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Asthma is a common respiratory disease with inflammation in the lungs. Exosomes andmicroRNAs (miRNAs) play crucial role in
inflammation, whereas the role of exosomal miRNA in asthma remains unknown. Here, we aimed to identify the key exosomal
miRNAs and their underlying mechanisms involved in scorpio and centipede (SC) treatment in asthma. Eighteen mice were
randomly divided into three groups: control group, asthma group, and SC treatment group. Effect of SC was assessed by he-
matoxylin-eosin staining and real-time PCR. Exosomes from asthma and SC treatment groups were analyzed by small RNA-seq.
Results revealed SC significantly alleviated the pathogenesis of asthma and suppressed the release of inflammatory cytokines. A
total of 328 exosomal miRNAs were differentially expressed between the exosomes from asthma and SC-treated mice, including
118 up- and 210 downregulated in SC-treated mice. ,e altered exosomal miRNAs were primarily involved in the function of
transcription, apoptotic process, and cell adhesion; and pathway of calcium, Wnt, and MAPK signaling. Real-time PCR verified
exosomal miR-147 was downregulated, while miR-98-5p and miR-10a-5p were upregulated in SC-treated mice compared to
asthma mice. Moreover, the target genes of miR-147-3p, miR-98-5p, and miR-10a-5p were mainly enriched in Wnt and MAPK
inflammatory signaling. miR-10a-5p promoted the proliferation of mouse lung epithelial cells and downregulated the expression
of Nfat5 and Map2k6.,ese data suggest SC-induced exosomal miRNAs might mediate the inflammatory signaling and might be
involved in the SC treatment in asthma. ,e exosomal miRNAs might be promising candidates for the treatment of asthma.

1. Introduction

Asthma is one of the most common respiratory diseases,
which affects more than 334 million people worldwide [1].
Characterized by reversible airway inflammation, airway
obstruction, and airway hyperresponsiveness, asthma has
the respiratory symptoms of wheeze, chest tightness, and
cough [2]. ,e underlying mechanisms (endogenous) of
asthma are complex and represents host-environment in-
teractions that occur at different spatial scales. Genes as-
sociated with epithelial barrier dysfunction and immune
responses make a major contribution to asthma [3]. Epi-
thelial cells, dendritic cells, and idiopathic lymphocytes are
involved in the pathogenesis of asthma, and infiltration of

eosinophils, basophils, and mast cells was occurred in
airway smooth muscle and submucosal airway [4]. In
patients with chronic asthma, persistent inflammation
and smooth muscle hyperplasia can lead to thickening and
narrowing of the airways, which triggers coughing,
shortness of breath, and even difficulty breathing [5]. ,e
recommended medications for adults and children in-
clude inhaled glucocorticoids and long-acting beta-2
agonists, while long-acting muscarinic antagonists, leu-
kotriene receptor antagonists, or theophylline are con-
sidered as adjunctive therapies [3]. However, there are still
limitations in the treatment of asthma with these drugs.
,erefore, it is urgent to explore the pathogenesis of
asthma and find new medical treatments.
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Recently, large numbers of insects around the world have
been identified as additional sources for novel and
mechanically unique therapies. Insect Chinese medicine,
such as scorpion, centipede, and earth dragon, is usually
used in the treatment of refractory asthma, due to their
functions of dredging collaterals, activating blood circula-
tion and removing stasis. Scorpio and centipede (SC)
showed significantly improve effects on airway inflamma-
tion and remodeling in asthmatic rats [6]. A previous study
revealed that insects, including SC, produce hundreds of
bioactive substances in the venom, which may be clinically
useful [7]. In our previous study of 78 cases of refractory
asthma, we found that treatment with SC could improve
clinical symptoms and lung function and reduce airway
inflammation, and no adverse reactions were found.
However, the underlying mechanism of SC treatment in
refractory asthma is still unknown.

