254, E258, G262,
N263, L264, N268, E286, E287.
Next, the pairwise covariance matrix was broken into two

smaller heat maps, one showing pairwise covariance values for
sector residues and one for non-sector residues (Figure 9). As
expected, the sector residues have noticeably higher pairwise
covariance values. This suggests that the sector conserves highly
correlated residue motions.
We now observe the overlap between various residue sectors

of p53. We will reference two versions of the MD sectors
procedure throughout the remainder of this paper. MDS1.0
represents our original method which was based on a previous
implementation of SCA sectors which involved the manual
removal of specific residues to better match the range of residues
observed in SCA sectors on the same protein. MSD2.0, which is
the focus of this paper, is based on an updated implementation of
SCA sectors and does not omit any additional residues. To verify
that the MDS2.0 implementation is working as intended, we will
compare MDS1.0 and MDS2.0. MDS1.0 contains 34 residues,
and MDS2.0 contains 38 residues. The overlap of MDS1.0 and
MDS2.0, which contains any residue present in both sectors, has
31 residues out of a maximum of 34 (Figure 4a). The results of
the updated method are consistent with those of the previous
iteration despite a fully revamped implementation. The
differences between the sectors were negligible and can likely
be attributed to the slight changes in our pre-processing
techniques.
Figure 4b displays the overlaps of MDS2.0 with the SCA

sector and the mutationally sensitive residues (MSRs) of p53.
MSRs are residues that confer a change to the protein structure.
Notice the level of overlap between MDS2.0 and the other two
groups of residues; 12 out of the sector’s 38 residues (31.6%) are
found to be potentially significant via functionally unrelated
methods. The difference in methodologies leads to findings
based off of different characteristics. With a highly dynamic and
unstable protein such as p53, we did not expect an over-
whelming overlap between the identified sectors.
To test the cohesion of the sector, we developed a novel

procedure termed Vpica ratio analysis (VRA). In our procedure,
we compute the covariance matrix C0 as described (Rangana-
than et al., Lakhani et al.) using the motional correlation of
residues as the basis for covariance measures. The spectral
decomposition algorithm, represented as the decomposition
operator D (Ranganathan et al.), is applied to the covariance
matrix C0 to obtain Vpicai, the measure of each residue’s extent
of covariance with all other residues. We then divide the total set
of residues in the protein T into sets S, the sector residues, and
N, the non-sector residues, such that T = S∪N and S∩N =Ø. To
select which residues constitute the sector, we rank order the

residues according to their associated Vpica values. The number
of residues selected as the sector is equal to 20% of the total
number of residues N. Consequently, the sector S contains the
residues mapped to the largest Vpica values.
We then generate submatrices Cs and CN by filtering C0

subject to the conditions that CS solely contains entries of
covariance between sectors and CN solely contains entries of
covariance between non-sector residues. Notice that the cross
terms are discarded by the filter. In other words, the filtering
follows the following criteria

= { }S SC C i i j i j Nff and for , 1,2, ...,ij S (4)

= { }N NC C i i j i j Nff and for , 1,2, ...,ij N (5)

A second round of Vpica analysis via the spectral
decomposition procedure D̂ is carried out to obtain Vpica
values reporting on the strength of the interaction of those
residues within the sector and within the non-sector, in contrast
to the Vpica0 values reporting on the interaction of the residue
with the rest of the matrix. The method is applied to each of the
submatrices D C( )S and D C( )N yielding a list of Vpica values
corresponding to each residue, V picas1

to V picasN
and list

V picaN1
to V picaNN

; in other words, there is one Vpica value
mapped to each residue, and those residues are in either sector
list S or non-sector list N. For residue i ∈ S, its Vpica_in value
equals V picaSi

, the list component value, which reports on its
covariance within the sector and excludes consideration of the
interaction with residues not in the sector.
To calculate its Vpica_out value for each sector residue i, we

suppose the residue were not in the sector and append it to setN.
Correspondingly, this adds the row and column of residue i
interaction with all other non-sector residues; the valuesCi,j from
C0 for j = {1, 2, 3, ...,NN} are appended tomatrixCN to create the
revised matrix CN′. The spectral decomposition procedure is
then applied to the revised matrix to observe how the Vpica
values change: D C( )N .
The Vpica ratio analysis then consists of computing the ratio

