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The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the
immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences
for the offspring.The concept of developmental programming describes the process in which an environmental stimulus, including
altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and
metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms
underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade
inflammation is associated with obesity and its comorbidities.This review will discuss maternal metainflammation as a mediator of
programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty
acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced
programming.

1. Introduction

The prevalence of obesity in both developed and developing
countries has been steadily increasing over the past 40 years
[1–3]. Consequently, obesity and its associated comorbidities
are a significant concern, in terms of global public health
and public health spending. Depending on the population,
the prevalence of obesity (body mass index ≥ 30 kg/m2)
in women of reproductive age can be as high as 34% [3].
Obesity during pregnancy is of major concern due to the
well-characterized risk factors to both the mother and her
offspring. These can include, but are not limited to, mater-
nal and fetal death, preeclampsia, gestational diabetes, and
congenital abnormalities [4]. In addition, epidemiological
evidence and data derived from animal models have demon-
strated that maternal obesity has long-term consequences
for offspring, predisposing or “programming” them to the
development of metabolic disease in adulthood [5]. It has
become increasingly clear thatmetabolic disease is associated
with a state of chronic low-grade inflammation [6]. Inflam-
mation has received extensive attention recently because of its

association with several diseases, including cancer, diabetes,
and obesity—it is a tightly regulated process—deviations
from this process present a significant health risk because
unresolved inflammation can compromise tissue function.
In human pregnancies, maternal obesity is associated with
metabolic inflammation, characterized by elevated adipose
tissue and systemic proinflammatory cytokine levels and
adipose tissue macrophage accumulation [7, 8]. Additionally,
these changes extend to the placenta, suggesting that mater-
nal obesity exposes the fetus to an inflammatory environment
during development [9].Thus, in the context of developmen-
tal programming, early life exposure to metabolic inflamma-
tion may represent a key mechanism by which developmen-
tally programmed phenotypes may manifest later in life. For
example, in animal models, maternal obesity has been shown
to induce fetal inflammation which can result in promotion
of adipogenesis and increased adiposity in offspring [10].
The critical windows of innate immune vulnerability during
prenatal and neonatal maturation are when developmental
programming and the trajectory for childhood and adult
inflammatory responses are largely established. Clearly, there
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is a need for targeted intervention strategies to ameliorate and
reduce the adverse effects of maternal obesity on offspring
health outcomes during later life. This review will discuss
maternal obesity related inflammation as a mechanism of
developmental programming of metabolic disorders in off-
spring and the potential of intervention strategies.

2. The Developmental Origins of
Health and Disease

Barker first suggested that the fetal environment may have
an effect on the development of disease in adulthood,
known as the fetal origins of adult disease (FOAD) hypoth-
esis [11]. Epidemiological evidence from UK birth records
indicated a geographical correlation between high rates of
infant mortality and adult ischaemic heart disease [12].
They hypothesized that maternal undernutrition resulted
in fetal programming which caused permanent alterations
in the structure, function, homeostatic pathways, and/or
metabolism of the developing offspring, predisposing them
to disease later in life. Since these initial observations,
the concept has evolved into the developmental origins of
health and disease (DOHaD) hypothesis, which describes
the process by which an environmental stimulus, including
altered nutrition, during a critical period of development can
program alterations in organogenesis, tissue development,
and metabolism, predisposing offspring to metabolic and
cardiovascular dysfunction during adulthood [13–15]. These
effects can be amplified in the setting of a poor postnatal diet
[16].

In today’s society, maternal obesity is a more prevalent
and emerging cause for concern. Considerable epidemio-
logical evidence demonstrates that maternal obesity is a
predictor for development of obesity, type 2 diabetes, and
cardiovascular disease in offspring [17–19]. Mechanistic stud-
ies in human cohorts are challenging due to the number of
potential postnatal confounders and the time course required
for prospective studies and thus remain largely observational.
Therefore, animal studies have become the primary tool for
investigating the myriad of potential mechanisms under-
lying the developmental programming paradigm. Maternal
obesity-induced developmental programming has been val-
idated in mouse, rat, sheep, and nonhuman primate models
and has been shown to affect numerous metabolic pathways
culminating in a metabolic syndrome like phenotype [20–
23].

There is an increasing body of evidence demonstrating
the capability to ameliorate or reverse programming by
targeted interventions during specific periods of develop-
mental plasticity [24–26]. A particular focus has been on the
adipokine leptin (a proinflammatory signal in adipose tissue)
as a mediator of programmed changes in the regulation of
appetite and metabolism. Obese individuals exhibit higher
circulating levels of leptin, contributing to a state of leptin
resistance, which further perpetuates obesity, inflammation,
andmetabolic disease [27]. Leptin levels are known to be ele-
vated in pregnancies complicated with enhanced inflamma-
tory processes in the placentae [9, 28]. Of note, maintenance

of a critical leptin level during early development facilitates
the normal maturation of tissues and signaling pathways
involved in metabolic homeostasis. In rats, maternal under-
nutrition results in neonatal hypoleptinemia—leptin admin-
istration to these neonates reverses maternal undernutrition-
induced metabolic programming in adult female offspring
[29]. We have also shown that preweaning growth hormone
treatment in a rat model of undernutrition reverses pro-
grammed hypertension, obesity, and inflammatory profiles
in adult offspring [26, 30]. In rats, supplementation with
docosahexaenoic acid (DHA) in the setting of maternal
undernutrition has also been shown to protect offspring
against later metabolic dysfunction [31], but data in the
setting of maternal obesity are less clear. In rat models of
protein restriction, dietary cofactors, including folate and
glycine, have also been shown to reverse postnatal metabolic
and cardiovascular abnormalities in offspring [32–34].

