
VIRAL MATURATION

How to package the RNA of
HIV-1
Interactions between viral RNA and the integrase enzyme are required

for HIV-1 particles to become infectious, a process that can be disrupted

through multiple mechanisms.

ALEX KLEINPETER AND ERIC O FREED

V
irus particles rely on host cells to repli-

cate and infect other cells. Key steps in

this process include entry into the host

cell, gene expression, and the production of

new viral particles. For some viruses, including

HIV-1, this last step starts with the assembly of

immature, non-infectious virus particles; the

complex process by which these particles

mature is not fully understood.

Successful HIV-1 maturation culminates in the

assembly of a conical-shaped core structure

called the capsid, which encloses the viral RNA

(vRNA) as well as two viral enzymes: reverse

transcriptase, which produces DNA from vRNA,

and integrase, which is best known for catalyzing

the integration of vDNA into the genome of the

host. It was shown many years ago that some

deletions in the gene that codes for integrase

result in a curious, eccentric core phenotype:

empty capsids are formed and an electron-

dense material, which is presumed to contain

the vRNA, is present outside of the capsid

(Engelman et al., 1995; Figure 1). This pheno-

type is associated with defects in multiple steps

of the virus replication cycle, including reverse

transcription.

Following this discovery, numerous integrase

mutants – known as class II mutants – were

shown to display a similar wide-ranging pheno-

type (Jurado et al., 2013; Quillent et al., 1996).

Multiple studies have suggested that these class

II mutants have defects in reverse transcription,

possibly because they have lost their vRNA, or

because reverse transcriptase becomes physi-

cally separated from the genetic information

upon infection of a target cell (Koneru et al.,

2019; Madison et al., 2017). Now, in eLife,

Sebla Kutluay of Washington University in St.

Louis and colleagues – including Jennifer Elliot

as first author – report how class II integrase sub-

stitutions impair the maturation of HIV-1 par-

ticles (Elliott et al., 2020).

First, Elliott et al. confirmed a previous obser-

vation: that the binding of integrase to vRNA

may underpin its role during HIV-1 maturation

(Kessl et al., 2016). The team examined replica-

tion defects induced by a panel of more than 25

class II integrase substitutions and, as expected,

particle infectivity and reverse transcription

products dropped in all mutants. Moreover, the

class II substitutions disrupted the interactions

between integrase and vRNA in three distinct

ways.

For one subset of substitutions, the levels of

integrase in both cells and virus particles were

significantly decreased, suggesting that these
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mutations prevent the expression of integrase or

its packaging inside new virus particles. The

other two subsets involved the disruption of

integrase binding to vRNA, rather than the pack-

aging of the enzyme into the particles. Interest-

ingly, many substitutions involve

integrase residues outside the region previously

implicated in RNA binding (Kessl et al., 2016).

The second subset of mutations resulted in the

interaction between the enzyme and vRNA

being directly blocked, while the third subset

led to interactions between integrase enzymes

being impaired. In particular, fewer enzymes

were able to form tetramers, the structures con-

taining four copies of integrase that normally

bind to vRNA.

Finally, Elliott et al. confirmed that the eccen-

tric core phenotype was present in each of the

mutants, and they observed lower amounts of

vRNA in target cells just after infection. This sug-

gests that without the protection of the capsid

shell, exposure to the intracellular environment

decreases the stability of the vRNA.

The recent discovery of a new class of HIV-1

inhibitors, known as ALLINIs (allosteric integrase

inhibitors), is making these results particularly

relevant (reviewed in Elliott and Kutluay, 2020;

Engelman, 2019; Kleinpeter and Freed, 2020).

These compounds induce aberrant integrase

multimerization and therefore disrupt the bind-

ing of the enzyme to vRNA, resulting in particles

with eccentric cores reminiscent of those found

in class II mutants. Further characterization of

these mutants, and of the role of integrase dur-

ing HIV-1 maturation, may help in the develop-

ment of ALLINIs as potential HIV-1 therapeutics.

This work also raises several questions. First,

it is still unclear whether the integrase only helps

the vRNA to be packaged into the capsid, or if it

also participates in the construction of the cap-

sid itself. While Elliott et al. show that capsids

assembled in particles with mutant integrase

are as stable as those assembled with the nor-

mal version of the enzyme, it was previously

reported that ALLINIs and a class II integrase

mutation disrupt the formation of the capsid

(Fontana et al., 2015). Second, what happens

to integrase when ‘empty’ capsids are assem-

bled? The experiments by Elliott et al. reveal

that mutant integrase enzymes, while physically

associated with the capsid, are rapidly degraded

after infection – potentially because they are

located, unprotected, on the outside of the cap-

sid. This suggests that in the absence of an inter-

action between integrase and vRNA, neither

the enzyme nor the genetic material is packaged

into the capsid, raising further questions about

the molecular mechanisms driving packaging.

Figure 1. Class II mutant viral integrases and eccentric core formation. HIV-1 initially assembles into an immature

virus particle (left; schematic diagram and electron micrograph), which subsequently undergoes a series of

changes that result in the assembly of a mature capsid core (top right). Wild-type integrase (yellow circles) plays a

key role during maturation by forming tetramers that interact with the viral RNA (pink strands) and ensure that it is

packaged inside the capsid. Class II mutant integrases cause aberrant maturation (bottom right) due to direct or

indirect loss of the interaction between the enzyme and the viral RNA: this results in the production of an eccentric

complex containing the viral RNA outside the capsid. In these eccentric particles, the location of the integrases

and whether they form tetramers is not known.

Image credit: Figure modified from Kleinpeter and Freed, 2020 (CC BY 4.0).
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Next, the fact that ALLINIs act by inducing aber-

rant integrase multimerization suggests that

other classes of small molecules could be devel-

oped, which interfere with the packaging of

vRNA into the capsid through different mecha-

nisms. Finally, it remains unclear whether inte-

grase enzymes in viruses related to HIV-1 also

promote vRNA packaging into the capsid during

maturation. Answering these questions will allow

a greater understanding of how HIV-1 and

related viruses mature, with implications for

basic biology and new drug development.
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