= _
_

V
V

VRA
pica in

pica out (6)

In the case of p53, we found that the average ratio value for
residues in the MD sector was ∼1.55, while the average ratio for
residues out of the sector was ∼1.41. Thus, there is a higher level
of covariance between sector residues with themselves as
compared to the covariance between non-sector residues and
sector residues. This suggests that the sector residues form a
cohesive group which conserves motional covariance.
To put these ratio values in perspective, Vpica ratio analysis

was also performed on the other residue groups of interest. We
will call a group of 38 random residues in the DNA binding
domain of p53, the random 38 sector (38SR). The average ratio
values for residues in the 38SR was ∼2.10, and the average ratio
for residues out of 38SR was ∼2.03. The average ratio for
residues in the SCA sector was ∼1.85, while the average for
residues outside the SCA sector was ∼1.81.
Let us now compare, for these three groups of residues, how

the average in-sector ratio compares to the average out-of-sector
ratio. In other words, how much more do sector residues covary
with one another than with non-sector residues? To quantify this
difference, we divide the average ratio for residues in the sector
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by the average ratio for residues outside the sector; let us call this
value the sector cohesion level (SCL).
The SCL for the MD sector is ∼1.12, the SCL for the 38SR is

∼1.04, and the SCL for the SCA sector is ∼1.03; the MD sector
has a greater SCL than the other two sectors, suggesting a higher
level of cohesion. Further related data are shown in Figure S5.
Another point of comparison relating to VRA is the overlap of

sector residues with residues which have the highest ratio values.
This overlap examines whether certain residues have high
motional correlation in the context of the entire core domain of
p53 as well as a higher correlation to residues within the sector.
The overlaps between the three sectors discussed above and the
corresponding residues with the highest ratio values are
displayed in Figure 5. Note that the MD sector and 38SR

overlaps were between groups of 38 residues, while the SCA
sector overlap was between groups of 45 residues; these values
are the sizes of each sector. Thus, 47.4% of MD sector residues,
34.2% of 38SR residues, and 42% of SCA sector residues overlap
with high-ratio residues. MD sectors have the highest percentage
overlap, exhibiting a higher success rate at identifying residues
with high overall covariance and high covariance localized within
the sector.
3.2. Network Analysis on p53 Sectors.Wewill now relate

the findings to the structure of the p53 tumor suppressor protein
as a network of residues and interactions. The 1TUP crystallized
DNA binding domain of p53 contains 194 residues, which is the
section of p53 on which network analysis was performed. Figure
6 shows a complete, undirected graph containing all residues in
the DNA binding domain of p53. Each residue is represented by
a node (circles). Residue interactions are represented by the
blue edges. There is an edge between all pairs of residues,
creating a vastly dense network. In total, there are 194× 193/2 =
18,721 edges in this network. We will break down this network
to focus on a variety of groups of residues. All networks
discussed are assumed to be simple, undirected, and edge-
weighted with motional pairwise covariance values found using
the procedures described in the methods section, unless
otherwise specified.
Subgraphs visualizing the newMD sector (MDS2.0), old MD

sector (MDS1.0), SCA sector (SCAS), random 38 sector
(38SR), and the mutationally sensitive residues (MSR) were
created using a standardized procedure. Note that the random
sectors were created by selecting 38 random residues from the
DNA binding domain of p53. The steps to create the MDS2.0

Figure 5. Overlapping Ratio Residues. Overlapping residues between
MDS2.0, 38SR, SCA sector, and residues with the highest ratio values.

