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ABSTRACT: Phase pure Na0.4MnO2 microrods crystallized in the orthorhombic
symmetry were fabricated for the wet oxidation of H2S and SO2 gases at room
temperature. The material was found highly effective for the mineralization of low
concentrations of acidic gases. The material was fully regenerable after soaking in a
basic H2O2 solution.

1. INTRODUCTION
Sodium transition metalates are notable materials for
developing cathodes of Na-ion rechargeable batteries.1,2 The
redox reactions mediated by the transition metal ions during
their application as cathode materials3,4 could be exploited for
multielectron catalytic reactions. The strong redox property of
transition metal ions (especially 3d metals) in Na metalates has
found application as an electrocatalyst for water splitting.5,6

NaxMnO2 has been studied for low-temperature water splitting
in a reversible thermochemical cycle7 and as a heterogeneous
catalyst for the oxidative cleavage of 1,2-diols to aldehydes/
ketones.8 Moreover, when coupled with α-MnO2, the
composite could catalyze the ammoxidation−Pinner tandem
reaction.9

Among many other applications possible for NaxMnO2 like
radionuclide sequestration,10,11 these materials could find use
in the oxidation of acidic gases, which is largely unexplored in
the literature. These inexpensive and nontoxic materials have
strong basic sites, which could be effective in the remediation
of acidic gases like hydrogen sulfide (H2S) and sulfur dioxide
(SO2). These gases are highly toxic to living beings even at a
very low concentration of 1−5 ppm and fatal at a higher
concentration of 100−500 ppm.12,13 Moreover, these gases are
considered precursors for acid rain formation and particulate
matter, known to cause human casualties and loss of
vegetation.14,15 The removal of these contaminants at a low
concentration from their sources is challenging and requires
expensive techniques for clean-up.16,17

Here, we have explored the use of an inexpensive and readily
available alkali ceramic material for the wet-oxidative removal
of low concentrates of acidic gases in ambient conditions. The

material of choice, i.e., pure Na0.4MnO2, was synthesized in a
three-step method using Mn(II) acetate and Na(I) acetate as
precursor salts. The synthesized material was studied for the
room-temperature oxidative removal of H2S and SO2 gases at
low concentrations. Besides understanding the underlying
mechanisms for the capture of sulfurous gases, we have
reported an economic, environmentally friendly, and easy
method for the regeneration of spent oxide. This study has
presented a detailed application of the phase pure Na0.4MnO2
material for room-temperature removal of toxic sulfurous
gases.

2. EXPERIMENTAL SECTION
2.1. Chemicals. Manganese(II) acetate tetrahydrate (Mn-

(CH3COO)2·4H2O), sodium acetate trihydrate (CH3COONa·
3H2O), H2O2 solution (28−30 vol %), and NaOH solution (5
mol L−1) were purchased from Samchun Pure Chemicals,
Korea. Highly pure H2S (500 ppm) and SO2 (100 ppm) gases
in N2 gas were procured from Union Gas, Korea. All of the
chemicals were of analytical grade and used without any
further purification.
2.2. Synthesis of NaxMnO2. Exactly 25.0 g of Mn acetate

and 6.8 g of Na acetate were dissolved in a minimum volume
of deionized water. The solution was placed in a hot air oven at
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130 °C till complete dryness. The dry solid mass was
powdered thoroughly and introduced in a muffle furnace for
calcination at 300 °C for 2 h. The formed solid mass was
cooled to room temperature and powdered again. The product
formed was named NMO-300. Half of the NMO-300 sample
was calcined again at 800 °C for 12 h in the muffle furnace to
yield NMO-800.
2.3. Analytical Instruments. The oxide morphology was

probed through field emission scanning electron microscopy
(FE-SEM, Hitachi S-4300, Hitachi, Japan) and field emission
transmission electron microscopy (FE-TEM, JEM-2010F,
JEOL Ltd., Japan). Elemental mapping was conducted using
energy-dispersive X-ray spectroscopy (EDAX, X-Max 80T,
Oxford Instruments, U.K.) in TEM mode. The X-ray
diffraction patterns were recorded at 298 °C at 2θ between
5 and 100° on an Ultima IV (Rigaku, Japan) X-ray