Exosomes are a class of extracellular vesicles with di-
ameters of 30 to 100 nm. As a new information carrier,
exosomes carries proteins, messenger RNA (mRNA) and
various noncoding RNAs, such as microRNAs (miRNAs),
from donor cells to recipient cells [8].,ey exist in biological
fluids and play pivotal roles in multiple physiological and
pathological processes [9]. Recently, the crucial role of
exosomes in bronchial asthma has been discovered [10].
Bronchoalveolar lavage fluid (BALF) exosomes are involved
in the cytokine and leukotriene production in allergic
asthma [11]. Additionally, miRNAs have also been shown to
function as potential biomarkers and therapeutic target for
asthma [12]. ,e biological roles of exosomal miRNAs have
attracted significant interest in the pulmonary field [13, 14].
Exosomal miRNAs from the BALF, such as let-7 and
miRNA-200, can act as novel biomarkers for asthmatic
patients [15]. However, the role of exosomal miRNAs in
asthma is still largely unclear.

In the present study, we aimed to investigate the exo-
somal miRNAs involved in the SC treatment of refractory
asthma. Effect of SC on asthma mice was assessed, and the
exosomal miRNAs profiling in BALF of SC treated and
control asthma mouse was investigated by small RNA se-
quencing. ,e results might provide a potential exosomal
miRNAs involved in alleviating the symptoms associated
with asthma.

2. Materials and Methods

2.1.Animals. SPF-grade male BALB/c mice (weight 20± 2 g)
were obtained from J Shanghai Sipul-Bikai Laboratory
Animal co., Ltd (Shanghai, China). Mice were housed in
under nonpathogen conditions and in an environment of
22°C with 12 h light and 12 h dark cycle. ,e model was
established after feeding for a week. ,e animal experiment
in this study was approved via the animal care and ethical
committee of Shanghai Municipal Hospital of Traditional
Chinese Medicine.

2.2. Asthma Establishment and SC Treatment. A total of 18
mice were randomly divided into three groups: control

group, asthma group, and SC treatment group, with 6 mice
in each group. Mice in asthma group and treatment group
were sensitized on the 1st and 7th days, by intraperitoneal
injection with 0.1mL allergen drugs, including OVA
(0.5mg/mL) and aluminum hydroxide (2mg/mL). ,e
animal was motivated on day 15. Briefly, mice were placed in
an airtight container filled with 2% OVA atomized fluid for
40min once a day, for a total of 3 weeks. Mice in the control
group were intraperitoneally injected with the same amount
of normal saline on the 1st and 7th day. At the 15th day, they
were placed in a container filled with normal saline atom-
izing fluid for 4min, once a day for 3 weeks. From day 15,
each group was given intragastric administration 1 h before
each stimulation, once a day for 3 weeks. On days 15–36,
control group and model group received 10mL/kg normal
saline, and SC treatment group received 0.625 g/kg SC so-
lution. At the end of experiments, BALF of mice was col-
lected and stored at − 80. Mice were euthanized via CO2
inhalation. ,e left lung of mice was partially immobilized
and partially frozen.

2.3. Hematoxylin-Eosin (H&E) Staining. Lung tissues were
fixed in 10% formalin and dehydrated with different con-
centrations of ethanol. Tissues were cut into 4–7 μm slices,
placed in a 65°C constant temperature oven for 30min,
soaked in xylene I for 15min, and then in xylene II for
15min. ,e slices were soaked with 100% alcohol, 95%
alcohol, 85% alcohol, and 75% alcohol for 5min, respec-
tively, and washed with running water for 10min. Slices
were stained with Hematoxylin aqueous solution for 5min
and eosin staining solution for 1-2min. ,e slides were
placed in xylene for 3min, 2 times and sealed with neutral
gum. Slides were analyzed by taking photos with a micro-
scope (Nikon ECLIPSE Ni, Japan).

2.4.ExosomeExtraction. Exosomes were obtained fromBALF
of asthma group and SC treatment group, using Exo-quick
exosome precipitation kit (SBI System Biosciences, Inc.) based
on the manufacturer’s instruction. In brief, BLAF was cen-
trifugated at 3000×g for 15min under 4°C, and then the
supernatant was collected, and repeat the above centrifugation.
,e final supernatant was collected and transferred to a new
tube, then added with 252μl Exo-Quick Exosome Precipitation
Solution, and incubated at 4°C for 1h. Pelleted exosomes were
obtained by centrifuging the above reaction at 1500×g, for
30min at 4°C. ,e isolated exosomes were resuspended using
1×Phosphate Buffered Saline (PBS).