Figure 6. Complete Graph of p53. Complete graph visualization of p53. MDS2.0 residues are highlighted in red, and non-sector residues are
highlighted in blue. Additionally, higher pairwise covariance values map to thicker, bluer edges to emphasize the relationship between sector residues
and strong pairwise interactions.
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Figure 7. Subgraphs of High Motional Covariance (SHMC) (a) MDS2.0 visualization as a 3-D model using PyMOL. (b) MDS2.0 SHMC:N = 38,M
= 345, one component. Sector visualization as a graph using Cytoscape. (c)MDS1.0 SHMC:N = 34,M = 280, one component. (d) SCAS SHMC:N =
25, M = 33, four components. (e) 38SR SHMC: N = 26, M = 32, three components. (f) MSR SHMC: N = 37, M = 78, one component.
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subgraph will be described; analogous steps were applied to
create subgraphs for each of the residue groups.
A subgraph of all MDS2.0 residues and all edges between such

residues was created. From this subgraph, a pairwise cutoff value
of ∼0.61 was set; it represents the 95th percentile of pairwise
covariance values in the motion correlation matrix. Thus, only
edges which represent prominent interactions remain. All edges
with pairwise covariance values above this cutoff, and nodes with
any such adjacent edges, remain in the subgraph. Mappings
between the subgraphs’ characteristics and their visual
representations were implemented; higher Vpica values give
larger nodes, higher node degrees give darker-pink nodes, and
higher pairwise covariance values give bluer, thicker edges
between pairs of nodes. We take the resulting network to be our
subgraph to analyze (Figure 7b). We call each of these
subgraphs, shown in Figure 7, subgraphs of high motional

correlation (SHMCs). These are the subgraphs of the complete
graph shown in Figure 6.
The SHMCs are significantly less dense than the initial

complete graph. They represent the strongest remaining
motional interactions within their respective group of residues.
Presumably, SHMCs which have more remaining edges contain
more potential pathways for transducing signals via physical
interactions. Figure network statistics: Figure 8a shows the
percentage of edges remaining in each SHMC; to get this
percentage for the MDS2.0 SHMC, for example, we did the
following calculation

#
#

=

edges in MDS2.0 SHMC
edges in complete subgraph containing all MDS2.0 residues

345
703

0.491

Figure 8.Network Statistics. (a) Bar chart of the percent of edges remaining in each SHMC, as compared to a complete subgraph containing the nodes
of the associated residue group. TheMD sectors SMHCs have a strikingly higher percentage of edges remaining. (b) Bar chart of the average clustering
coefficient in each SHMC. While the distribution of this chart is not overly variable, MD sectors SHMCs do have high average clustering coefficients.
(c) Bar chart of the average number of neighbors in each SHMC. The chart suggests that nodes within the MD sectors SHMCs have many more
neighbors.
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Quite clearly, the MD sectors SHMCs have a higher
percentage of edges remaining, meaning that withinMD sectors,
a larger quantity of strong motional correlations between
residues persists. We observe the differences between the
MDS2.0 and 38SR SHMCs (Figures 7b,e), which can both have
a maximum of 703 edges. The 38SR SHMC has only 32
remaining edges, while the highly connected NMDS SHMC has
345 remaining edges; the MDS2.0 SHMC retains over 10 times
the number of edges a random sector of the same size does.
Using the 38SR as a control makes apparent the significance of

developing a criterion for deciding what kind of a node is
“important.” When forgoing a real measure of importance and
instead picking randomly, we end up with a fragmented network.
There are quite a few degree-one residues in the 38SR as well as
some bridges holding together multiple components; the edge
between L130 and L188 is a bridge, for example. These types of
residues and edges create a very tenuous network. The
probability of a signal propagating across the network is greatly
reduced by dead ends and a lack of pathways. The MDS2.0
SHMC provides a picture of a network which is dense and
cohesive; even between residues physically far apart in the
protein chain, there are dozens of pathways connecting them.

Figure 7 tells a similar story; the MD sectors SHMCs remain
fuller, while the other SHMCs become sparse. Only the MD
sectors SHMCs andMSR SHMChave one component, while all
the other SHMCs are broken down into as many as five
components. Even the SCAS SHMC, which we believe to
capture some level of functional value, contains four
components. If allosteric signaling does in fact rely on
cooperated motions between residues, sending a signal between
residues in separate components would likely be infeasible.
Looking at some basic network characteristics further

emphasizes the dichotomy in the fullness of the networks. The
clustering coefficient of a network characterizes the level of
connected triangles present.58 A signal being sent between two
residues in a network rich with triangles may have a variety of
potential pathways to follow, as seen in the MD sectors SHMCs
(Figure 8b).
As made apparent in Figure 8c, there is a stark contrast

between the average number of neighbors in MD sectors
SMHCs and the other SMHCs. An increased average number of
neighbors further suggests the presence of viable pathways to
transduce signals. Finding groups of residues in which signals
can be sent is precisely the goal of running MD sectors analysis.

