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Abstract

Motivation: Computational simulation of protein-protein docking can expedite the process of molecular modeling and
drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid
body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and
electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel
knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on
highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the
computations and also provide guaranteed bounds on approximation error.

Results: The improved affinity functions show superior performance compared to their traditional counterparts in finding
correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in
combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We
compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab
Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so
for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to
104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2
does not and vice versa; which indicates that the two docking protocols can also complement each other.

Availability: The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user
to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for
download. Server: http://www.cs.utexas.edu/,bajaj/cvc/software/f2dock.shtml. Client: http://www.cs.utexas.edu/,bajaj/
cvc/software/f2dockclient.shtml.
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Introduction

The study of protein-protein interactions plays an important

role in understanding the processes of life [1]. Though advance-

ments in X-ray crystallography and other imaging techniques have

led to the extraction of near-atomic resolution information for

numerous individual proteins; the creation, crystallization and

imaging of macromolecular complexes, as extensively required for

drug design, still remains a difficult task. Among the atomic

structures of proteins deposited in the Protein Data Bank [2], only a

very small percentage are complexes. Hence, the need for fast and

robust computational approaches to reliably predict the structures

of protein-protein complexes is growing. An important step

towards understanding protein-protein interactions is protein-protein

docking which can be defined as computationally finding the

relative transformation and conformation of two proteins that

results in a stable (energetically favorable) complex if one exists.

Given two rigid proteins and some characteristic (e.g., electron

density) function(s) of the molecules, one can construct an

appropriate representation of them and also define a correlation

function based on cumulative overlap of the characteristic

functions. Then it is possible to conduct a combinatorial search

in a 6D parameter space of all possible relative translations and

orientations of the two proteins to find the optimal. Hence in

computational perspective, docking is a search over the space of

possible orientation of two proteins to find the (set of) optimum(s)

of a scoring function designed to mimic physico-chemical

interaction of proteins.

The combinatorics of the search can be reduced by using coarse

grids and rotational angles [3], and by using a-priori knowledge of

suitable binding sites [4]. For docking without prior knowledge

about possible binding sites, exhaustive sampling is required to

improve the probability of finding the global minimum energy

configuration. In such cases, Fast Fourier Transforms has been

used to speed up the cumulative scoring function computations [3–
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5]. Spherical Fourier correlation based approaches were presented

in multiple studies [5–9]. However, if binding sites are known, or

inferred based on some initial stage docking, then a finer resolution

search involving local flexibility can be applied to improve the

accuracy of the fit [10–12].

Accuracy of docking predictions is dependent on the scoring

model’s ability to distinguish between native and non-native poses.

Docking based on structural (shape) complementarity alone has

shown to be adequate for a range of proteins [4,13,14]. To

represent shape complementarity, a grid based double skin layer

approach became the base of many variations and software, e.g.,

DOT [15], ZDOCK [16], PIPER [17], MolFit [18,19] and

RDOCK [20]. However, energy and bioinformatics based scoring

terms have been shown to improve the accuracy of predictions and

a combination of multiple scoring terms have become the norm in

current docking software. For example, DOT 2.0 [15] is based on

van der Waals energy and Poisson-Boltzmann electrostatics,

ZDock 3.0.2 [21] uses pairwise shape complementarity, electro-

statics, and pairwise potentials known as Interface Atomic Contact

Energies (IFACE), PIPER [17] is based on shape complementarity

and electrostatics using a Generalized Born (GB) type formulation,

and uses a new class of structure-based potentials referred to as

DARS (Decoys As the Reference State) where the potentials are

derived from a large set of docking conformations as decoys.

FRODOCK [22] is a recent spherical harmonics based docking

tool that uses van der Waals, electrostatics and desolvation

potential terms in its correlation function. Some docking or

reranking techniques solely use coarse-grained potentials trained

on large benchmark of decoys [23,24]. We leave the reader to

consult the reviews [25–29] for further information.

In [30] we described a non-equispaced Fast Fourier Transform

(NFFT) based rigid-body protein-protein docking algorithm for

efficiently performing the initial docking search (based on shape

and electrostatics complementarity). Compared to traditional grid

based Fourier docking algorithms, the algorithm was shown to

have lower computational complexity and memory requirement.

The algorithm was extended in [31] to F2 Dock (F2 = Fast

Fourier), which included an adaptive search phase (both transla-

tional and rotational) for faster execution.

In this paper we describe a new version (F2 Dock 2.0 ) which

includes improved shape-complementarity and electrostatics

functions as well as a new on-the-fly affinity function based on

interface propensity and hydrophobicity. The current version uses

uniform FFT, but exploits the sparsity of FFT grids for faster

execution and restricts its search within a narrow band around the

larger molecule. A clustering phase penalizes docking poses that

are structurally similar to poses with better scores and a set of

efficient on-the-fly filters penalize potential false positives based on

Lennard-Jones potential, steric clashes, interface propensity,

interface area, residue-residue contact preferences, antibody active

sites, and glycine richness at the interface for enzymes. The filters

are implemented using fast multipole type recursive spatial

Figure 1. High-level overview of rigid-body protein-protein docking using F2 Dock 2.0 and GB-rerank. F2 Dock 2.0 performs exhaustive
6D search in discretized rotational and translational space where it computes a score for each sampled orientation of the ligand with respect to a
stationary receptor. The scoring function is a weighted combination of shape complementarity, electrostatics and interface propensity based affinity
terms (refer to Section 2.3 for details). The top few orientations (poses) of the ligand are kept in a priority queue. Then top several thousand poses
from the queue are clustered based on the distance between the geometric centers of different poses of B. All but the best scoring pose of a cluster
is penalized by reducing the score. The resulting reordered list is then passed through several soft filters in order to further penalize potential false
positives. Finally, as a separate post-processing step, the ranked docking poses are re-scored and reranked based on the change in solvation energy
caused by each pose.
doi:10.1371/journal.pone.0051307.g001

F2Dock 2.0 Docking and GB-Rerank
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decomposition techniques [32,33]. A solvation energy based

reranking program GB-rerank [32,34] has also been implemented

using an approximation scheme which can be tuned for speed-

accuracy trade-off. Both F2 Dock 2.0 and GB-rerank have been

implemented as multithreaded programs for faster execution on

multicore machines. Our molecular visualization software TexMol

serves as a front-end to F2 Dock 2.0 in a client-server mode of

execution [35]. F2 Dock has been calibrated based on an extensive

experimental study of the rigid-body complexes from Zlab

Figure 2. Definition of skin and core for shape complementarity. (Left) Traditional double skin-layer approach for shape complementarity,
(Right) Improved approach with curvature-based weighting of skin atoms and depth dependent weighting of core atoms of molecule A, and depth
dependent weighting of the atoms of B.
doi:10.1371/journal.pone.0051307.g002

Figure 3. Effectiveness of the New Skin-Core Definition. (a–b) Comparison of the performance of F2 Dock 2.0’s shape complementarity
function with traditional skin and the new floating skin approach, in terms of the number of complexes for which the top hit is within the ranges
mentioned in the X-axis. (a) On the rigid-body unbound-(un)bound complexes from Zlab Benchmark 4.0. (b) On the rigid-body bound-bound
complexes from Zlab Benchmark 4.0. (c) Comparison of the shape complementarity functions of DOT, ZDock 2.1 and F2 Dock 2.0 on the rigid-body
bound-bound complexes from Zlab benchmark 2.0.
doi:10.1371/journal.pone.0051307.g003

F2Dock 2.0 Docking and GB-Rerank
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benchmark 2.0 [36] and tested on Zlab benchmark 4.0 [37]

(which includes the complexes from benchmark 2.0).