Taken together, these studies suggest that programming
effects can be prevented by early intervention strategies. To
date, the majority of developmental programming studies are
primarily descriptive and the underlyingmechanisms, partic-
ularly as regards the inflammasome, of how maternal obesity
impacts upon early life development and subsequent adult
disease phenotypes are not well understood. Elucidating
the mechanisms of maternal obesity-induced developmental
programming is of utmost importance and may allow for
application of therapeutic and/or nutritional interventions to
minimize adverse programming effects in offspring.

3. Adipose Tissue Dysfunction in Obesity

Historically, white adipose tissue (WAT) was viewed as an
inert energy storage depot. However, it is now appreciated
as a major endocrine organ which contributes to metabolic
homeostasis. Adipose tissue is composed of not onlymultiple
cell types, mainly adipocytes (fat cells), but also the stro-
mal vascular fraction (SVF), which includes preadipocytes,
fibroblasts, endothelial cells, and immune cells [35]. Adipose
tissue secretes a broad range of bioactive factors, collectively
referred to as adipokines [36]. Adipokines have a range of
essential physiological roles, including adipocyte differenti-
ation, glucose and lipid metabolism, satiety, immune regula-
tion, cardiovascular function, and neuroendocrine function
[37]. Aberrant regulation of adipokine secretion has been
shown tomediate cross talk with other organs and contribute
to the development of obesity-induced comorbidities such
as insulin resistance and metabolic syndrome [38–40]. The
complex adipokine profile is still not fully understood, with
novel adipokines still being identified [41, 42]. Additionally,
it is important to note that the study of adipose tissue
dysfunction is confounded by the wide range of etiologies
which include genetics, environment, and now early life
stressors such as maternal obesity.

In healthy individuals, the adipose tissue is composed of
mainly preadipocytes and adipocytes, with few inflammatory
leukocytes. With obesity, the composition, phenotype, and
function of adipose tissue are disrupted [43–45]. Persistent
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excess energy intake causes adipocytes to undergo hyper-
trophy (increased adipocyte volume) in attempt to meet the
increased energy storage needs [46]. Adipocyte hypertrophy
can contribute to further complications including hypoxia,
adipocyte necrosis, chemokine secretion, and compromised
regulation of fatty acid flux [47]. Hypertrophied cells alter the
balance of adipose tissue-derived cytokines and adipokines
to a proinflammatory state, acting as a critical factor linking
obesity to the pathogenesis of metabolic disease in both
mother and offspring [48, 49]. Inflammatory mediators,
including C-reactive protein (CRP), interleukin-6 (IL-6), IL-
1𝛽, and tumour necrosis factor 𝛼 (TNF𝛼), are systemically
elevated in obesity in animal and human models [50–
52]. Additionally, as the adipose tissue expands, the blood
supply becomes inadequate and hypoxia occurs [53]. This
contributes to further cellular dysfunction in adipocytes,
including downregulation of adiponectin mRNA expression
and induction of endoplasmic reticulum stress, which can
further exacerbate the inflammatory state [35, 53].

A hallmark of adipose tissue inflammation is the infil-
tration of immune cells including monocytes/macrophages,
neutrophils, B lymphocytes, and T lymphocytes [54–56].
Macrophages are phagocytic cells, which act to engulf
and digest pathogens and cellular debris. Adipose tissue
macrophage infiltration has recently emerged as a major
contributor of inflammatory mediators contributing to dys-
function in obesity after seminal publications by Xu et al. and
Weisburg et al. in 2003. Xu et al. showed that macrophage-
specific genes including monocyte chemoattractant protein-
1 (MCP-1), macrophage inflammatory protein-1𝛼 (MIP-1𝛼),
CD11b, F4/80, and CD68 were upregulated in adipose tis-
sue of diet-induced obese mice. Interestingly, this preceded
development of hyperinsulinemia and treatment with the
insulin sensitive drug rosiglitazone caused downregulation
of these genes. Weisburg et al. analyzed the profile of 1304
body mass related transcripts, finding that 30% of the 100
most significantly correlated genes encoded genes which
were characteristic of macrophages. Immunohistochemical
analysis of multiple adipose depots showed a significant
correlation between the percentage of F4/80 expression and
adipocyte size and body mass. These results have since been
corroborated in a number of studies [54, 57]. Surgical or diet-
induced weight loss in obese individuals results in decreased
MCP-1 gene expression and reductions in macrophage infil-
tration and inflammation [58, 59]. Additionally, macrophage
activation appears to shift towards M2 (alternatively acti-
vated) overM1 (classically activated) status postgastric bypass
surgery in morbidly obese individuals, contributing to a less
inflammatory phenotype [60].