2.5. Transmission ElectronMicroscopy (TEM). ,e extracted
exosomes were dropped on the copper network for 1min.
,e floating fluid at the edge was removed by a filter paper.
Exosomes were washed using ultrapure water for three
times. Phosphotungstic acid of 10 μl was added to the copper
network and deposit for 1min, and samples were desic-
cated at 20°C for 2min. Exosomes were analyzed by a
Transmission electron microscopy (NEC Electronics Cor-
poration, JEM—1200EX).
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2.6. Western Blot. Total protein of exosomes was isolated
and the concentration was detected via a BCA assay kit
(Pierce Biotechnology, Inc., Rockford, IL, USA). Equal
protein from each group was loaded on 10% SDS-PAGE gel,
and transferred to polyvinylidene fluoride membranes
(Millipore, Bedford, MA, USA). Primary antibodies against
CD63 (Santa Cruz, Santa Cruz, CA, USA; 1 :100), and
GAPDH (PB0141; 1 :1000) was incubated with membranes
at 4°C for overnight. Membranes were washed and incubated
with goat antirabbit IgG-HRP secondary antibody for 2 h.
Diaminobenzidine diaminobenzidine was used to stain the
membranes. Enhanced chemiluminescence reagent
(,ermo Fisher Scientific, Waltham, MA) was used to show
the protein bands and the bands were observed by a Chemi-
Doc MP system (Bio-Rad, Hercules, USA).

2.7. RNA Isolation, Small RNA Library Construction, and
Sequencing. ,ree asthma mice and three SC treatment mice
were involved in the RNA sequencing. Total RNA was isolated
from BALF-derived exosomes via TRIzol (Invitrogen, Carls-
bad, CA, USA). RNA concentration and integrity were mea-
sured by the NanoDrop 2000 spectrophotometer (NanoDrop
Technologies, Inc., Wilmington, DE, USA). Illumina TruSeq
RNA Sample Preparation Kit (illumina, San Diego, CA, USA)
was used to establish the small RNA libraries, followed by the
manufacturer’s recommendations. Briefly, 1μg of total RNA
was adapter-ligated with 120nt adapter. RNA of target frag-
ment size 135–170nt was obtained by PAGE gel electropho-
resis. Target RNA was collected with anhydrous ethanol and
then reversely transcribed into cDNA and quantified with the
Agilent Bioanalyzer 2100 system (Agilent Technologies, Santa
Clara, CA, USA). All six libraries were sequenced on an
Illumina Hiseq 2500 Genome Analyzer platform using pair-
end mode, at Shanghai Yingbio biotechnology co. Ltd.

2.8. Data Processing. Raw reads were quality-controlled
using Fast-QC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). To identify known small noncoding RNAs,
all clean reads were mapped to the miRBase database (http://
www.mirbase.org/) using BWA. ,e reads that cannot be
mapped tomiRbase were thenmapped to piRNA database to
obtained piRNA. ,e transfer RNA-derived small RNAs
(tsRNAs) were identified by mapping to GtRNA database
(http://gtrnadb.ucsc.edu/), tRFdb (http://genome.bioch.
virginia.edu/trfdb/). Differential expressed miRNAs
(DEmiRNAs) were identified by the EBSeq [16], and sig-
nificant differences were defined as absolute log2 fold
change>1 and false discovery rate (FDR)<0.05. Potential
targets of DEmiRNAs were predicted by miRanda
(Score≥150 and Energy< − 20) and RNAhybrid (Ener-
gy< − 25), and the final target genes were obtained by in-
tersection of these two algorithms. Function and pathway of
target genes were analyzed by Gene Ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) da-
tabase, respectively. ,e significance level was assessed by
Fisher test and the significant enrichment was obtained by
P-value <0.05. GO includes three classes: biological process

(BP), cellular component (CC), and molecular function
(MF).