The paper is organized as follows. In the next section, we

describe the latest version of F2 Dock 2.0. Results are presented

and discussed in the next section, followed by conclusions and

plans for future research.

Methods

Let A and B be two proteins with MA and MB atoms

respectively. Without loss of generality, we assume that MA§MB,

i.e., A is the larger of the two proteins. We refer to A and B as

‘‘receptor’’ and ‘‘ligand’’, respectively.

Figure 1 gives a high level overview of the algorithm. The rest of

this section details the various aspects of the algorithm.

2.1 Overall Strategy
First, F2 Dock 2.0 performs exhaustive search in 6D space of

relative configuration of B with respect to A. We use a discrete and

uniform sampling of 3D rotational space and then use FFT to

score a discrete 3D translational space. Given NR rotational

Figure 4. Analysis of the efficacy of the different filters and affinity terms used in F2 Dock 2.0. (top) Improvements in the rank of the top
hit (of rigid-body test cases from Zlab benchmark 4.0) as various affinity functions and filters in F2 Dock 2.0 are activated one after another. (bottom)
Improvements in the rank of the top hit for the Enzyme type of complexes from Zlab benchmark 4.0.
doi:10.1371/journal.pone.0051307.g004

F2Dock 2.0 Docking and GB-Rerank
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samples and N3 translational grid, F2 Dock 2.0 computes NRN3

scores. However, only a constant multiple of NR scores and their

corresponding poses are retained for the next step. Let us denote

this set as Q. A particular pose is expressed as a tuple vt,r,sw
where t is the translation, r is the rotation and s is the

corresponding score.

We apply a very simple clustering scheme based on proximity of

the poses in Q to reshuffle the order such that the top few poses are

dissimilar to each other. Though this step does not affect the

overall ratio of true and false positives, it increases the chance of

finding at least one near-native solution at the top of the order. It is

important because the next stage of filtering is only performed on

the top few (2000 by default) poses. Let this reduced list be called

Q’.
The filters are designed based on knowledge-based scoring

potentials, which are described in Section 2.5, to update the scores

of the poses of Q’, reorder them and output them as final

predictions from F2 Dock 2.0. Some filters are defined only for

specific types of proteins like Antibodies or Enzymes.

The results from F2 Dock 2.0, or a subset of it, can optionally be

reranked using a solvation energy (generalized Boltzman model)

based reranker called GB-rerank which generally improves ranks

of near native solutions.

2.2 Exhaustive Search Using FFT
2.2.1 Rotational sampling. The rotation space is sampled

using uniformly distributed Euler angles as in [13,15,38]. For each

sampling interval D the sample set is equivalent to a set of points

uniformly distributed on a projective sphere such that the angular

distance [39] between any two points in the set is at most D. This

approach provides a much better distribution of samples than

sampling each angle (h,w,x) separately and requires fewer samples

for the same D.

2.2.2 Translational sampling and scoring. FFT-based

scoring of the translational grid (see, e.g., [3,4]) involves two

forward (one each for molecules A and B) and one inverse FFT

computations. Since the forward FFT of the stationary molecule A

can be precomputed, in practice, only one forward (involving

molecule B) and one inverse FFT must be computed for each

rotation. Current version of F2 Dock 2.0 uses uniform FFT but

exploits the sparsity of the input and the output grids for faster

computation as follows.

Figure 5. Changes in the rank of top hit as various options in F2 Dock 2.0 are activated one after another (on the rigid-body test
cases from Zlab benchmark 2.0 [36]). (a) Lennard-Jones Filter (LJ), clash filter (CL) and proximity clustering (PC) are activated after shape
complementarity (SC), (b) electrostatics & charge complementarity (EL) after SC+LJ+CL+PC, (c) interface propensity (IP) after SC+LJ+CL+PC+EL. (d)
interface propensity filter (PF) after SC+LJ+CL+PC+EL+IP, (e) residue-residue contact filter (RC) after SC+LJ+CL+PC+EL+IP+PF, and (f) antibody contact
filter (AF) or glycine filter (GF) after SC+LJ+CL+PC+EL+IP+PF+RC.
doi:10.1371/journal.pone.0051307.g005

F2Dock 2.0 Docking and GB-Rerank
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- Forward FFT (SPARSITY OF THE INPUT GRID): The input grids

are large enough so that they can at least contain the following

two spheres side-by-side: the smallest sphere enclosing molecule

A, and another sphere having the same radius rB as the largest

distance from the geometric center of molecule B to an atom of

B. Hence, when discretized to such a grid molecule B will

occupy only a fraction of the grid points around the grid center.

Thus many grid planes will remain completely empty (i.e., have

zero values only). 3D FFT is sped up by ignoring recursive calls

that compute 2D FFT’s of such empty planes.

- Inverse FFT (SPARSITY OF THE OUTPUT GRID): In the output

translational grid we need to score only the grid points that are

within a band around the stationary molecule A such that if the

geometric center of molecule B lies outside the band the two

molecules can never touch. Note that the number of gridpoints

in the band is O(N2) as opposed to N3. This band can be

approximated during the initial precomputation phase by

running a sphere of radius rB (defined in previous paragraph)

over the surface of A which can be done using a single call to

FFT. This sparseness of the output grid is exploited to speed up

inverse FFT.