4. Metabolic Inflammation as
a Programming Mechanism

Interest in the developmental origins of obesity and its
associated metabolic sequelae has grown in recent years.
There is evidence to support a number of potential mech-
anisms, including programming of offspring appetite, gene
expression, and functional changes to adipose tissue [61].

These conditions are linked by the activation of a num-
ber of inflammatory pathways, including the NLR family,
pyrin domain containing 3 (NLRP3) inflammasome, perox-
isome proliferator-activated receptors (PPAR) signaling, and
nuclear factor-𝜅B (NF-𝜅B) pathway [62–64].

Classical inflammation is the body’s process of respond-
ing to injury or infection to restore homeostasis [65]. How-
ever, in obesity, the inflammatory response, which has been
coined “metainflammation,” is chronic and is on a lower scale
than the typical classic inflammatory response.The persistent
state of chronic low-grade inflammation induced by obesity
is characterized by abnormal cytokine production, an altered
adipokine profile, and activation of inflammatory pathways
[6]. The role of chronic low-grade inflammation in obese
mothers has become an emerging focus in the developmen-
tal programming field. Our group have demonstrated that
unbalanced maternal nutrition results in metainflammation
in the mother and programs inflammation in offspring
tissues [30, 66, 67]. However, current understanding of how
these pathways are activated in the context of developmental
programming remains poorly defined. Of note, most studies
have characterised the programmed offspring as adults when
the phenotype is already manifested. There is now strong
evidence that early changes in inflammatory markers can be
predictors of later metabolic and cardiovascular disease; thus
evaluation of offspring inflammatory profiles at early stages
of development may provide a useful biomarker for later life
metabolic adversity [68].

In rodents, maternal immune activation during preg-
nancy with an immunostimulant such as lipopolysaccharide
(LPS) has been shown to modify the immune response of
offspring [69, 70]. These offspring exhibit a more proin-
flammatory macrophage (M1) phenotype and enhanced IL-
1𝛽 production upon immune challenge in adulthood. Sim-
ilarly, a state of maternal obesity is linked to an enhanced
inflammatory response in offspring. Challier et al. observed
macrophage accumulation and increased expression of
proinflammatory cytokine expression in placenta from obese
women compared to those from lean women [9]. Infiltrating
macrophages have the capability to secrete inflammatory
cytokines into the maternal or fetal systemic circulation. It
is speculated that this is a contributing mechanism for the
programmed alterations in offspring metabolism associated
with increased adiposity and insulin resistance. The placenta
transports free fatty acids from the maternal circulation and
transports them for uptake by the fetal liver, where they are
esterified and released as triglycerides into the circulation
[71]. This has implications for fetal growth in humans, where
associations between increased maternal triglycerides and
macrosomia (large for gestational age) in offspring have
been reported [72]. Zhu et al. observed elevated free fatty
acids, cholesterol, and triglycerides in fetal circulation from
obese ewes which were accompanied by upregulation of
toll-like receptor 4 (TLR4), NF-𝜅B, and JNK signalling in
cotyledonary tissue [73]. These findings suggest greater fatty
acid uptake by the placenta, which can cause activation
of inflammatory pathways in the placenta. Therefore, the
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state of chronic low-grade inflammation in pregravid obesity
persists in pregnancy and contributes to an inflammatory
environment for the developing fetus.

5. Programmed Effects of Maternal Obesity on
Metabolic Function in Offspring

In animal models of diet-induced obesity, high fat feeding
during pregnancy programs features of the metabolic syn-
drome, independent of environmental factors and postnatal
diet [74, 75]. In humans, a high BMI before pregnancy
and during early pregnancy is predictive for having a high
birth weight baby, with these babies being at higher risk
of developing the features of metabolic syndrome [76, 77].
In contrast, maternal obesity is also found to be associated
with an increased incidence of intrauterine growth restriction
(IUGR) in humans, with supporting evidence from animal
work, underscoring the complexity of the maternal obesity
paradigm [78, 79]. Our group and the work of others have
shown that rodent models provide strong evidence for tissue
specific impairments in offspring from obese mothers [80–
84]. Impairments to metabolically critical or insulin sensitive
tissues, especially adipose tissue, pancreas, liver, and skeletal
muscle, may have profound effects on the development of
insulin resistance and type 2 diabetes in offspring.

5.1. Adipose Tissue. Adipogenesis is the process of the devel-
opment of stem cell precursors into adipocytes and largely
occurs during the late gestation and early postnatal life in
humans [85]. This process is sensitive to in utero conditions,
such as a deficient or excess nutrient supply. Turnover of
adipose cells in adulthood is low, with adipocyte number
leveling off in adulthood [86]. This underscores the impor-
tance of the in utero environment and early postnatal life
in a predisposition to adult onset of obesity. Perturbation of
adipogenesis, and therefore the development of the adipose
tissue as a whole, can alter its functionalmetabolic properties.
Maternal obesity can promote excess accumulation of body
fat in offspring and predispose them to obesity during later
life.