diffractometer with Cu Kα radiation (λ = 1.5406 Å) and a
Ni filter. Fourier transform infrared (FTIR) spectra were
collected over a Cary670 FTIR spectrometer (Agilent
Technologies). The specific surface area and porosity of
samples were determined by analyzing the standard N2
adsorption−desorption isotherm at −196 °C using a Gemini
2360 series (Micromeritics) instrument after degassing at 150
°C for 8 h. X-ray photoelectron spectroscopy (XPS, Nexsa X-
Ray Photoelectron Spectrometer System, Thermo Scientific,
U.K.) was used to determine the chemical states of the
elements in the prepared oxides. A monochromatic Al Kα X-
ray source was used with a fixed pressure of 4.8 × 10−9 mbar.
Spectra were charge corrected to the main line of the C 1s
spectrum (aromatic carbon) set to 284.7 eV. Spectra were
analyzed using CasaXPS software (version 2.3.14) with GL(p)
= Gaussian/Lorentzian product formula, where the mixing is

Figure 1. (a) Synthesis scheme, (b) SEM micrographs, (c) PXRD patterns, and (d) N2 adsorption−desorption isotherms of NMO-300 and NMO-
800.
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determined by m = p/100, GL(100) is a pure Lorentzian, and
GL(0) is a pure Gaussian. We used GL(30).
2.4. Experimental Protocol. A 0.3 g of the adsorbent was

placed in a Pyrex tube between glass wool and a gas flow of 0.2
L min−1 was maintained. The samples were fully saturated with
moisture by blowing moist air (80% relative humidity) at 25
°C for 8 min through the adsorbent bed from a humidifier.
The H2S concentration in the outflow gas was analyzed by an
H2S gas analyzer (GSR-310, Sensoronic, Korea). The SO2
concentration in the effluent gas was analyzed using a
GASTIGER 6000 SO2 analyzer. The adsorption capacity (q,
mg g−1) at the breakthrough point (20% of the input gas) was
calculated by the following equation
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where C0 is the initial concentration, Q is the flow rate, m is the
mass of oxide (g), and tb is the breakthrough time.

The spent adsorbent was regenerated by soaking it in a
binary solution (10 mL) of 0.25 mol L−1 NaOH and 0.49 mol
L−1 H2O2 for 6 h. The material was dried and studied for the
next adsorption cycle. The same solution was reused for the
subsequent regeneration cycles. A mass loss during the
regeneration process was expected and because of this, a
normalized time was adopted to calculate the adsorption
capacity.

3. RESULTS AND DISCUSSION
The precursors were dissolved in a minimal volume of water
under ultrasonication, and then the water was evaporated at
130 °C. The dried powder was precalcined at 300 °C for
acetate decomposition. The material was labeled NMO-300.
NMO-300 was further calcined at 800 °C to achieve the
desired product (NMO-800, Figure 1a). Microscopic analyses
showed irregularly shaped nanoparticles for NMO-300 and a
network of smooth microrods for NMO-800 (Figures 1b and
S1).18 The XRD patterns were analyzed by the Rietveld
refinement method using earlier reported structural details
(Figure S2). In NMO-300, we have identified triclinic
Na2Mn3O7 (space group P1̅, lattice constants: a = 6.604 Å, b
= 6.851 Å, c = 7.527 Å, α= 106.29°, β= 106.63°, γ= 111.65°)19
and tetragonal Mn3O4 (space group: I41/amd, lattice
constants: a = 5.752 Å, c = 9.455 Å).20 The NMO-800 sample
has highly crystalline microrods of Na0.39MnO2 crystallized in
an orthorhombic lattice with the space group Pbnm (a = 9.080
Å, b = 26.461 Å, c = 2.824 Å; Figure 1c).21 The N2
adsorption−desorption isotherms resemble Type III isotherms
exhibited by nonporous or macroporous materials (Figure
1d).22 The NMO-300 sample possessed a surface area of 3.85
m2 g−1, which dropped to 1.45 m2 g−1 for NMO-800 due to
increased particle size (Table S1).23

The HRXPS Na 1s spectra of NMO samples have a peak at
1071.2−1071.4 eV for Na+ ions (Figure 2a).24 The HRXPS
Mn spectrum of NMO-300 has two peaks at 642.4 and 654.3