2.2.3 Cost of FFT-based affinity function

computations. For any rotation r the FFT-based scoring takes

O MAzMBzN3 log N
� �

time, where N3 is the size of the FFT

grid. Hence, for NR rotations the total running time is

Figure 6. Effect of performing GBSA based reranking. The plot shows the change of the rank for the first hit. A positive change indicates that
the reranker improves the result. For most complexes, specially for complexes where a knowledge-based based filter (Antibody or Enzyme) could not
be applied, GB-rerank improves the rank of top hit compared to the results produced by F2 Dock 2.0 (for the rigid-body test cases from Zlab
benchmark 2.0 [36]).
doi:10.1371/journal.pone.0051307.g006

Figure 7. Performance of F2 Dock 2.0 with and without user-specified complex type. When complex type is not specified in the input, F2

Dock 2.0’s performance does not change significantly. In most cases, it can automatically detect the complex-type and apply the correct set of
parameters. Tests are based on rigid body cases from Zlab’s Protein-protein docking Benchmark 2.0.
doi:10.1371/journal.pone.0051307.g007

F2Dock 2.0 Docking and GB-Rerank
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Figure 8. Comparison of ZDock 3.0.2 [21] and F2 Dock 2.0. (a) On all 176 complexes from Zlab Benchmark 4.0 [37], (b) On 25 antibody-antigen
and antigen-bound antibody complexes, (c) On 52 enzyme-inhibitor and enzyme-substrate complexes, and (d) on the 99 other type of complexes.
doi:10.1371/journal.pone.0051307.g008

Figure 9. Comparison of the rate of success of F2 Dock 2.0 and ZDock 3.0.2. On the 176 complexes from ZLab’s benchmark 4.0. Rate of
success is defined as the percentage of the hits found within the top x ranks, where x is the corresponding value of the X-axis. Clearly F2 Dock 2.0 has
a better ratio.
doi:10.1371/journal.pone.0051307.g009

F2Dock 2.0 Docking and GB-Rerank
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O NR(MAzMBzN3 log N)
� �

. We use the publicly available

FFTW package [40] for our FFT-based scoring.

2.3 FFT-based Affinity Functions
F2 Dock 2.0 uses three affinity functions during exhaustive

search over the rotational and translational space. The score is

defined as a weighted sum of the shape complementarity,

electrostatics and interface propensity scores. Using a new

approach to skin-core definition and weighting, the shape

complementarity term has been greatly improved from the

original version (F2 Dock ), and the interface propensity is a novel

addition defined using statistical residue potentials.

2.3.1 Shape complementarity (SC). The original version of

F2 Dock [31] used the traditional double skin layer approach for

shape complementarity [41]. Two skin regions are defined (Figure 2):

a grown skin region around A, and the surface skin of B, which consists

of the surface atoms of B. The atoms of A and the inner atoms of

B form core regions.

A good docking pose of A and B will have large skin-skin

overlap and small core-core overlap, and in order to identify such

poses constant positive imaginary weights are assigned to the core

atoms and constant positive real weights to skin atoms/pseudo-

atoms. An integral of the superposition of the molecules has two

real contributions: the core-core overlaps contribute negatively

and the skin-skin overlaps contribute positively. Hence the real

part can be used to rank docking poses based on shape

complementarity. The magnitude of the imaginary part of the

integral due to skin-core clashes (caused by pseudo-atom vs atom

overlaps) is not desirable and assigned a smaller negative weight in

the accumulated score.

Improved double skin approach. The current version (F2

Dock 2.0 ) uses an improved double skin layer approach which

differs from the traditional approach in four ways. First, the

receptor skin layer does not touch the receptor van der Waals

surface and the radius of skin atoms are different. This is based on

our observation of the gap between the VDW surfaces of the

receptors and ligands in Zlab benchmark 2.0 [36]. Second, the

weights assigned to receptor skin atoms are computed based on the

curvature of the skin around that atom. Such weighting

encourages convex-concave and concave-convex interfaces as

opposed to large flat interfaces. Third, the core atoms of molecule

A are assigned weights using an increasing function of depth

(distance of the atom center from the surface of A). Such

weightings discourage deeper core-core overlaps more strongly.

And fourth, since in the traditional approach the ligand skin is

defined using its surface atoms, the skin thickness varies and can be

too thin in some areas. Therefore, we use a double layer of ligand

atoms as its skin. Refer to supplemental materials (Supplement S1)

for in depth discussion on the skin-core definition as well as FFT

based correlations.

2.3.2 Electrostatics (E). In the previous version (F2 Dock )

[31], we defined the electrostatics affinity function similar to the

simplified model for electrostatics described by Gabb et. al. [4],

which allows efficient FFT-based computation. The first protein’s

electric potential is computed and matched against the charges in

the other. In this version (F2 Dock 2.0 ), we replace point charges

with a Gaussian to reduce discretization errors on the grid (See

Supplement S1 for details).

2.3.3 Interface propensity (IP) and hydrophobicity

(HP). F2 Dock 2.0 scores the interfaces between molecules A

and B using the per-residue interface propensity values computed

in [42] which are based on relative frequencies of residues in the

interfaces of a set of 63 protein-protein complexes [43]. Let IP(R)
denote the natural logarithm of the interface propensity value of a

residue R. The IP values for the 20 amino acid residues lie

between 20.38 (ASP) and 0.83 (TRP). A residue with higher IP

value is likely to occur more frequently in a protein-protein

interface than one with a lower value.

Let iAtomz
t,r(P) and iAtom{

t,r(P) denote the set of atoms in the

interface of P[fA,Bg in this docking pose that have positive and

negative IP values, respectively. Also let

iAtoms
t,r(A,B)~iAtoms

t,r(A)ziAtoms
t,r(B), for s[fz,{g. We

assign an interface propensity score to the pose:

IP{scoret,r(A,B)~{

P
a[iAtomz

t,r(A,B)
IP(a)

min IP ,
P

a[iAtom{
t,r(A,B)

IP(a)

� � ,

Figure 10. Running time of F2 Dock 2.0 and its components. (a) Average running time of each affinity function and filter of F2 Dock 2.0. GB-
rerank consumes a major portion of the time (42%), the FFT phase takes about 30% time and the rest is taken by the filters and clustering. The labels
in the figure are actual time in minutes. (b) Running times of F2 Dock 2.0 on the rigid-body test cases from Zlab benchmark 2.0 [36] showing
percentage of running time due to each affinity function and filter of F2 Dock 2.0 for each complex.
doi:10.1371/journal.pone.0051307.g010

F2Dock 2.0 Docking and GB-Rerank
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where IP~maxIP(R)v0IP(R). We also penalize very small

interfaces by setting IP{score to a negative value when

DiAtomz
t,r(A,B)D is below a user-defined threshold.

See Suppplement S1 for details on the FFT based formulation

and parameter selections.

2.4 Proximity Clustering
We consider all docking poses in Q sorted by score, and

penalize a pose if there are similar poses with higher score.

Suppose AzBt,r is a docking pose with score s that is currently

being considered. For a given d§0, let K(Bt,r,s,d) be the number

of docking poses with score at least s and with geometric center

within distance d from that of Bt,r. Then we penalize AzBt,r as

follows.

1. If K(Bt,r,s,d)w0, then the score of the pose AzBt,r is reduced

by 80%,

2. otherwise, if K(Bt,r,s,2d)w3, then the score of the pose AzBt,r

is reduced by 50%,

3. otherwise, if K(Bt,r,s,3d)w6, then the score of the pose AzBt,r

is reduced by 10%.

The objective of this proximity based penalty is to increase

diversity at the top of the order which increases the possibility of

getting at least one near native solution at the top of the order. But

it also penalizes all true positives (except one). As a result, F2 Dock

2.0 tends to get a near native solution at high ranks for many

complexes, but the total number of near native solutions for any

particular complex is not high.