In a mouse model of maternal diet-induced obesity, 3-
month-old offspring from obese dams exhibited adipocyte
hypertrophy, reduced mRNA expression of 𝛽2- and 𝛽3-
adrenoreceptors, and increased mRNA expression of PPAR-
𝛾2, a key mediator of adipogenesis [21]. In a similar model
in rats, offspring displayed increased adiposity in later life
despite a normal birth weight, as well as a high percentage
of large adipocytes in concomitance with enhanced PPAR-
𝛾 expression [20]. In sheep models, maternal overnutrition
during the late gestational period programmed increased
mRNA expression of PPAR-𝛾, lipoprotein lipase (LPL),
adiponectin, and leptin in fetal perirenal fat [87]. These find-
ings suggest maternal overnutrition and subsequent obesity
may increase the lipogenic capacity of adipose tissue, pro-
moting a shift from a thermogenic to lipid storage function,
which could be a contributing cause of increased adiposity
in offspring. While an increased fat mass in offspring may be
acting as a compensatorymechanism to promote lipid storage

rather than ectopic fat deposition, excessive adiposity causes
aberrant inflammatory cytokine and adipokine regulation
of the tissue and subsequently a metabolic syndrome-like
phenotype. A recent study in mice by Murabayashi et al.
demonstrated that offspring of mothers exposed to a high fat
diet displayed increases in expression of TNF𝛼, CD68, and
MCP-1 and decreased GLUT4 mRNA expression, suggesting
that maternal obesity may affect fetal insulin sensitivity by
altering inflammatory processes [88].

5.2. Liver. In humans, the liver is the most metaboli-
cally complex organ, playing pivotal roles in whole body
metabolism including regulation of glucose homeostasis,
lipogenesis, detoxification, protein metabolism, cholesterol
production, and bile production [89]. WAT is critical for
storage of excess lipids, but in humans WAT development
does not occur until the third trimester of pregnancy [90].
Therefore, it is postulated that maternal obesity results in
excess exposure of the fetal liver to triglycerides, lipids,
adipokines, and other factors, causing alterations in gene
expression which upregulate lipogenesis and downregulate
lipolysis, contributing to hepatic lipid accumulation and
inflammation. In a number of animal models, maternal
overnutrition is found to elevate triglyceride levels, increase
inflammatory markers, and cause fatty livers in offspring
[21, 91, 92]. Although the etiology of liver disease can
vary, nonalcoholic fatty liver disease (NAFLD) linked to
obesity and metabolic syndrome is currently one of the
most common causes of adult chronic liver disease [93].
NAFLD refers to a progressive range of stages of pathologies
caused by fat buildup within hepatocytes—simple fatty liver,
nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis
[89]. In humans, NASH is associated with increased gene
expression of inflammatory factors both locally in the liver
and systemically [94, 95].

McCurdy et al. demonstrated the programming effects in
response to a maternal high fat diet in nonhuman primates
[23]. Interestingly, not all mothers receiving the high fat
diet developed obesity and insulin resistance. However, when
examined during the early third trimester of gestation, all off-
spring of high fat fed mothers demonstrated signs of NAFLD
such as hepatic inflammation, triglyceride accumulation, and
premature gluconeogenic gene activation. Elevated triglyc-
eride levels were also observed in P30 and P180 offspring,
and in addition, offspring had a 2-fold increase in body
fat percentage. Collectively, these observations suggest that
consumption of a chronic high fat diet can independently
increase risk of offspring developing NAFLD. Similar results
have been replicated in mice fed high fat diets during
gestation and lactation. Increased fat depot weight, increased
serum insulin, triglycerides, proinflammatory cytokines, and
hepatic I𝜅B kinase phosphorylation were observed [96, 97].
In offspring of mice fed a high fat diet during only gesta-
tion (G), only lactation (L), or both (GL), hepatic steatosis
was observed [98]. Expression of sterol regulatory element-
binding protein-lc (SREBP-1c) expression was higher in G
and GL offspring, indicating a stimulation of lipogenic gene
transcription and fatty acid synthesis. Expression of GLUT-2
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was reduced inGoffspring, indicating impaired carbohydrate
metabolism.

5.3. Skeletal Muscle. Comprising about 40–50% of body
mass, skeletal muscle is the chief peripheral insulin respon-
sive tissue, responsible for glucose and fatty acid uptake
in response to insulin. Similar to adipose tissue, skele-
tal muscle displays enhanced inflammation in response to
high fat feeding, including increases in proinflammatory
macrophages and inflammatory gene expression [99, 100].
Chronic inflammation also occurs in insulin resistant skeletal
muscle, displayed by increased macrophage infiltration and
increased inflammatory cytokines [101, 102].

Alterations to the development of skeletal muscle can
have physiological consequences for the offspring. Proper
skeletal muscle development in the fetal period is of critical
importance as there is no net increase in muscle fibre
number after birth [103]. Skeletal muscle is also sensitive
to an adverse in utero environment during development as
it has a lower priority in nutrient partitioning compared
to other organs including the brain, heart, and liver [104].
Additionally, changes to adipogenesis in the fetal skeletal
muscle can induce increased number and size of intramus-
cular adipocytes, which can act in a paracrine fashion to
contribute to insulin resistance later in life [64, 105].