Figure 2. HRXPS (a) Na 1s, (b) Mn 2p, (c) Mn 3s, and (d) O 1s spectra of NMO-300 and NMO-800.
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eV for 2p3/2 and 2p1/2 doublets, respectively. The Mn 2p3/2
spectrum was deconvoluted into three contributions at 640.9,
642.3, and 643.4 eV for Mn2+ (12.7%), Mn3+ (52.2%), and
Mn4+ (35.1%) ions, respectively.25 The presence of Mn2+ was
associated with Mn3O4. Also, the presence of Mn2+ could be
linked to the Na2Mn3O7 phase. Hakim et al. confirmed the
presence of Mn2+ ions on the surface of Na2Mn3O7, which
remained absent in the bulk phase of the material.26 The Mn
2p3/2 peak of NMO-800 has all three curves at 640.8, 641.9,
and 643.0 eV with 24.4, 34.1, and 41.5% contributions,
respectively (Figure 2b). In previous studies on Na0.4MnO2,
only +3 and +4 oxidation states for Mn have been
reported.24,27 However, it is likely possible to have all three
Mn oxidation states in NaxMnO2-type materials as observed in
our previous work.28 The Mn 3s spectra of NMO samples have
an energy separation of 4.7−4.8 eV, indicating the dominance
of +3 and +4 oxidation states in the samples (Figure 2c).29 The
HRXPS O 1s spectrum of NMO-300 deconvoluted into four
curves centered at 529.9 (57.6%), 531.5 (30.8%), 532.3
(11.6%), and 535.4 eV for lattice oxygen (OL), surface-bound
hydroxyl groups (−OH), adsorbed H2O,30 and Na Auger,31

respectively (Tables S3−S5). For NMO-800, these four
contributions are present with a slightly higher proportion of
−OH groups and adsorbed H2O (Figure 2d).

NMO-300 and NMO-800 have been studied for H2S and
SO2 adsorption in 80% relative humidity with initial gas
concentrations of 500 and 100 ppm, respectively. The dynamic
breakthrough studies were performed with a breakthrough
point at 20% of the influent concentration (Figure 3). The H2S
adsorption capacity of 2.81 mmol g−1 for NMO-300 improved
to 3.59 mmol g−1 for NMO-800 (Figure 3a). The SO2
adsorption capacities of 0.55 and 0.61 mmol g−1 were achieved
for NMO-300 and NMO-800, respectively (Figure 3b). The
adsorption of H2S or SO2 could be possible through direct
oxidation by OL or by interacting with the −OH groups.28,32,33

Here, we have observed similar proportions of these oxygen
species in both samples. Moreover, the surface area of NMO-
300 was higher than that of NMO-800. So, it seems peculiar to
have a higher gas uptake capacity for NMO-800. However,
NMO-300 has a significant proportion of the Mn3O4 phase,
which is considered a poor adsorbent for room-temperature
acidic gas capture.34 We also observed higher basicity of
NMO-800 when soaked in water, which could be responsible
for its higher acidic gas uptake (Figure S3). Thus, we expected
NMO-800 to be a better adsorbent for sulfurous gas capture
owing to more favorable acid−base reactions. The regener-
ability of NMO-800 was studied for three adsorption−
regeneration cycles. The spent oxide was regenerated using
an inexpensive and nontoxic NaOH−H2O2 solution simply by
soaking at room temperature. The idea behind adopting this
method was to eliminate the dependency on the thermal
regeneration method, which is energy-intensive and produces
secondary pollutants (SOx).

35 The regeneration method was
highly effective and showed an improvement in H2S uptake
from 5.29 mmol g−1 in the first cycle to 7.46 mmol g−1 in the
third cycle (Figure 3a inset). Likewise, the SO2 uptake capacity
of 0.87 mmol g−1 in the first cycle reached 1.03 mmol g−1 in
the third cycle (Figure 3b inset). Such a positive trend during
the regeneration process could be because of decreasing oxide
mass in the subsequent cycles (Figure S4). But it is confirmed
that NMO-800 could maintain a high gas uptake capacity using
the developed regeneration method.