2.4.1 Cost of clustering. We use our dynamic packing grid

data structure [33] to speed-up this computation, and the overall

time required for this step isO NQ log NQð Þ (with high probability),

where NQ is the number of poses originally in Q.

2.5 Filters
To penalize potential false positives and thus improve the ranks

of correct solutions, F2 Dock 2.0 uses several filters based on the

Lennard-Jones potential, the number of steric clashes, interface

area, interface propensity, residue-residue contact preferences,

antibody active sites, and the frequency of glycine residues at the

interface for enzymes.

Only the interface regions of the two molecules at a given pose

contribute to the terms used in the filters. We have developed an

Table 1. Comparison of the performance of F2 Dock 2.0 and ZDock 3.0.2 for each of the 25 antibody-antigen and antigen-bound
antibody complexes from ZLab’s benchmark 4.0 in terms of the rank and RMSD of the top hit and the best hit.

Difficulty Complex Rank of RMSD of Rank of Lowest

First Hit First Hit Lowest RMSD RMSD

ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock

Easy 1AHW 354 8 4.5 4.4 1242 457 0.9 1.8

1BJ1 1 63 1.9 2.3 1 63 1.9 2.3

1BVK 184 205 3.6 4.9 358 264 1.9 4.1

1DQJ 374 74 4.0 4.9 1787 74 3.3 3.6

1E6J 3 126 4.1 5 181 126 2.7 5

1FSK 1 1 2.9 3.2 2 3 1.8 1.5

1I9R – 9 – 3.9 – 9 – 3.9

1IQD 18 4 4.3 3 68 4 1.7 3

1JPS 1266 186 2.1 2.7 1266 186 2.1 2.7

1K4C 583 105 2.9 4.4 583 165 2.9 2.2

1KXQ 2 1 1.2 1.6 2 1 1.2 1.6

1MLC 57 11 2.0 3.8 57 114 2.0 1.3

1NCA 11 168 1.7 3.7 11 168 1.7 3.7

1NSN 1267 – 1.6 – 1267 – 1.6 –

1QFW – 80 – 1.9 – 80 – 1.9

1VFB 250 191 3.1 4.8 560 434 2.9 3.4

1WEJ 9 5 1.5 3.2 9 5 1.5 3.2

2FD6 3 62 5.0 4.4 282 62 3.3 4.4

2I25 2 122 3.0 3.9 40 242 1.7 2.6

2JEL 4 1 3.5 3.3 753 1 2.6 3.3

2VIS – – – – – – – –

9QFW 2 1 4.0 3.9 48 3 1.9 2.9

Medium 1BGX – – – – – – – –

Hard 1E4K – – – – – – – –

2HMI – – – – – – – –

Boldfaced entries indicate better performance on the particular metric for the complex. Empty entries indicate that no hits were found for that complex by the
corresponding protocol.
doi:10.1371/journal.pone.0051307.t001

F2Dock 2.0 Docking and GB-Rerank
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Table 2. Comparison of the performance of F2 Dock 2.0 and ZDock 3.0.2 for each of the 52 enzyme-inhibitor and enzyme-
substrate complexes from ZLab’s benchmark 4.0 in terms of the rank and RMSD of the top hit and the best hit.

Difficulty Complex Rank of RMSD of Rank of Lowest

First Hit First Hit Lowest RMSD RMSD

ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock

Easy 1AVX 25 1 3.5 4.5 194 4 1.5 2

1AY7 577 2 2.5 4 577 6 2.5 2.5

1BVN 3 1 1.2 3.2 3 2 1.2 3

1CGI 10 76 4.0 3.4 173 199 2.6 3.3

1CLV 3 1 2.3 2.5 21 350 2.3 2.1

1D6R – 59 – 4.6 – 249 – 4.3

1DFJ 1 9 4.1 4.4 2 9 3.2 4.4

1E6E 5 20 3.2 4.7 10 20 1.5 3.9

1EAW 68 1 3.4 1 579 1 1.7 1

1EWY 53 14 4.2 3.2 231 14 3.6 3.2

1EZU 841 170 4.9 4.5 841 1554 4.9 3.8

1F34 62 2 3.4 4.3 925 3 2.4 3.7

1FLE 31 3 5.0 3.7 1102 192 3.4 3

1GL1 73 326 2.6 3.8 73 881 2.6 2.3

1GXD 1173 – 4.9 – 1173 – 4.9 –

1HIA – 18 – 3.4 – 258 – 2.2

1JTG 1 7 2.6 4.6 1 1173 2.6 3.4

1MAH 1 1 3.1 2.7 4 4 1.4 1.9

1N8O 7 11 3.4 4.8 20 1330 0.6 4

1OC0 1590 – 4.8 – 1590 – 4.8 –

1OPH 1694 – 3.9 – 1694 – 3.9 –

1OYV 15 7 4.9 3.6 153 105 3.3 2.9

1PPE 1 1 2.9 2.3 3 3 1.1 1.3

1R0R 138 39 2.2 4.3 1298 1164 2.0 1.4

1TMQ 16 1 3.6 4.8 885 515 3.0 2.4

1UDI 24 1 3.5 3.1 24 229 3.5 2.5

1YVB 1 – 2.4 – 18 – 2.2 –

2ABZ – 5 – 2.8 – 5 – 2.7

2B42 3 1 4.2 3.9 6 12 0.6 2.2

2J0T – 19 – 2.8 – 21 – 2.6

2MTA 76 90 4.4 4.3 716 100 0.7 3.7

2O8V 29 654 5.0 3.7 852 654 4.0 3.7

2OUL 1 1 1.7 4.9 1 329 1.7 3

2PCC 496 10 2.6 4.3 496 10 2.6 4.3

2SIC 5 1 1.1 1.1 5 1 1.1 1.1

2SNI 177 1 3.8 4.7 299 403 2.8 1.3

2UUY 693 7 4.4 4.1 1946 44 3.1 3

3SGQ 428 110 4.0 2.6 576 624 1.0 2

4CPA 1 1 4.4 4.8 465 202 2.5 2.4

7CEI 1 1 4.4 4.1 88 2 0.8 1.4

BOYV – 220 – 3.6 – 220 – 3.6

Medium 1ACB 126 22 4.4 3.2 393 49 2.6 2.6

1IJK 81 88 3.0 4.8 1317 142 2.0 3.4

1JIW – – – – – – – –

1KKL – – – – – – – –

1M10 – – – – – – – –
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octree-based hierarchical spatial decomposition technique [32]

and the Dynamic Packing Grids data structure [33] for efficiently

locating the interface regions and for computing local interactions.

Since the overall algorithm for computing each term is similar and

only varies in the exact type of local interactions we compute, we

present the algorithm only once (in our discussion of the interface

propensity filter).

2.5.1 Interface propensity filter. This filter computes the

interface propensity of the interfaces of the molecules at a given

pose and penalizes or rewards the pose based on empirically

determined thresholds.