2.9. Cell Culture. Mouse lung epithelial cells (TC-1 JHU-1)
were purchased from Procell (Wuhan, China). TC-1 cells
were incubated in Dulbecco-modified Eagle medium
(DMEM; Life Technologies, Carlsbad, CA, USA) supple-
mented with 5% fetal bovine serum (FBS; Hyclone, Logan,
UT, USA) and penicillin/streptomycin 100 IU/mL. Cells
were cultured at 37°C, in a humidified atmosphere of 5%
CO2 and 95% air.

2.10. Cell Proliferation Assays. Cell proliferation was eval-
uated by CCK-8 assay. Cells were harvested after 48 h of
miRNAmimics or inhibitor transfection and cultured in 96-
well plates (Corning, NY, USA) with 2×104 cells/ml. CCK-8
solution (Beyotime, Shanghai, China) was added and the OD
450 was measured after culturing for 0, 24, 48, 72, or 96 h.

2.11. Validation of Exosomal miRNAs by Real-Time PCR.
To identify key miRNAs associated with SC treatment in
asthma, three exosomal miRNAs were selected for real-time
PCR in six asthma mice and six SC-treated asthma mice,
based on high their changed fold and abundance. RNA was
isolated from BALF-derived exosomes of six asthma model
mice and six SC treatment mice using TRIzol (Invitrogen,
Carlsbad, CA, USA). Synthesis of cDNA was performed by
specific reverse primer using High-Capacity cDNA Reverse
Transcription Kit (,ermo Fisher, CA, USA). Real-time PCR
was performed using SYBR Green Real-time PCR Master
Mix (TOYOBO, No. QPK-201) and run on an ABI Q6 Real-
time PCR System (Applied Biosystems Inc, USA). All re-
actions were performed in triplicate.,e PCR process was as
follows: one cycle of 95°C for 10min, then 40 cycles of 95°C
for 5 s, and annealing and extension at 55–58°C for 30 s. Data
were analyzed using the 2− ΔΔCt method. U6 was used as the
reference genes, and primer sequences are shown in Table 1
of the Supplementary Materials.

2.12. Statistical Analysis. Statistical analysis and column di-
agram establishment were performed by GraphPad 7.0
(GraphPad Software, La Jolla, CA, USA). Data was presented as
mean± standard deviation (SD). Statistical comparisons be-
tween two groups were analyzed by unpaired t-test, and
comparisons between three groups were analyzed by one-way
ANOVA post Turkey test.,e data were considered significant
at P-values <0.05 (∗) or highly significant at P< 0.01 (∗∗).

3. Results

3.1. SC Alleviates Pathogenesis and Inflammation in Asthma
Mice. ,e pathogenesis of sham control mice, asthmatic
mice, and SC-treatedmice were analyzed by H&E staining of
lung tissue. Compared with the control mice, the asthma
mice showed inflammatory cells (including eosinophils,
neutrophils, and lymphocytes) seriously infiltrated bronchial
submucosa, bronchi, and perivascular (Figures 1(a) and
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1(b)). ,e asthma mice also displayed rupture of epithelial
cell, thickening of bronchial wall and basement membrane,
and irregular morphology. After SC treatment, the extent of
inflammatory cell infiltration and inflammation in the lung
tissues were decreased (Figure 1(c)), as compared to the
asthma group. Additionally, we also detected the expression
of inflammatory cytokines. ,e expression of IL1b and Tnf
was significantly increased in the asthma group compared to
that in the sham control group (Figures 1(d) and 1(e)). SC
treatment significantly reduced the expression of IL1b and
Tnf in lung tissues of asthma mice.

3.2. Characterization of the BALF-Derived Exosomes. To
identify the purified exosomes, the BALF exosomes were
observed by TEM which showed that exosomes were spherical
particles with a complete membrane structure and with di-
ameter of 100–150nm (Figure 2(a)). Western blot showed that
exosomes expressed the exosomal marker protein CD63
(Figure 2(b)). ,is result suggests the successful isolation of
BALF exosomes from SC treatment and asthmamodel control.