Figure 9. Graph of MDS Overlaps. Overlap between MDS1.0 and MDS2.0. Red nodes are in both sectors, blue nodes are only in MDS2.0, and green
nodes are only inMDS1.0.Vpica values aremapped to node size; lowerVpica values correspond to smaller nodes, while higherVpica values correspond
to larger nodes.
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The findings of analyzing these SHMCs using network
properties further give credibility to the lab’s hypothesis that
MD sectors are able to find a functionally significant network of
residues capable of playing a role in allosteric signaling.
We will now focus in on the MD sectors SHMCs, specifically

that of MDS2.0. Notice that the MDS2.0 SHMC contains all 38
residues originally identified in the sector, making the MDS2.0
SHMC a spanning subgraph of the complete graph containing
all MDS2.0 residues. When applying the pairwise cutoff to the
MDS2.0, no residues were lost. All residues in the network have
high Vpica values as well as some level of significant pairwise
interactions with other sector residues. Note that these residues
are not guaranteed to form a fully cooperative network. Rather,
we are investigating to what extent a fully cooperative network
has been uncovered. We believe an approach rooted in first-
principles statistics, such as MD sectors, is a cogent way to find
such a network.
Figure 9 displays the overlaps of residues in the MDS2.0 and

MDS1.0. The red nodes are in both sectors, the blue nodes are
only in MDS2.0, and the green nodes are only in the MDS1.0.
Note that in this network, the standard pairwise cutoff of ∼0.61
is still applied. The network once again displays a high level of
overlap between the new and old methods.
Another important point this network displays is the

robustness of MD sectors as a methodology. Notice that the
three nodes which are only in the MDS1.0 are quite small,
signaling lower Vpica values. The largest nodes in this network,
on the other hand, tend to be in both sectors. This pattern
indicates that truly important residues will be incorporated in
the MD sector regardless of slight implementation differences.
Human error and researcher discretion are relevant factors in
any analysis method; minimizing the effects of these factors
preserves the legitimacy of the analysis. The robustness of MD
sectors is encouraging in that it leaves room for further
improvements to the method without introducing significant
risks of invalidating previous findings.
3.3. MD-Based Markov State Models on Mutant p53.

The use ofMD-basedMarkov state models allows us to compare
the conformational dynamics of related systems.51 In this
section, we select three residues to focus on based upon their

importance relative to the Vpica analysis and test the hypothesis
that they affect the dynamic conformations of p53 by observing
their conformational substates in MD-MSM. Using computa-
tional alanine mutagenesis in silico, we mutated three specific
residues in p53 and simulated a trajectory for each version of
mutated p53 as well as the wild-type p53. Computational alanine
mutagenesis is a process in which amino acids are mutated from
their native identity to alanine, as motivated by the small size of
the alanine side chain.
Here, we summarize key features of three residues mutated via

computational alanine mutagenesis:

• R158 has the highest ratio score of anyMD sector residue.
R158 also happens to be one of six residues which is in the
MDS2.0, SCAS, and MSR.

• L264 has a high Vpica value and a low average shortest
path length and is in the MD sector.

• L137 is not in the MD sector, so it is being used as a
control. It is a medium-sized residue with a middling
Vpica value and ratio score. Additionally, it is a leucine
residue, so it offers an analytical comparison to L264.