First, the water-exposed NMO-800 after drying was analyzed
to probe any structural−property change in the material. The
XRD pattern showed no crystallographic change with an
insignificant variation in the lattice constants (Figure S5 and
Table S2). However, the surface area dropped to 0.97 m2 g−1,
which may not have played any major role in the process, as
the reactions are expected to occur on the material surface
(Figure S6). Even XPS analyses confirmed that there was a
minuscule variation in the surface −OH density and Mn
oxidation state distribution (Figure 4). The only observable
parameter that changed was the increase in the surface basicity
of NMO-800, which is expected to be of prime importance in
surface reactions of acidic gases (Figure S3).36 Thus, we have
concluded that the adsorbed water may have not altered the
NMO-800 properties to a greater extent, but it helped in
promoting H2S/SO2 dissolution and dissociation on the basic
NMO-800 surface.32,37

The PXRD analyses of gas-exposed NMO-800 have all of
the peaks intact with minor changes in the lattice constants.
However, some additional peaks were probably related to the
Na2Mn(SO4)2·xH2O phase.38 The inference is based on the
presence of sulfate as an end-product in both H2S- and SO2-
exposed samples (Figure S5). The XPS survey confirmed S 2p
peaks in 160−170 eV for gas-exposed samples (Figure 4a).

Figure 3. (a) H2S and (b) SO2 breakthrough curves for wet NMO-
800 samples. Experimental conditions: flow rate = 0.2 L min−1, mass
= 0.3 g. Inset: regeneration capacity of NMO-800. Conditions: flow
rate = 0.2 L min−1, mass = 0.15 g.
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The Mn 2p spectra of NMO-800_H2S and NMO-800_SO2
have higher concentrations of Mn2+ and Mn3+ ions at the
expense of Mn4+ ions. The oxidation of H2S or SO2 is
accompanied by the reduction of Mn4+ ions to Mn3+/Mn2+

ions,33,37 which is expected in the present case. However, the
variation in the Mn4+/(Mn2+ + Mn3+) ratio is not large for
these samples, which could be associated with the oxidation of
+2 and +3 back to +4 ions by molecular O2.

28,37 Thus, it was
conclusive that Mn4+/Mn3+/Mn2+ redox cycles drove the gas
oxidation reactions over the NMO-800 surface (Figure 4b). A
significant drop in the OL component in NMO-800_H2S was
largely associated with the replacement of O2− with S2− ions
(Figure 4c). More information from O 1s spectra could not be
extracted due to the mixing of the S−O component (from
SO4

2−) in −OH due to similar binding energy at 531.8 eV.39

The formation of SO4
2− (as H2SO4) is associated with the

drop in the surface basicity, which was observed for NMO-800
as the pH value fell from 11.5 (for NMO-800_H2O*) to 11.1
and 10.0 for H2S-, and SO2-exposed NMO-800, respectively.
This was a strong indication of more H2SO4 formation during
the SO2 capture process and not H2S capture (Figure S3).
More validation on the formed sulfur species of the oxidation
process was deduced from the S 2p spectra. The S 2p spectrum
of NMO-800_H2S has three 2p3/2−2p1/2 doublets. The 2p3/2
peaks at 162.2, 164.2, and 168.3 eV were associated with the
formation of S2− (31.2%), S0 (20.8%), and SO4

2− species
(48.0%, Table S6).40 These oxidative species have been
previously reported for room-temperature H2S oxidation over
NaMnxOy

28 or Co3O4.
41

H2S gas adsorbed and dissociated in the surface water film to
form S2− ions (eq 2). Moreover, H2S molecules could react
with the −OH groups to yield HS− ions (eq 3).42 These S2−

ions were oxidized to S0 via Mn4+ ions with the formation of
Mn3+/Mn2+ ions (eqs 4 and 5). These Mn2+/Mn3+ ions were
reverted to Mn4+ ions by adsorbed molecular O2 (eqs 6 and 7).
Moreover, S2− species was oxidized by molecular O2 to form
SO3

2− species (eq 8), which readily oxidized to SO4
2− ions (eq

9). In the entire adsorption−oxidation reaction, adsorbed
molecular O2 played a significant role in running the Mn2+/
Mn3+/Mn4+ redox cycles and conversion of H2S gas. NMO-
800_SO2 has only one doublet with the S 2p3/2 peak at 169.0
eV for SO4

2− species.33 This behavior is in line with the
previously reported work on SO2 interaction with Li2MnO3,
where SO2 oxidized to SO4