We sample and weigh quadrature/integration points from the

surface of each molecule as described in [32,34]. The sampling

can be considered a decomposition of the surface into small

patches, where each quadrature point is representative of a patch

p. The weight of a quadrature point is the same as the area ap of

the corresponding patch. Each quadrature point is also labeled

with the average of the interface propensity values of the atoms

near the point. Let, hp denote the interface propensity label of a

quadrature point. The interface propensity contribution of a

quadrature point is defined as aphp if p is on the interface, and 0
otherwise.

We approximate the interface propensity as

IP{scoret,r(A,B)&{ v2zv4ð Þ=min IP’E,v1zv3ð Þ, where,

IP’E~ maxhkv0 hkð Þ minp[A|B apð Þ (defined in Section 2.3.3).

Here v1 and v3 are the sum of the negative interface propensity

contributions of the quadrature points of two molecules; and v2

and v4 are the sum of the positive contributions. We reward

docking poses with large IP{scoret,r(A,B)| v2zv4ð Þ values, and

penalize a pose if its IP{score is below a threshold.

The crucial step in the approximation is identifying quadrature

points that are on the interface. We store the quadrature points

into a DPG data structure, and we also store them in an octree.

The octree is a hierarchical and adaptive subdivision of space such

that a node of the tree represents a regular cube in 3-space, A node

is split if it contains more than a user-defined number of

quadrature points in it. Given a specific pose, we trace the two

octrees starting from the roots to identify the leaves that are close

to each other. Then for each pair of neighboring octree-cells, we

use DPG to identify quadrature points in one leaf which have a

neighbor in the other leaf. The overall cost of the algorithm is

O((MAzMB) log (MAzMB)) with high probability, where MA

and MB are the number of atoms in A and B. However, in

practice it runs even faster and approaches O(nint), where nint is

the number of quadrature patches on the interface.

2.5.2 Residue-Residue contact filter. Contact preferences

derived from a non-redundant set of 621 protein-protein interfaces

of known high resolution structures [44] are used to penalize

potential false positives. Two residues are considered to be in

contact if the distance between their Cb atoms (Ca for Gly) is less

than 6 Å. In [44], log-normalized contact preferences Gij for each

pair of amino acid types are reported. Positive values of Gij

indicate that residues i and j prefer to form contacts, negative

values indicate the opposite.

Given a docking pose AzBt,r, we identify all residue-residue

contacts at the interface of the two molecules using a fast algorithm

similar to the one used in Section 2.5.1, and compute the sum of

all positive and negative Gij values denoted by Gz and G{,

respectively. Then we penalize the pose if the ratio of Gz and G{

is outside a user-specified range.

2.5.3 Lennard-Jones filter. We approximate the Lennard-

Jones (LJ) potential between molecules A and Bt,r as follows:

LJ(A,Bt,r)~
P

i[A,j[Bt,r
aij=r12

ij {bij=r6
ij

� �
, where rij is the distance

between atoms i[A and j[Bt,r, and constants aij and bij depend on

the atom types. The well depths m and equivalence contact

distances of homogeneous pairs reqm are taken from the Amber

force field [45,46]. Poses with positive LJ potential are penalized.

However, we allow soft clashes in the cases of unbound-(un)bound

docking by reducing the reqm values by a constant factor which

effectively reduces the inter-atomic clash distances (rij values).

2.5.4 Clash filter. Two atoms a[A and b[B with van der

Waals radii ra and rb, respectively, are considered to be clashing

provided the distance between their centers is smaller than a

threshold. F2 Dock 2.0 counts the total number of clashes nC

between molecules A and B(t,r) and penalizes if nCwmC , where

mC is a user-defined constant.

2.5.5 Interface area filter. This filter penalizes a docking

pose if the interface area is outside the range of areas derived

empirically from known native interfaces. We define the interface

area as the sum of the weights of the quadrature points on the

interface, where the weights and the interface is defined the same

way as in the interface propensity filter.

2.5.6 Glycine filter. Enzyme active sites are rich in Glycines,

particularly G-X-Y and Y-X-G oligopeptides, where X and Y are

polar and non-polar residues, respectively, and G is glycine [47].

The X and Y residues are typically small in size and low in

polarity, and the frequency of those two types of oligopeptides is

significantly higher in enzyme active regions than in other parts of

the enzyme molecule. Therefore, enzyme surface oligopeptides

with these properties are marked and for a given docking pose, the

number of these motifs occurring at the interface are counted. If

this count is below a user-specified threshold mG , the pose is

penalized. Conversely, poses with higher G-X-Y/Y-X-G frequency

Table 2. Cont.

Difficulty Complex Rank of RMSD of Rank of Lowest

First Hit First Hit Lowest RMSD RMSD

ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock

1NW9 – 321 – 4.9 – 321 – 2.3

Hard 1F6M – – – – – – – –

1FQ1 – – – – – – – –

1PXV – – – – – – – –

1ZLI – – – – – – – –

2O3B – – – – – – – –

doi:10.1371/journal.pone.0051307.t002
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Table 3. Comparison of the performance of F2 Dock 2.0 and ZDock 3.0.2 for each of the 99 other type of complexes from ZLab’s
benchmark 4.0 in terms of the rank and RMSD of the top hit and the best hit.