A network with these residues highlighted is shown in Figure
S6, and they are shown in the p53 structure relative to key
features and hotspot mutations in Figure 1. The goal of mutating
these residues is to observe whetherMD sector mutations to p53
have a larger impact on structural behavior than non-MD-sector
mutations.
After running the four simulations, k-means clustering was

applied, testing between two and eight clusters. We observed the
average distance between each snapshot and its corresponding
centroid (Figure 10). Choosing a number of clusters at this point
is not exact; we look for a selection that has a relatively low
average distance between snapshots and centroids, but that does
not use more clusters than necessary. These cluster number
candidates tend to reside around the inflection point of the
overlaid exponential curve in Figure 10.
The decision to split the conformational space into five

clusters was made after observing the rmsd distribution plots
outputted when using five clusters. These plots can be viewed in
Figure 11. The distribution of rmsd distances of snapshots in

Figure 10.Average Centroid Distance. This graph displays the average distance between snapshots and their corresponding centroids, calculated using
rmsd values. The average distance for a variety of number of clusters is shown to help optimize the number of clusters chosen.
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each cluster is taken with respect to each centroid in turn. An
optimal number of clusters is not known but rather is the input
to the k-means clustering algorithm. This necessitates some trial
and error in establishing a reasonable number of clusters, and we
have screened 2 to 8 as possible choices (Figure 10). A desirable
feature of an optimally chosen number of clusters is that
snapshots are closest to their respective centroid and distant

from all others, seen by left shifting of each cluster’s distribution
curve with its respective centroid in the rmsd frequency plots
(Figure 11). This was observed with reasonable separation from
other curves, supporting our choice to work with five centroids.
While some of the frequency plots contained bimodal
distributions (Figure 11c,e), testing with alternate numbers of
clusters did not produce better results. A visualization of the five

Figure 11. p53 rmsd Plots. The rmsd frequency plot between frames in each cluster and all five centroids. rmsd values to each centroid are split up into
their respective distributions. These results come from running four trajectories on various forms of p53. (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, (d)
Cluster 4, and (e) Cluster 5.
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centroid molecular structures overlaid on one another can be
seen in Figure 12.
Now, we will examine the substate overlaps of the trajectories

from the various forms of p53 (Figure 13). The wt simulation
samples two clusters significantly, and one of the clusters is made
up entirely of frames from the wt simulation. The other cluster,
which is Cluster 1, has over 90% of its frames from two
simulations, the wt simulations and the L137 simulation. L137
happens to be the only mutated residue tested that is not in the
sector. In other words, the wt simulation had no significant
cluster overlaps with any of the sector-mutated simulations, but
it did have a significant overlap with a non-sector-mutated
simulation. It is of note that a mutation could cause a local
unfolding of the protein, thereby causing effects that are not
necessarily involved in allosteric linkage, and would not
necessarily be a significant enough change to be detected in
the substate overlap from a global measure such as rmsd. The
trajectories from the L264 and R158 mutations spent the
majority of time in clusters which were mostly sampled by
themselves.
By making mutations to the above residues, we observed in

silico whether sector membership has an effect on the dynamics
of the mutated system. The findings hint that when mutating
residues within the sector, the conformational dynamics of the
protein may be more affected than when mutating residues
outside of the sector. The conformational dynamics of the
sector-mutated simulations were appreciably different from
those of the wild-type and non-sector mutated simulations. If a
pathway of residues necessary to the transduction of allosteric
signaling is broken by a mutation, we would expect the
conformational states in the trajectory to be noticeably
impacted. Potentially, such a pathway was broken in these
experiments, causing a shift in substate dynamics.
3.4. MD Sectors to Identify Allosteric Points of Control

for Drug Design. In light of the fact that allosteric drug design

holds excellent promise for creating a novel class of therapeutic
drugs, we tackled the most formidable challenge to this
approach’s success, which is identifying allosteric points of
control. Sector residues show great promise in being the conduit
by which allosteric signals are conveyed across proteins and are
thus a likely target for allosteric drugs. To better understand
their functionality, which is heretofore poorly conceptualized,
we applied network theory to gain a rigorous analysis of their
efficacy. We verified that our MD-MSM models based on
motional covariance generate more cohesive networks than SCA
networks based on evolution. The approach suggested revising
the method with our Vpica ratio analysis, which enabled us to
more accurately measure the cohesion of the DNA binding
domain.
The MD sectors allow a systematic and broadly applicable

analysis pipeline for the development of allosteric drugs:
1) Run MD simulations on a system of interest
2) Pinpoint candidate residues of functional significance via