In dams fed a cafeteria diet (palatable processed foodwith
high fat and high sugar) during gestation lactation, offspring
displayed increased adiposity at weaning, reduced muscle
cross-sectional area, fewer muscle fibres, muscle atrophy, and
fibre hypoplasia [106]. Functional impairments to muscle
included intramuscular fat deposition and preferential fat
accretion in muscle fibres. This was accompanied by an
increase in muscle PPAR-𝛾 expression, which was suggested
as a compensatory response to maintain insulin sensitivity.

Work by Du et al. showed that maternal obesity resulted
in low-grade inflammation which altered the commitment
of mesenchymal stem cells in fetal muscle through mecha-
nisms including inhibition of AMP-activated protein kinase
(which promotes adipogenesis) and inflammation-induced
epigenetic modifications via polycomb group proteins [107].
In the offspring of high fat fed ewes Akt phosphorylation (the
main downstream insulin signalling pathway) and insulin
receptor mRNA expression were reduced [64]. Addition-
ally, inflammation was observed in skeletal muscle with
upregulation of TLR2 and TLR4 expression, NF-𝜅B pathway
(IKK phosphorylation), JNK pathway, and increased TNF𝛼
expression.

6. Anti-Inflammatory Strategies to
Reverse Programming

Despite the evidence demonstrating maternal obesity and
effects of inflammation in offspring, knowledge on the
effectiveness of anti-inflammatory agents during pregnancy
is minimal. Although health care professionals highly rec-
ommend weight loss to reduce the risk factors associated
with obesity during pregnancy, women are likely to maintain

prepregnancy lifestyle habits throughout pregnancy. There-
fore, this avenue is of utmost importance as rates of obesity
continue to increase and the long-term effects negative to
offspring become more apparent.

6.1. Omega 3 Fatty Acids: Eicosapentaenoic Acid (EPA) and
Docosahexaenoic Acid (DHA). Polyunsaturated fatty acids
(PUFAs) are a group of lipids which can modulate the
immune system, alter the regulation of pro- and anti-
inflammatory cells, and affect transcriptional regulation
[108]. The two main families of PUFAs are omega 6 (n-6;
linoleic acid (LA)) and omega 3 (n-3; alpha linolenic acid
(ALA), eicosapentanoic acid (EPA), and docosahexanoic acid
(DHA)) fatty acids [109]. EPA andDHA are highly associated
with brain function [110]. In general, eicosanoids derived
from n-6 PUFAs are more proinflammatory and immunoac-
tive; eicosanoids derived from n-3 PUFAs are therefore
considered more anti-inflammatory [108]. PPARs, a group of
nuclear receptor proteins that act as transcription factors and
are responsible for regulating the expression of genes involved
in adipogenesis, inflammation, and lipid metabolism, can be
activated by a diverse range of ligands, including omega 3 and
6 fatty acids [111]. The Western diet, which has also become
increasingly predominant in developing countries, contains a
significantly higher proportion of n-6 PUFA compared to n-3
PUFA [112]. Associations between low n-3 PUFA intake and
increases in the incidence of obesity, cardiovascular disease,
inflammatory diseases, and cancer have been an area of active
research [113]. EPA and DHA have an antiobesogenic effect
and can both reduce existing adiposity and prevent high
fat induced obesity [114, 115]. The n-3 PUFAs have been
documented to exert anti-inflammatory effects in the context
of obesity by modulating adipose tissue, skeletal muscle,
and hepatic function [116]. In vitro, EPA stimulates glucose
and fatty acid uptake in skeletal muscle cells by increasing
expression of the transporters GLUT1 and CD36/FAT (fatty
acid translocase) and increasing glucose oxidation [117]. In
the adipose tissue of obese rats, n-3 PUFA modulates the
secretion profile of adipokines and cytokines, decreasing
secretion of proinflammatory cytokines including TNF𝛼
and IL-6 and reducing MCP-1 levels and adipose tissue
macrophage infiltration, contributing to anti-inflammatory
and insulin sensitizing effects [118]. Upon high fat feeding
in rats, n-3 PUFAs increase fatty acid oxidation and inhibit
lipogenesis in the liver, causing fatty acids to be preferentially
oxidized rather than being stored [119]. The PPAR signalling
pathway is implicated as amechanism for the insulin sensitiz-
ing effects of EPA [120]. Neschen et al. conducted a study in
which wildtype mice and PPAR-𝛼 knockout mice were fed an
isocaloric high fat dietwith orwithout additional fish oil [121].
Within wildtype mice, the fish oil supplemented group had
improved hepatic insulin sensitivity. These effects were not
seen within PPAR-𝛼 knockout mice, suggesting the insulin
sensitizing effects are attributed to PPAR signalling. Despite
the strong support of improvements by EPA and DHA to
obesity and related insulin resistance in animal models,
results in human clinical trials have been less consistent,
as human trials are complicated by composition of n-3
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PUFAs used, dosage, duration of administration, dietary and
lifestyle habits, and other confounders [122]. Furthermore,
the amnion, which surrounds the developing embryo, is sen-
sitive to inflammatory modulation by EPA and DHA, likely
partially mediated by PPAR-𝛾 [123]. Explants treated with
EPA, DHA, or a mixture had reduced IL-8 and IL-6 concen-
trations compared to untreated controls. When treated with
a PPAR-𝛾 agonist, IL-8 secretion was significantly decreased,
yet this effect was partially reversed when treated with a
PPAR-𝛾 antagonist. Short-term supplementation with piogli-
tazone, an insulin sensitizing agent that stimulates PPAR-𝛾,
to offspring from obese mothers attenuated the programmed
obesity and insulin resistance associated with maternal obe-
sity [124]. A study by Heerwagen et al., using Fat-1 transgenic
mice (capable of converting endogenous n-6 PUFA to n-3
PUFA), demonstrated the potential to reduce inflammation
associated with diet-induced obesity and improve metabolic
outcomes in offspring [125]. Fat-1 mice were protected from
adverse effects of a high fat diet, including adipose tissue
macrophage accumulation and systemic increases in TNF𝛼,
IL-1𝛽, IL-6, and MCP-1. Although there were no observed
changes in inflammatory markers in the placenta, fetuses
from high fat diet mothers showed minor growth restriction
compared to mothers on a control diet, which has also been
previously reported [79]. Additionally, although high fat fed
mothers did not display hyperlipidemia when measured in
late pregnancy, their offspring had increased lipid deposition
in the fetal liver, which was reduced in offspring from Fat-
1 high fat diet mothers. This underscores that birth weight
may not be an accurate measure of fetal health, but rather
other measures (e.g., hepatic lipid accumulation) may be
more accurate. Adult wildtypemale offspring from Fat-1 high
fat diet mothers displayed less adiposity, hepatic lipid accu-
mulation, adipose tissuemacrophages, and insulin resistance,
compared to offspring from high fat mothers. Collectively,
these findings suggest that targeting inflammatory processes
involved in maternal overnutrition and obesity may be
beneficial in reversing or mitigating harmful programming
effects on offspring in later life.