Difficulty Complex Rank of RMSD of Rank of Lowest

First Hit First Hit Lowest RMSD RMSD

ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock

Easy 1A2K 1348 44 4.3 2.4 1894 44 3.2 2.4

1AK4 1090 964 3.5 4.3 1090 964 3.5 4.3

1AKJ 546 39 2.9 3.4 1632 39 1.7 3.4

1AZS 42 – 2.9 – 61 – 2.0 –

1B6C 1 3 2.9 4 1 3 2.9 4

1BUH 30 431 3.6 4.8 1961 431 3.0 4.8

1E96 1171 278 3.8 5 1171 314 3.8 4.2

1EFN – – – – – – – –

1F51 589 – 4.6 – 589 – 4.6 –

1FC2 – 1190 – 5 – 1570 - 4.1

1FCC – – – – – – – –

1FFW 73 325 4.5 4.7 1349 1291 4.0 3

1FQJ – – – – – – – –

1GCQ 1105 – 1.4 – 1105 – 1.4 –

1GHQ – – – – – – – –

1GLA 1708 – 3.9 – 1708 – 3.9 –

1GPW 3 1 3.6 3.7 134 5 2.1 2.6

1H9D 1006 – 4.5 – 1006 – 4.5 –

1HCF 175 1225 4.0 4.7 225 1225 1.9 4.7

1HE1 1141 574 4.7 4.9 1141 574 4.7 4.9

1I4D 571 – 4.2 – 571 – 4.2 –

1J2J – 182 – 4.6 – 182 – 4.6

1JWH 7 – 3.6 – 78 – 1.9 –

1K74 2 3 1.2 3.8 2 7 1.2 2.6

1KAC 592 8 4.5 4.4 1527 99 1.9 4.1

1KLU 1957 – 3.4 – 1957 – 3.4 –

1KTZ 535 98 2.8 3.9 535 166 2.8 2.9

1KXP 1 7 1.6 3.5 1 260 1.6 2.6

1ML0 4 2 3.1 4.3 8 123 3.1 3.2

1OFU 84 – 4.5 – 347 – 3.1 –

1PVH 748 – 4.5 – 1192 – 1.5 –

1QA9 – – – – – – – –

1RLB 3 555 4.6 5 232 555 3.4 5

1RV6 2 2 1.3 4 2 694 1.3 2.2

1S1Q 756 – 1.9 – 1243 – 1.4 –

1SBB – – – – – – – –

1T6B 58 525 3.6 4 1510 752 2.8 2.7

1US7 74 – 1.1 – 74 – 1.1 –

1WDW 2 1 1.2 2.5 2 1 1.2 2.5

1XD3 8 1 4.0 4.2 86 1298 2.6 3.9

1XU1 912 – 5.0 – 912 – 5.0 –

1Z0K 8 307 3.3 3.3 8 307 3.3 3.3

1Z5Y 20 – 3.4 – 423 – 2.5 –

1ZHH – – – – – – – –

1ZHI 65 202 4.4 4 324 202 2.1 4

2A5T – 268 – 3.6 – 618 – 2.9
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at the interface are rewarded by adding this (weighted) count to

the total score.

2.5.7 Antibody-Antigen contact filter. As reported in [48]

(available at http://www.bioinf.org.uk/abs/allContacts.html)

based on a set of 26 known antibody-antigen complexes, each of

the following three regions in an antibody will make at least one

antigen contact (burial by at least 1 Å2 change in solvent

accessibility): (1) CDR-L1 or CDR-H1, (2) CDR-L3 and (3)
CDR-H3.

Given a potential antibody-antigen docking pose, F2 Dock 2.0

computes NL1|H1, NL3 and NH3, the number of antigen atoms

that are in the close neighborhood of any atom in the antibody

regions CDR-L1/CDR-H1, CDR-L3 and CDR-H3, respectively.

The CDR (Complementarity Determining Region) loops are

identified using the method described in [49]. F2 Dock 2.0

penalizes poses if the computed values are outside the ranges

observed in the native antibody-antigen interfaces in our training

set.

2.5.8 Cost of filtering. Using our algorithm described in

[32] based on octrees [50] and our Dynamic Packing Grid (DPG) data

structure [33], the scores for each filter can be evaluated in

O 1

E3
(MAzMB) log (MAzMB)

� �
w.h.p. (for an input of size n,

an event E occurs w.h.p. (with high probability) if, for any a§1

and c independent of n, Pr(E)ƒ1{
c

na
.) time and O MAzMBð Þ

space. Assuming that each filter is applied on at most NF

configurations, the total time taken by all filters is

O 1

E3
NF (MAzMB) log (MAzMB)

� �
(w.h.p.). Assuming

NF ~O NRð Þ, where NR is the number of samples in the rotations

space, the running time reduces to

O 1

E3
NR(MAzMB) log (MAzMB)

� �
(w.h.p.).

2.6 Solvation Energy Based Reranking with GB-rerank
GB-rerank approximates the change in solvation energy of a

complex and reranks the list of top docking poses produced by F2

Dock 2.0 based on the resulting DEsol values. In order to

approximate DEsol, GB-rerank precomputes the Esol values for

molecules A and B, and then computes Esol for each docking pose.

The solvation energy Esol consists of the energy to form cavity in

the solvent (Ecav), the solute-solvent van der Waals interaction

energy (Evdw(s-s)), and the electrostatic potential energy change due

to the solvation (also known as the polarization energy, Epol) [51–

55].

Esol~ EcavzEvdw(s{s)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
nonploar

z Epol|{z}
polar

The first two terms are often modeled as Ecav~pVz
P

i ciAi

and Evdw(s{s)~r0

P
i

Ð
ex

u
(att)
i (xi,r)d3r, where xi and r are the

position and center of atom i, p is the solvent pressure, V is the

molecular volume, Ai is the solvent accessible surface area of atom

i and ci is its solvation parameter, r0 is the bulk density, and u
(att)
i

is the van der Waals dispersive component of the interaction

between atom i and the solvent [51,56]. The last term, Epol, can

be approximated using the Generalized Born theory [57],

whereby:

Epol~{
t

2

X
i,j

qiqj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ijzRiRje
{

r2
ij

4RiRj

s
, ð1Þ

where qi,qj are the atomic charges and rij is the distance between

atoms i and j, Ri is the effective Born radius of atom i and

t~1{
1

E
.

The algorithms for rapidly approximating these terms have

been presented in [32].

2.6.1 Overall cost of reranking. Assuming that GB-rerank

is applied on NG docking poses, its total running time is

O 1

E3
NG(MAzMB) log (MAzMB)

� �
w:h:p:ð Þ:

Typically NG~O NRð Þ, where NR is the number of samples in

the rotations space, and so the running time reduces to

O 1

E3
NR(MAzMB) log (MAzMB)

� �
(w.h.p.).

2.7 Dataset Preparation
F2Dock takes two PDB files as inputs. First the PDB files are

processed by PDB2PQR [58] where missing atoms such as

Hydrogens are added, the protein is optimized for hydrogen

bonding, and charge and radius parameters are assigned using the

AMBER force-field available in PDB2PQR. If the given PDB has

missing residues or too many residues with missing backbone

Table 3. Cont.

Difficulty Complex Rank of RMSD of Rank of Lowest

First Hit First Hit Lowest RMSD RMSD

ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock

2A9K – 558 – 3.4 – 558 – 3.4

2AJF 475 – 3.6 – 475 – 3.6 –

2AYO 37 1108 3.3 2 138 1108 2.5 2

2B4J – – – – – – – –

2BTF 53 95 4.7 4.5 148 377 3.8 3.4

2FJU 261 228 3.2 4.2 261 333 3.2 3.5

doi:10.1371/journal.pone.0051307.t003
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Table 4. Comparison of the performance of F2 Dock 2.0 and ZDock 3.0.2 for each of the 99 other type of complexes from ZLab’s
benchmark 4.0 in terms of the rank and RMSD of the top hit and the best hit.