MD sectors
3) Visualize the sector as a 3-D model and 2-D graph
4) Perform Vpica ratio analysis on system residues
5) Perform network analysis on the sector graph
6) Apply MD-MSMs on sector-mutated variations of a

system to directly assess the dynamic impacts such
residues have on the system

The importance of a standardized method cannot be
understated. Standardization allows for clear one-to-one
comparisons across individual research projects and molecular
systems.
A focus of this project was developing techniques for

understanding a sector as a graph, or network. Doing so
provided novel insight into the physical dynamics of the case
study protein, p53.We found thatMD sectors fostered networks
characterized by high density and the preservation of covarying
motional undercurrents. Such properties are presumably

Figure 12. Centroid Overlay. Visualization of the average structures (centroids) found via MD-MSMs on p53 assuming global alignment. Centroid 1
(green), Centroid 2 (cyan), Centroid 3 (magenta), Centroid 4 (yellow), and Centroid 5 (red) are overlaid on one another.
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inherent to a group of residues capable of transducing allosteric
signals via physical means. Furthermore, Vpica ratio analysis
underscored the cohesion of an MD sector, providing an apt
comparison of sector and non-sector covariances. Finding dense
networks of residues with high levels of cohesion that preserve
motional covariance was precisely what we hoped to do with
MD sectors. These analysis methods are new in the realm ofMD
sectors and are only the start for building a stronger
understanding of the significance of a sector.
Convincingly, MD sectors is a viable option for ascertaining

drug target candidates. Each implementation and analysis step
discussed in this paper are small puzzle pieces in the ever-
complicated science of drug design. As discussed, MD sectors
have proven to be robust and relatively impervious to small
changes in implementation details. Thus, the possibility of
further improvements to the method remains strong. As MD
sectors become widely applied, it will surely undergo further

iterations, but each iteration will be strongly linked to the
fundamental characteristics found in a sector as observed in this
study.
We note that Vpica analysis with sectors is not unique in

analyzing the motions of the protein to identify potentially
significant residues. Normal mode analysis (NMA) and
principal component analysis (PCA) are two additional
methods analyzing the motional dynamics of protein structure.
NMA59 is based upon local harmonic displacements of residues
about an equilibrium structure and typically involves an elastic
rod interpretation of the structure. PCA60 considers motional
modes displayed as joint probability maps of conformers from
which the substate structure is inferred from the projection of
motions onto the principal axes of the modes. These methods
involve similar but distinct analyses of how the modes and/or
correlation of the motions evolve in time. Our method stands
out in its roots with the statistical coupling analysis61 to identify

Figure 13.Cluster-Simulation Frequency Bar Charts. (a) Bar chart displaying the frequency of simulation snapshots within each cluster, normalized by
cluster. The leftmost bar, for example, denotes that 47.4% of snapshots within Cluster 1 come from the wild-type simulation. Notice that over 90% of
Cluster 1 is sampled by the wild-type simulation and the L137-mutated simulation. (b) Bar chart displaying the frequency of simulation snapshots
within each cluster, normalized by simulation. The leftmost bar denotes that 74.6% of snapshots from the wild-type simulation are mapped to Cluster 1.
Both the wild-type simulation and the L137-mutated simulation have over 68% of their frames mapped to Cluster 1. (c) Bar chart displaying the
frequency of cluster snapshots within each simulation, normalized by simulation. The tall green bar indicates that 84.4% of the snapshots from the L264-
mutated simulation are within Cluster 3. The L264 and R158-mutated simulations tend to mostly sample clusters by themselves.
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the most significantly correlated residues. With the Vpica
analysis, our method is further strengthened to report on a
cohesive network, which we believe is the most expedient means
of identifying points of allosteric control. These similar methods,
however, may provide equally insightful results if applied to
identifying networks of residues.
3.5. Further Network Analysis. The network analysis