3.3. Overview of the Small RNA Sequencing. A total of
263,659,786 raw reads were obtained from the six libraries,
which generated 82,144,903 clean reads with an average of
82,144,903 clean reads per library (Table S1). An average of
13,690,817 reads per library were mapped to the miRbase,
with mapped rate from 0.374% to 0.412 for each library
(Table S2). Approximately 4407874 reads were uniquely
mapped per library, with an average uniquely mapped rate of
0.32. Additionally, reads distribution showed that 2 peaks

appeared at 21–23 nt and 30–33 nt, respectively, in BALF
exosomes (Figure 2(c)). Principle component analysis
(PCA) revealed that the principal component of miRNAs in
BALF derived exosomes can significantly the discriminate
asthma group and SC treatment group (Figure 2(d)). To
focus on the highly represented miRNAs in exosomes, the
miRNAs that have counts greater than 10 in at least one
sample were considered as expressed miRNAs. As a result,
828 and 817 miRNAs were identified in the exosomes from
asthma mouse and SC-treated asthma mouse, respectively
(Figure 2(e)). Among the expressed miRNAs, 701 (74.1%)
were shared in both groups, while 117 (12.4%) and 128
(13.5%)miRNAs were uniquely expressed in asthma and SC-
treated asthma mice, respectively.

3.4.Differentially ExpressedmiRNAs inExosomes. To identify
exosomal miRNAs associated with the SC treatment in asthma,
differentially expressed miRNAs (DEmiRNAs) between
asthma and SC-treated asthma mice were analyzed. A total of
328 DEmiRNAs were identified between the exosomes from
asthma and SC-treated asthmamice, including 118 up- and 210
downregulated miRNAs in the exosomes from SC-treated
asthmamice compared to that from asthmamice (Figure 3(a)).
Heat map showed the expression of DEmiRNAs was clustered
into two clusters, including asthma group and SC-treated
asthma group, respectively (Figure 3(b)).

3.5. FunctionandPathwayAnalysis ofDifferentially Expressed
miRNAs in Exosomes. To uncover the functions and
mechanisms of the DEmiRNAs carried by exosomes, target
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Figure 1: Scorpio and centipede (SC) improved pathology and inflammation of asthma in mice. (a–c) Histopathological analysis was
performed by hematoxylin-eosin (H&E) staining. Enlargement factor is 200 (d and e). Expression of inflammatory factor was detected by
real-time PCR. n� 6, two samples t-test, ∗∗P< 0.01.
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genes of the DEmiRNAs were predicted, and GO and KEGG
enrichment was performed for target genes. A total of
141,421 genes were predictably targeted by the DEmiRNAs
(Figure 4(a)). GO analysis showed that DEmiRNAs were
mainly associated with the function of transcription, apo-
ptotic process, cell adhesion, transport, and cell proliferation

(Figure 4(b)). KEGG enrichment showed the targeted genes
of DEmiRNAs were primarily involved in the pathway of
metabolic pathways, calcium signaling pathway, Rap1 sig-
naling pathway, Wnt signaling pathway, MAPK signaling
pathway, cGMP-PKG signaling pathway, Ras signaling
pathway, and FoxO signaling pathway (Figure 4(c)).
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Figure 2: Exosomal identification and small RNA sequencing data. (a) Exosomes were analyzed by transmission electron microscopy (scale
bar, 100 nm). (b) Western blot was used to measure the expression of exosomal marker in lung tissues and exosomes from bronchoalveolar
lavage fluid of mice. (c) Length distribution of esosomal microRNAs (miRNAs). (d) Principal component analysis (PCA) of exosomal
miRNAs from asthma group and SC treatment group. (e) Venn diagram analysis of common and unique exosomal miRNAs in the asthma
group and SC treatment group. Model represents asthma group and SC represents SC treatment group.
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3.6.Validation ofDifferentially ExpressedmiRNAs fromBALF
Exosomes. To identify key exosomal miRNAs involved in SC
treatment of asthma, three candidate miRNAs (mmu-miR-
147-3p, mmu-miR-98-5p, and mmu-miR-10a-5p) were se-
lected for real-time PCR in BALF exosomes, based on their
high changed fold and abundance. In accordant with the RNA
sequencing results, real-time PCR indicated that mmu-miR-
147-3p was downregulated, while mmu-miR-98-5p and mmu-
miR-10a-5p were upregulated in the BALF exosomes from the
SC-treated mice compared to that from the asthma mice
(Figures 5(a) and 5(b)).