Difficulty Complex Rank of RMSD of Rank of Lowest

First Hit First Hit Lowest RMSD RMSD

ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock

Easy 2G77 15 8 1.5 3.7 15 917 1.5 1.3

Cont 2HLE 31 4 4.1 3.8 31 4 4.1 3.8

2HQS – 27 – 4.1 – 125 – 2.7

2OOB – – – – – – – –

2OOR 766 16 4.4 4 766 63 4.4 2

2VDB 5 – 1.2 – 5 – 1.2 –

3BP8 – 474 – 5 – 699 – 3.3

3D5S 71 1 3.1 3.2 609 4 2.5 2.7

Medium 1GP2 61 193 4.4 4 107 193 2.8 4

1GRN 1299 401 4.3 4.8 1299 401 4.3 4.8

1HE8 – – – – – – – –

1I2M 267 545 2.2 2.6 267 545 2.2 2.6

1IB1 – – – – – – – –

1K5D – 521 – 4.3 – 521 – 4.3

1LFD 85 990 4.6 4.6 466 1235 4.5 4.1

1MQ8 1455 – 3.2 – 1455 – 3.2 –

1N2C – – – – – – – –

1R6Q – 180 – 3.7 – 311 – 3.5

1SYX 211 2 4.8 4.7 211 11 4.8 3

1WQ1 81 – 4.0 – 81 – 4.0 –

1XQS 19 61 3.8 4.2 45 833 2.6 3.7

1ZM4 6 – 4.1 – 631 – 2.7 –

2CFH 1 119 3.8 2.6 2 119 1.7 2.6

2H7V 1112 – 4.6 – 1112 – 4.6 –

2HRK 3 – 3.7 – 3 – 3.7 –

2J7P – – – – – – – –

2NZ8 64 – 4.5 – 64 – 4.5 –

2OZA – – – – – – – –

2Z0E – 169 – 3.9 – 169 – 3.9

3CPH – 250 – 4.3 – 250 – 4.3

Hard 1ATN – 1307 – 2.7 – 1307 – 2.7

1BKD – – – – – – – –

1DE4 84 – 4.7 – 84 – 4.7 –

1EER – – – – – – – –

1FAK – – – – – – – –

1H1V – – – – – – – –

1IBR – – – – – – – –

1IRA – – – – – – – –

1JK9 510 422 4.2 2.5 790 422 4.1 2.5

1JMO – – – – – – – –

1JZD 44 144 4.6 4 44 144 4.6 4

1R8S – – – – – – – –

1Y64 – – – – – – – –

2C0L – – – – – – – –

2I9B – – – – – – – –

2IDO 130 156 3.6 4.5 154 156 3.5 4.5

F2Dock 2.0 Docking and GB-Rerank

PLOS ONE | www.plosone.org 14 March 2013 | Volume 8 | Issue 3 | e51307



atoms, then our curation process fails and F2Dock cannot be used

without manually curating the PDB or using other curation

software.

Then pseudo-atoms are added above the surface of the receptor

(i.e., stationary molecule), and surface atoms of the ligand (i.e.,

moving molecule) are detected. These atoms are marked as skin

atoms, and the rest as core atoms.

2.8 Parameter Selection Based on Complex Type
F2 Dock 2.0 has several free parameters in its pipeline. We can

broadly classify the parameters into several groups. For parameters

like the charge and radii of atoms, or the hydrophobicity and

interface propensity of residues etc., we either use well-established

parameters (for example, from the AMBER [59] force field) or

derive from previously published results (for example, interface

propensity values from [42]). Some parameters are internal to a

scoring function for example the distance dependent dielectric for

electrostatics, or the thickness of the skin used in shape

complementarity. These parameters are trained using manual

parameter sweeps based on a small number (4–5 per complex

type) of complexes. However, we produced multiple configurations

for each complex and chose the set of parameters which

maximizes the corresponding individual scoring term for the near

native poses. A similar strategy was used for selecting the

thresholds used to penalize poses during filtering. Finally, there

are the parameters that govern the weights assigned to different

scoring terms when they are combined as well as the weights (or

percentages) by which poses are penalized. These parameters are

the most difficult to train as the scoring terms are not independent

and the relative influence of a term might vary for different

complexes. These parameters were trained based on the 60

complexes from Zlab’s protein-protein benchmark 2.0 [36] as

follows.

The complexes in the benchmark are categorized into four

main types: Antibody-Antigen (A) and Antibody-bound Antigen

(AB), Enzyme-Inhibitor/Enzyme-Substrate (E), and other (O)

types. We identify that the classification is not only functional, but

it also has significant effect on scoring function design since

different scoring terms bear different level of significance for

different categories of complexes. For example, it is known that

binding interfaces of Enzymes are rich in Glycines, which lead us

to design a filter based on Glycine richness and it is applied only

for Enzyme type of complexes. For each class of complexes (9

Antibody-Antigen, 9 Antibody-bound Antigen, 21 Enzyme-

Inhibitor/Enzyme-Substrate and 21 Others), we train the weight

parameters separately. The objective for the training is to improve

the ranks of near-native solutions for as many complexes as

possible. We performed parameter sweeps for each of the weights

that combines the FFT based scores based on the above objective

for each of the categories. Then we examined the effect of

applying each of the filter, one at a time, and controlled its penalty

to improve the results.

We do realize that our manual scheme has its drawbacks,

specially since it does not sufficiently cover the entire space of

possible values for the parameters. We are actively trying to use

machine learning schemes to train the parameters in a more

robust way. However, so far our attempt of using quadratic

programming and random forest learning based on thousands of

negative and positive examples based on this benchmark have

failed to produce a set of parameters which outperform the

manually calibrated set of parameters.

Default values of all the parameters for different types of

complexes can be found in the user manual for F2 Dock 2.0

downloadable from our website (link given in the abstract).

2.8.1 Automated detection of complex types. Since F2

Dock 2.0’s parameters are optimized separately for antibody-

antigens and enzyme-inhibitors/enzyme-substrates, and a general

set of parameters are used for all other types of complexes, the user

only needs to specify the complex type to ensure the set of

optimized parameters are applied. If the type is unknown, F2 Dock

2.0 tries to determine which set of parameters to use as follows. If

F2 Dock 2.0 locates the six CDR loops (L1, L2, L3, H1, H2 and

H3) in the protein sequence using the algorithm in [49], it

identifies it as an antibody and uses the corresponding parameter

set. Otherwise, if neither molecule is identified as an antibody and

at least one of the molecules has at least 200 residues and at least

8% of its surface residues are Glycines then F2 Dock 2.0 uses the

enzyme complex parameter set. Finally, if both tests fail, a set of

parameters for the general case is used. Among the complexes in

the Zlab benchmark 2.0, F2 Dock 2.0 fails to identify only one

antibody (1KXQ) and three enzymes (1AY7, 1UDI and 2MTA).

See Supplement S1 for details.

Results

We present the results of our experiments to explore the

contribution of the new scoring terms and filters available in F2

Dock 2.0 as well as the solvation energy based re-ranker GB-

rerank on prediction accuracy. These experiments are carried out

on the set of complexes in Zlab’s benchmark 2.0 [36] which

contains 60 complexes. Then we run F2 Dock 2.0 with the best set

of parameters on the complexes in the Zlab benchmark 4.0 [21],

and compare the performance with ZDock 3.0.2 [37]. The

complexes in both the benchmarks are categorized into rigid-body

(easy), medium and difficult (flexible) based on the RMSD between

the bound and unbound states of the proteins. They are also

categorized into four main types: Antibody-Antigen (A) and

Antibody-bound Antigen (AB), Enzyme-Inhibitor/Enzyme-Sub-

strate (E), and other (O) types. As mentioned before, F2 Dock 2.0

uses different set of parameters for the different categories and we

have also compared our results for each category separately.