2− species (Figure 4d).43,44 Similar
results are available for SO2 oxidation over Na−MnOx in moist
conditions.33 SO2 gas molecules reacted with the adsorbed
water to form HSO3

− ions (eq 10). Moreover, SO2 interacted
with the lattice oxygen to form SO3

2− ions (eq 11). These
SO3

2− ions readily oxidized on the oxide surface by the action
of molecular O2 to yield SO4

2− ions (eq 9). Even SO2
molecules could reactively interact with the surface −OH
groups to yield HSO3

− ions (eq 12).45

+ + +H S 2H O S 2H O2 2
2

3 (2)

+ ++H S OH OH HS2 2 (3)

+ ++ +Mn S Mn S4 2 2 0 (4)

Figure 4. (a) XPS survey and HRXPS (b) Mn 2p, (c) O 1s, and (d) S 2p of water adsorbed−desorbed and gas-exposed NMO-800.
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+ ++ +2Mn S 2Mn S4 2 3 0 (5)

+ ++ +Mn 1/2O Mn O2
2

4 2 (6)

+ ++ +2Mn 1/2O 2Mn O3
2

4 2 (7)

+S 3/2O SO2
2 3

2
(8)

+SO 1/2O SO3
2

2 4
2

(9)

+ + +SO H O HSO H2 2 3 (10)

+SO O (lattice) SO2
2

3
2

(11)

+SO OH SO H2 3 (12)

More information on the regeneration process was extracted
from the experimental and spectroscopic analyses. First, the
surface polarity of the regenerated samples was measured
through conventional soaking of the samples in water. Aqueous
pH values of 11.89 and 11.76 for regenerated NMO-800_H2S
and NMO-800_SO2, respectively, showed that the regenerated
samples were more basic compared to the pristine sample
(Figure S3). This higher surface basicity is expected to improve
the acidic gas capture capacity. On the structural front, these
samples were characterized by PXRD (Figure 5a). The PXRD
patterns of regenerated samples are like those of the spent or
fresh samples, where Na0.39MnO2 (orthorhombic phase) was

retained. However, there is a variation in intensity (peaks
marked with orange-colored squares disappeared) and spacing
between some peaks. This might be due to distortion induced
by oxidation of Mn or orientation of grains of samples during
the PXRD experiment.

The XPS analysis confirmed a significant drop in the sulfur
content on the surface of the adsorbent surface after
regeneration, i.e., from 4.0% in the spent sample to 1.5% in
the regenerated sample (Table S7). This suggested the surface
cleaning of the oxide during the regeneration process. The Mn
2p spectrum of NMO-800_H2S_Reg showed a decreased
proportion of Mn2+ ions, which could favor the adsorption
process based on eqs 6 and 7 (Figure 5b). The O 1s spectrum
showed a hike in the −OH proportion, which could improve
the H2S dissociation over the oxide surface (Figure 5c). The S
2p spectrum confirmed significant variation in the sulfur
species over the oxide surface (Figure 5d). The S0 species was
absent in the sample, which suggested complete washing of it
during the regeneration process. Also, we observed a major
drop in the proportion of SO4

2− species. Importantly, we
confirmed a large concentration of SO3

2− species (a doublet
with the 2p3/2 peak at 166.4 eV46), which was initially absent in
the spent sample. The formation route for SO3

2− species could
be the oxidation of S2− ions in the presence of H2O2.

Figure 5. (a) PXRD patterns and HRXPS (b) Mn 2p, (c) O 1s, and (d) S 2p of spent NMO-800 after regeneration.
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4. CONCLUSIONS
In summary, we reported a novel method for the fabrication of
phase pure Na0.4MnO2 microrods using a solid-state synthesis
route. The fabricated Na−Mn oxide could effectively oxidize
low concentrations of H2S and SO2 gases at room temperature
in the presence of moisture. We further demonstrated the
complete regeneration of spent oxide using an affordable and
environmentally benign basic H2O2 solution. The spectro-
scopic analyses confirmed the formation of oxidized sulfur
byproducts for both H2S and SO2 adsorption. Thus, for the
first time, we reported the application of these cathodic
materials for room-temperature oxidation of acidic sulfurous
gases, which would broaden the scope of these materials
beyond Na-ion batteries.
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