6.2. Resveratrol. Resveratrol is a stilbenoid (natural phenol)
and phytoalexin naturally produced by some plants, such
as Japanese knotweed and the skin of red grapes [126].
Resveratrol gained significant interest when it was proposed
to be responsible for the beneficial cardiovascular effects
of red wine, described as the French paradox [127]. Subse-
quent studies have shown resveratrol to have a multitude of
health benefits, including cancer chemopreventive, antiox-
idant, antiplatelet, and estrogen modulatory and caloric
restriction mimetic activities [128–131]. Resveratrol increases
the expression of sirtuin 1 (SIRT1), a nicotinamide adenine
dinucleotide (NAD+)-dependent deacetylase [132]. SIRT1 has
been shown to modulate genes which regulate a number of
biological processes including cell proliferation, apoptosis,
gluconeogenesis, lipolysis, adipogenesis, and inflammation
[133–136]. Resveratrol treatment results in activation of per-
oxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1𝛼) by SIRT1, which prevents development of

diet-induced obesity and insulin resistance [137]. Resveratrol
has been shown to attenuate TNF𝛼 induced MCP-1 gene
expression and secretion in a dose-dependent manner in
3T3-L1 adipocytes [138]. These effects were not observed
when adipocytes were treated with a NF-𝜅B inhibitor prior
to resveratrol exposure, suggesting this effect was mediated
by NF-𝜅B.

Resveratrol’s antidiabetic activity, including improving
insulin sensitivity and decreasing glucose, dyslipidemia,
and adiposity, has been well documented in diet-induced
and genetic diabetic animal models [139, 140]. Resvera-
trol’s antidiabetic activity is at least partially mediated by
AMP-activated protein kinase (AMPK), which is involved
in regulating mitochondrial biogenesis, inducing fatty acid
oxidation in the liver and muscle, increasing muscle glucose
uptake, and inhibiting lipogenic activity, collectively resulting
in increased insulin sensitivity [141]. In mice deficient in
either the a1 or a2 catalytic subunit of AMPK, resveratrol
does not significantly affect insulin sensitivity or glucose
tolerance, implicatingAMPKas amechanism for resveratrol’s
effects [142]. Long-term intracerebrovascular infusion in high
fat fed obese/diabetic mice has been shown to normalize
hyperglycemia and improve hypoinsulinemia associated with
NF-𝜅B activation [143]. These effects were independent
of changes to body weight and food intake, suggesting a
potential role of the central nervous system in resveratrol’s
antidiabetic activity.

The hypoglycemic effects of resveratrol are critical in
avoiding diabetic neuropathies and damaging effects to
organs. A consequence of diabetes during pregnancy is dia-
betic embryopathy, which is associated with oxidative stress
and can disrupt normal organogenesis [144]. Embryos from
diabetic dams had increased apoptosis and oxidative stress
markers, but resveratrol administration to diabetic dams
during pregnancy protected against these effects and also
improved measures of embryonic development including
weight, crown rump length, and somite number [145].