3.7.TargetGeneandPathwayAnalysis ofDifferentlyExosomal
miRNAs. Using Miranda and RNAhybrid, we found 68,
77, and 151 genes were targeted by mmu-miR-147-3p,
mmu-miR-98-5p, and mmu-miR-10a-5p, respectively
(Table S3). ,e target genes of the three miRNAs that were
significantly enriched in the KEGG terms were used for
network construction (Figure 5(c)). Importantly, the
target genes cerberus 1 (Cer1), nuclear factor of activated
T cells 5 (Nfat5), NKD inhibitor of WNT signaling pathway
1 (Nkd1), presenilin 1 (Psen1), and protein kinase C alpha
(Prkca) were enriched in the Wnt signaling pathway; CRK
like proto-oncogene (Crkl), microtubule associated protein
tau (Mapt), protein kinase C alpha (Prkca), fibroblast
growth factor 5 (Fgf5), and mitogen-activated protein ki-
nase kinase 6 (Map2k6) were enriched in MAPK signaling
pathway.

3.8. mmu-miR-10a-5p Promotes Cell Proliferation of Mouse
Lung Epithelial Cells. To investigate the function and
mechanism of candidate miRNAs, mmu-miR-10a-5p was
selected for further study, due to its high significant.
Expression of miR-10a-5p was successfully increased in
the mouse lung epithelial cells transfected with miR-10a-
5p mimics, while decreased in the cells transfected with
miR-10a-5p inhibitor, compared to the control
(Figure 6(a)). CCK-8 assays showed miR-10a-5p mimics
significantly promoted the proliferation of mouse lung
epithelial cells, while miR-10a-5p inhibitor inhibited the
proliferation of mouse lung epithelial cells (Figure 6(b)).
Moreover, the predicted target genes, including Nfat5 and
Map2k6, were significantly decreased by miR-10a-5p
mimics (Figure 6(c)), while miR-10a-5p inhibitor re-
markably upregulated the expression of Nfat5, Mapt, and
Map2k6.

4. Discussion

Asthma is a common airway disease, which is charac-
terized by chronic inflammatory and affects approxi-
mately 7.5 percent of adults [17]. SC are two
antiinflammatory Chinese medicines, which are gradually
used in the therapy of refractory asthma in China.
Scorpion improves collagen-induced arthritis by reducing
inflammatory response, via downregulating Tnf and IL-1b
in rats [18]. Moreover, SC displays significantly attenu-
ating effects on airway inflammation and remodeling in

asthmatic rats [6]. Additionally, the effective components
of centipede mainly include protein, peptide, carbohy-
drate, fatty acid, amino acid, trace, and elements. Ex-
traction of Scolopendra subspinipes mutilans can inhibit
inflammatory and neuropathic pain in sciatic nerve crush
injury rats [19]. Centipede extraction showed the sup-
pressed effects on inflammation and may partly via in-
hibition of the NF-κB signaling pathway [20]. ,e acid
protein of centipede has a significant inhibitory effect on
the apoptosis of cardiomyocytes induced by angiotensin,
while the polypeptide of centipede has good analgesic
activity. Although the active ingredient of scorpion is
unclear, a polypeptide extracted from scorpion venom
suppresses angiogenesis and angiogenesis-dependent tu-
mor growth [21]. In the present study, SC alleviated
pathological characteristics of asthma mice, such as re-
ducing the infiltration of inflammatory cells in lung tis-
sues. Furthermore, SC decreased the expression of
inflammatory factors, including Tnf and IL-1b in lung
tissues of asthma mice. ,ese evidences revealed that SC
might be an effective drug to treat asthma, while more
research is needed to investigate the specific active in-
gredients of SC in the treatment of asthma.