applied to various protein sectors in this work was an exploratory
foray into a new perspective of understanding sectors.
Hopefully, this approach can be furthered with the stand-
ardization of a sophisticated network analysis procedure. A
specific addition to our current procedure could be some sort of
pathway analysis. The Thayer lab has previously looked at the
presence of contiguous pathways within protein systems,
including p53.62 Checking for the presence of contiguous
pathways within protein sectors would be a logical addition to
our network analysis techniques. Using Euclidean distance
measures as edge weights, we could visualize sector pathways
and offer another scheme for constructing networks.
3.6. Targeting Sector Residues. Identification of sector

residues plays a critical role in the drug design process because it
suggests positions of allosteric control. Residues in the sector
that also appear at or near the surface of the protein constitute
the ideal profile to target with allosteric effectors. Estimating the
solvent accessible surface area of a residue can be completed
from a given static structure in visualization software such as
VMD, and it can be followed over time in a simulation using
standard utilities in the AMBER suite’s cpptraj. Similar analysis
of protein structures has been used to aid in the identification of
so-called “cryptic” binding pockets that evolve in the dynamics
but otherwise may not be detected from static structures.63

Once residues have been identified, measures to develop an
effector to bind to it emerges as the next challenge, but this is not
without precedence; rational drug design has provided many
examples and rules of thumb which can guide the systematic
development and refinement of molecules with improved
affinity and functionality. While allosteric regulator sites may
prove to be on flat surfaces rather than within crevices, alternate
drug modalities beyond the classic small molecule have been
under development. Alpha helical peptides currently offer
promising ability to bind to broad, flat surfaces. Developing
these with a gambit of natural and artificial residues allows for
considerable variability to adapt the drugs to the target area of
interest. Stapled varieties of these show promise for aiding in
traversing the cell membrane, and several examples have been
successfully engineered to date. Our lab is currently working on
developing and refining such allosteric drugs.
3.7. Implications for Drug Design. The nature of drug

design is speculative; if the specific targets of a potential
therapeutic were known a priori, methods like MD sectors
would be deemed unnecessary. Of course, this is not the case.
Thus, mathematical and computationally intensive algorithms
are central to modern rational drug discovery. Taking on a
spectrum of perspectives in understanding biomolecular systems
allows for novel and innovative strategies used to influence
behavior. MD sectors, as part of the lab’s research pipeline,
employs a valuable cross-disciplinary approach; network
analysis, computer simulations, spectral decomposition, cluster-
ing analysis, and biological theory all enable this method to be
successful.
The impact of MD sectors could prove to be widespread.

Having the ability to identify residues of allosteric control
through purely computational means would vastly improve the

prospects of allosteric drug design. Understanding the network
dynamics and physical dynamics of targeting specific residues
within a system allows for a more precise and efficient means of
manipulating such systems. Allosteric drugs have the potential to
be instrumental in curing diseases traditional drugs have been
unable to treat because they do not require binding at an active
site. This opens up the possibility of drugging protein targets
previously deemed ‘undruggable’, with MD sectors playing a
large role in such allosteric drug design.
Starting with a protein composed of hundreds, if not

thousands, of amino acids is daunting. MD sectors takes the
important first step of narrowing the pool of functionally
significant residues. This step often proves to a major bottleneck
in drug design. Researchers often have to turn to high-
throughput methods, which may constitute screening hundreds
of thousands of compounds.64 Target identification is vital to the
drug design process; targets must have a means for functionally
manipulating a system safely and efficaciously.65 Methods such
as MD sectors must be developed to advance target
identification, which in turn enables the entire allosteric drug
design process to progress faster and more effectively. The wide
application ofMD sectors could prove to help overcome a major
limiting factor in allosteric drug design, aiding in a more rapid
and economical process of developing innovative therapeutics.

4. CONCLUSIONS
In this work, we successfully analyze MD sectors through the
development of a cohesiveness metric, Vpica ratio analysis. This
allows the quantitation of MD sectors’ cohesiveness in the
biological context, which we have demonstrated in the p53
tumor suppressor protein. This approach will continue to not
only inform our own p53 allosteric drug design efforts but also
provide the first example of a new paradigm informing rational
design of allosteric drugs in general.
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