In rats, doses of up to 750mg/kg/d during gestation did
not result in fetal abnormalities or have adverse effects on
placenta weight or litter size [146]. A recent study conducted
by Roberts et al. assessed the role of resveratrol supplemen-
tation during pregnancy in nonhuman primates. Mothers
were fed a Western-style diet (36% fat) with or without
resveratrol supplementation. Resveratrol improved placental
inflammatory markers (IL-1𝛽 and macrophage migration
inhibitory factor), maternal and fetal hepatic triglyceride
accumulation, uterine blood flow, and insulin sensitivity
[147]. Resveratrol was detected in maternal plasma, demon-
strating an ability to cross the placental barrier and exert
effects on the fetus. Although resveratrol supplementation
did not alter fetal body mass, there was a 42% increase
in pancreas mass in the fetus, which was confirmed by
immunohistochemistry. Furthermore, resveratrol was shown
to increase uterine artery blood flow thereby increasing fetal
weight in a murine model of fetal growth restriction [148].
There is also evidence that resveratrol improves themetabolic
profile of offspring born growth restricted by reversing Akt
mediated insulin resistance in liver and skeletal muscle [149].
Taken together, these findings suggest that resveratrol may
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improve the maternal and offspring metabolic profile in
maternal overnutrition, obesity, and diabetic pregnancies.
However, as the consequences of resveratrol treatment have
significant effects on parameters such as pancreatic mass in
offspring with unknown long-term effects, further studies in
humans to determine adequate and safe therapeutic dosage
and routes and frequency of administration are required.

6.3. Curcumin. Curcumin is a polyphenol responsible for the
yellow pigment present in turmeric. Its use in traditional
medicine is well known, but research now supports anti-
inflammatory, antidiabetic, antioxidant, chemopreventive,
and cardiovascular protective properties [150, 151]. Curcumin
is pleiotropic, with the ability to interact with various tar-
gets and exert its effects through several mechanisms of
action. Curcumin has been shown to reduce the inflamma-
tory response through NF-𝜅B, suppressing its activation by
inhibiting I𝜅K𝛼 kinase (IKK) activation [152, 153]. Curcumin
decreases inflammation by acting as an agonist of PPAR-𝛾.
In a rodent model of sepsis, intravenous administration of
curcumin resulted in downregulation of TNF𝛼 and decreased
markers of tissue damage. Administration of a PPAR-𝛾
antagonist reversed these effects, confirming the decreased
inflammation to be mediated via PPAR-𝛾 [154]. Studies
have also shown that curcumin may have beneficial anti-
inflammatory effects for treatment of postoperative inflam-
mation, acute respiratory distress syndrome, and inflamma-
tory bowel disease [155–157]. In mouse models of obesity-
induced insulin resistance, oral administration of curcumin
has beneficial effects on the inflammatory response and
decreased insulin sensitivity associated with high fat feeding
[158, 159]. Increased adiponectin, decreased TNF𝛼 andMCP-
1, reduced macrophage infiltration, attenuation of NF-𝜅B
activation, and inhibition of lipogenic gene expression were
also observed.

Although studies of the use of curcumin in pregnancy
are lacking, its safety in humans has been demonstrated,
with doses of up to 12 g/day being well tolerated and having
low toxicity [160–162]. In a two-generation reproductive
toxicity study in Wistar rats, there was no observed adverse
effect level on reproductive performance in two successive
generations, even in high doses of 10000 ppm (equivalent
to 847.4mg/kg body weight in F0 males) [163]. However,
in vitro exposure of curcumin to mouse blastocysts during
the early postimplantation stages had adverse effects in a
dose-dependent manner [164]. Administration of pegylated
curcumin (increased solubility) in mice had negative effects
to reproductive functions, attributed to estrogen-mimicking
or androgen-antagonizing properties [165]. These discrepan-
cies are likely attributed variations in the route of admin-
istration. Curcumin is lipophilic and oral administration
involves digestion, absorption, and metabolism in the liver,
therefore reducing bioavailability at the target organ. Direct
administration of curcumin in vitro does not accurately
reflect physiologic conditions.

However the anti-inflammatory effects of curcumin have
been shown to reverse ethanol-induced cognitive impair-
ments in rat offspring by dampening NF-𝜅B signalling and

proinflammatory cytokine expression [166]. There is further
evidence to suggest that the anti-inflammatory properties of
curcumin may have cardioprotective effects in cardiac pro-
genitor cells [167] and augment lung maturation in fetal rats
via blockade of TGF-𝛽 [168]. Therefore, curcumin appears
to be an effective anti-inflammatory strategy in the context
of obesity; despite its safety, optimal therapeutic dose and
benefits in the context of obesity during pregnancy have yet
to be validated in vivo in animals and humans.

6.4. Taurine. Taurine is a nonessential sulfated amino acid
with a range of physiological benefits in heart function,
hypertension, neuromodulation of the central nervous sys-
tem, and retina function [169, 170]. Taurine is found in high
amounts in mammalian plasma and cells, with a particularly
high concentration in human neutrophils, where it can
react with myeloperoxidase and form taurine chloramine
(TauCl), which has reported anti-inflammatory effects [171].
In inflammatory conditions, taurine has been shown to
decrease inflammation by downregulating NF-𝜅B [172, 173].
TauCl has been shown to oxidize I𝜅B-𝛼, preventing the
activation of NF-𝜅B [174].

In a human double-blind placebo controlled study, obese
individuals had 41% lower plasma taurine levels compared
to matched controls at baseline [175]. Eight weeks of taurine
supplementation improved inflammation indices, increasing
adiponectin and decreasing CRP in obese individuals. In
14 weeks of high fat feeding in mice, treatment with tau-
rine prevented weight gain and hyperglycemia and resulted
in decreased TNF𝛼 and IL-10 [176]. Additionally, taurine
reduced macrophage infiltration and promoted shift in
macrophages to an M2-like phenotype in the adipose tissue.