Exosomes and miRNAs have been shown to modulate
multiple genes and signaling pathways in inflammatory
responses [22, 23]. Increasing evidence demonstrates that
miRNAs play a crucial role in asthma, and several asthma-
related miRNAs have been identified [24], whereas the
role of exosomal miRNAs in asthma, especially their
functions in the asthma treatment, remains unclear.
Levänen et al. showed that 24 exosomal miRNAs are
differentially expressed between BLAF of asthmatics and
healthy volunteers [15]. In bronchial asthma mice, epi-
thelial cells-derived exosomes can inhibit the generation
of inflammation-induced exosomes [25], indicating that
exosomes may be useful for asthma treatment. In the
present study, we found 328 esoxomal miRNAs altered
between the asthma and SC-treated mice. Real-time PCR
verified that exosomal mmu-miR-147-3p was down-
regulated and mmu-miR-98-5p and mmu-miR-10a-5p
were upregulated after SC treatment. miR-147 has been
shown to be induced by toll-like receptor and modulates
inflammatory responses in mice macrophages [26]. miR-
147 also reduces the production of inflammatory proteins
induced by TLR2, TLR3, and TLR4-mediation [27].
miRNA-98 has been implicated to be involved in asthma
by modulating peripheral B cells which is an important
immune regulatory cell, via interfering the expression of
thrombospondin 1 [28]. miR-10a mediates airway
hyperresponsiveness by suppresses cell proliferation of
airway smooth muscle, via targeting BDNF in asthmatic
rats [29]. ,ese evidences indicate exosomal miR-147,
miR-98-5p, and miR-10a might be involved in the SC-
treated process.

To investigate the mechanism of exosomal miRNAs in
the treatment of asthma by SC, we analyzed the target genes
and signaling pathway of differentially expressed miRNAs.
We found the target genes of miR-147, miR-98-5p, and
miR-10a were enriched in the pathway of Wnt and MAPK
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signaling pathway. Recent findings showed canonical and
noncanonical Wnt pathways play important roles in regu-
lation of inflammatory responses, especially in asthma [30].
Furthermore, Wnt pathways are associated with airway
remodeling, cell growth of smoothmuscle, andmetaplasia of
goblet cell [31]. Suppression of Wnt antagonist significantly
improves house dust mite-induced asthma, by impairing
,2 cell cytokine secretion and leukocyte infiltration [32].
Additionally, MAPK pathway also has important effect on
inflammatory responses and is involved in asthma.

Inhibition of p38 MAPK might improve the corticosteroid
insensitivity via modulating the release of IL-1b and IL-8 in
patients with severe asthma [33]. Ginkgolide B acts as an
antiInflammatory drug for asthma by inhibiting the kinase/
MAPK pathway and regulating extracellular T-helper 2
cytokines in asthma mouse [34]. JAX2 improves bronchial
asthma suppressing the MAPK/NF-κB inflammatory sig-
naling pathway [35]. ,e present study showed that
SC-induced exosomal miR-147, miR-98-5p, and miR-10a
can target Wnt and MAPK pathways, suggesting exosomal
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miR-147, miR-98-5p, and miR-10a might mediate inflam-
matory pathways during the SC treatment in asthma.

In conclusion, SC can reduce the inflammatory infil-
tration in the lung tissues of asthma and suppress the release
of inflammatory cytokines, including IL1b and Tnf. Fur-
thermore, 328 exosomal miRNAs were differentially
expressed between the asthma and SC-treated mice.
SC-induced alteration of exosomal miR-147, miR-98-5p,
and miR-10a-5p was verified by real-time PCR, and these

miRNAs were mainly involved in the Wnt and MAPK
signaling pathways. ,ese data might provide some novel
molecular targets for the treatment of asthma.

Data Availability

,e datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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