In models of gestational protein restriction in rodents,
supplementation of taurine had protective effects on the
programmed impairments to the pancreas, liver, and skeletal
muscle associated with protein restriction [177–179]. Addi-
tionally, taurine was shown to normalize the changes in
gene expression associated with protein restriction [177–
179]. However, in the context of obesity, less is known of
taurine’s effect on developmental programming. A study by
Li et al. showed conflicting results of taurine supplementation
as a potential strategy to reverse maternal obesity-induced
developmental programming effects on offspring [67]. Dams
were fed an obesogenic diet (high fat: high fructose diet),
which led to increased weight, hyperglycemia, insulin resis-
tance, hepatic steatosis, and systemic inflammation. Taurine
supplementation attenuated systemic inflammation, yet exac-
erbated impairments to lipid metabolism and inflammatory
markers in the liver. In contrast, the neonates of taurine
supplemented obesogenic diet dams demonstrated normal-
ization of the detrimental hepatic proinflammatory effects
of maternal obesogenic diet. In control pregnancies, taurine
increased neonatal mortality and resulted in significantly
lower birth weights in female pup birth weight. Although
taurine supplementation did have beneficial effects in revers-
ing programming in some conditions, further investigation
is required to elucidate mechanisms of how taurine functions
in the context of maternal obesity.
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7. Other Avenues for Intervention

There is also accumulating support for the role of epigenetic
regulation of gene expression as a mediator of the program-
ming of adult-onset metabolic disease. Epigenetic regulation
describes stable and heritable DNA alterations that do not
involve DNA mutation including DNA methylation, post-
translational histone modifications, and chromatin remod-
eling [180]. Understanding how these epigenetic changes
alter the postnatal phenotype could allow identification of
biomarkers to enable early detection of children at risk of
developing adult disease from developmental programming.

A cross-sectional study in healthy pregnant women
found a positive correlation between maternal BMI and
the degree of PGC-1𝛼 (peroxisome proliferator-activated
receptor gamma coactivator 1-alpha) methylation in the
umbilical cord of offspring, highlighting a potential role of
DNAmethylation as a mediator for the programming effects
of maternal obesity [181]. Maternal obesity has been shown
to induce epigenetic modifications in offspring. For example,
offspring from obese mice have enhanced expression of
Zfp423, accompanied by reduced methylation in the Zfp423
promoter [182]. Zfp423 is a transcription factor that plays
roles in cell commitment to the adipogenic lineage; therefore
these changes are likely to contribute to enhanced adipogenic
differentiation during fetal development and predisposi-
tion to obesity. In a multigenerational mouse model, Ding
et al. found that high fat feeding caused a “feed-forward
cycle” exacerbating adipose tissue inflammatory processes
via DNA hypomethylation, resulting in epigenetic changes to
expression of Tlr1 and Tlr2 [183]. Maternal supplementation
with methyl donors has been shown to protect offspring
against the adverse effects of a maternal obesogenic diet, but
whether these changes are mediated in part by alterations in
inflammatory profiles is not known [184, 185]. DNA methyl-
transferase (DNMT3b) plays an important role in regulation
of macrophage polarization through epigenetic processes. In
obesity, elevations in saturated fatty acids increase DNMT3b
expression, leading to DNA methylation at the PPAR-𝛾1
promoter; this may contribute to deregulated adipose tissue
macrophage polarisation, inflammation, and insulin resis-
tance [186]. Collectively, these studies demonstrate the poten-
tial of epigenetic regulation as another target for intervention
to prevent or treat maternal obesity programming effects.

8. Discussion and Conclusion

In recent years, understanding of the developmental pro-
gramming effects of maternal obesity on offspring metabolic
health has expanded. However, deciphering the complex
interactions and mechanistic pathways involved in the pro-
cess still remains a challenge. Studies range in duration,
model of obesity (cafeteria diet, high fat, and high salt/high
fat), and stage of development of the intervention (i.e., peri-
conception, gestation, lactation, andweaning).Thematernal-
fetal obesity paradigm is extremely complex, with factors
related to overnutrition, obesity, and inflammatory processes
likely impacting the development of the fetus. Additionally, a
majority of studies investigating the programming effects of

maternal obesity observe more pronounced impairments in
male offspring, and it is not well understood why these sex-
specific differences occur. Nutritional intervention remains
a promising therapeutic target to minimize complications to
fetal development in a poormaternal environment. However,
it is unclear whether these compounds are beneficial by
directly affecting offspring, or rather improving themetabolic
profile in the mother. However, what is clear is that weight
loss and specific dietary interventions such as decreased
intake of saturated fat in women who intend to become
pregnant are the most effective and safe way to improve
metabolic outcomes for offspring. In conclusion, evidence
from animal and clinical studies provides strong evidence for
the developmental origins of obesity andmetabolic disorders.
Intervention strategies to ameliorate the negative outcomes
of maternal obesity on offspring are greatly needed as they
present an easy cost effective way of decreasing potential
noncommunicable disease risk for future generations to
come.
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