3.9 Evaluation Criteria
F2 Dock 2.0’s search leaves the receptor stationary and searches

over the orientations of the ligand. Hence, to evaluate the

Table 4. Cont.

Difficulty Complex Rank of RMSD of Rank of Lowest

First Hit First Hit Lowest RMSD RMSD

ZDock F2Dock ZDock F2Dock ZDock F2Dock ZDock F2Dock

2OT3 121 – 4.6 – 327 – 4.5 –

doi:10.1371/journal.pone.0051307.t004
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accuracy of a predicted pose, we compute the deviation between

the predicted position of the ligand and its correct position as the

root mean squared distance (RMSD) of the interface atoms. Note

that correct position of the ligand for unbound test cases can be

approximated by aligning the unbound components to their

bound counterparts. The unbound ligands in the ZLab bench-

marks are provided after alignment with bound counterparts and

hence can be used as the approximate truth without further

manipulations. We assume that an atom is on the interface if the

distance between its center and the center of any atom on the

other molecule is less than 10Å. We define LI as the set of all

backbone atoms of the ligand which are on the interface when the

ligand is placed in its native pose w.r.t the receptor (to find the

native pose for an unbound case, we simply align the unbound

receptor and unbound ligand to their bound counterparts). If the

position of ligand atom ai is x�i in the native pose and xP
i in a

predicted pose P, then the interface RMSD is computed as

IRMSD~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
DLI D

P
ai[LI

Dx�i {xP
i D2

� �q
. A predicted solution is con-

sidered a hit provided its IRMSD value is at most 5Å.

In the remaining text and supplement S1, we refer to the hit

with the lowest RMSD as the ‘best’ hit and the hit with the highest

rank as the ‘top’ hit. In most of our results, we compare protocols

based on the rank of the ‘top’ hit. Given a set of complexes C, and

a protocol S, we define CS(x) as the set of complexes such that for

each complex c[CS(x), the top hit lies within the range ½1,x�.
Clearly, for a given x a higher CS(x) is better. Hence, to compare

the accuracy of two protocols S1 and S2, we can simply compare

CS1
(x) and CS2

(x) for different x. In general we use a few specific

values for x ([1,1], [1,5], [1,10], [1,50], [1,100], [1,500] and

[1,1000]). We are specially interested in the first few ranges which

shows off the accuracy of the scoring model, and the last range

which shows off the applicability of the model over a broad range

of complexes.

Two residues Ri[A and Rj[B are considered to be in contact if

the distance between the centers of any atom aii[Ri and any atom

ajj[Rj is less than a threshold. The set of residue-residue contacts

for the native pose of the receptor and ligand are defined as the

native contacts N. For a given predicted pose, we compute the set

of residue-residue contacts for that pose as C. The set of native

contacts for that pose is hence defined as N’~N\C. Now, we

define another metric based on native contacts as Fnat~DN’D=DND.
We follow the well known CAPRI criteria that uses a combination

of Fnat and IRMSD to classify predictions as high, medium,

acceptable and incorrect.

3.10 Analyzing the Improvements due to New Affinity
Functions and Filters

3.10.1 Effectiveness of the new skin-core definition. We

have compared the new improved double skin approach to the

traditional approach (used in F2 Dock [31]) in terms of their

prediction accuracy on the rigid-body complexes of the Zlab

Benchmark 4.0. In these tests only the shape complementarity

term was used, and hence the results are not as accurate as the

default combination of scoring and filtering terms can produce.

In Figure 3(a), we clearly notice the improvement offered by the

floating skin approach over the traditional which validates our idea

that a softer definition of skin is better for unbound docking.

However, the traditional skin approach performs slightly better for

the bound-bound (re-docking) test cases (Figure 3(b)). Figure 3(c)

shows that as a result of the improved skin definition, F2 Dock 2.0’s

shape complementarity function outperforms DOT and ZDock on

the rigid complexes from Zlab benchmark 2.0 (bound-bound).

3.10.2 Effects of various filters on quality of

solutions. Figure 4(top) shows how the number of test cases

(rigid-body test cases from Zlab benchmark 2.0 [36]) with at least

one hit in top 1, top 10, top 50, top 100, top 500 and top 1000

changes as various affinity functions and filters in F2 Dock 2.0 are

applied. The filters are applied to the top 2000 predictions after

using the FFT based affinity terms and clustering. In this

experiment, we have specified the complex type (A/AB, E and

O) for each test case. Clearly, each of the filters (except interface

area filter) individually improves the ranks of the top solution, and

the best outcome is generated when the default combination of

filters are used. For example, after the FFT based scoring, we get a

hit at rank 1 for 10 complexes, but after filtering it improves to 17.

Since the antibody and enzyme filters do not apply to all types of

complexes, we compare their effect only on the particular type of

complexes. For example, Figure 4(bottom) shows the effectiveness

of the enzyme filter.

The series of plots in Figure 5 shows a detailed breakdown of

the effect of different scores/filters for each complex separately.

On the X-axis, we list the complexes and the Y-axis shows the

change of the rank of the top hit. In the figures, an improvement is

defined as producing the top hit at a better rank. We use the results

of using just shape complementarity as the base case and analyze

the relative improvements as more and more terms are added.

When we activate Lennard-Jones filter, clash filter and

proximity clustering after shape complementarity we get hits for

4 new test cases, and the rank of the top hit improves for 15 more

(see Figure 5(a)). However, we also lose hits in top 1000 for 3 test

cases, and the rank of the top hit degrades for one test case.

Overall, the application of these filters and clustering seem largely

beneficial. The best results are obtained for enzyme-inhibitor/

enzyme-substrate complexes, as for more than 50% of these

complexes rank of the top hit improves.

When electrostatics is turned on we get hits in top 1000 for 9 test

cases for which we did not have a single hit before, and for 14

other cases rank of the top hit improve (see Figure 5(b)). However,

we lose hits 1 test case, and for 4 others rank of the top hit

degrades.

The FFT-based interface propensity scoring is activated next

which improves the rank of the top hit for 30 test cases (i.e., for

around 50% of all cases) among which 7 cases did not have a

single hit before (see Figure 5(c)). Among these 7 cases with new

first hits 5 are antibody-antigen or antigen-bound antibody

complexes, and none are enzyme-inhibitor or enzyme-substrate.

The interface propensity filter is turned on next. It improves the

rank of the top hit for 25 complexes, and degrades for 5 (see

Figure 5(d)). For 3 test cases we did not have a single hit in top

1000 before among which 2 are antibody-antigens.

The residue-residue contact filter which is activated next

improves the rank of the top hit for 27 test cases, and degrades

for none (see Figure 5(e)). The enzyme-inhibitor and enzyme-

substrate complexes seem to have benefited the least from this

filter.

Next we apply the antibody contact filer and the Glycine filter.

The antibody contact filter improves the rank of the top hit for 9

antibody-antigen and antigen-bound antibody test cases, and

degrades for 3, while the Glycine filter slightly improves the same

for 4 enzyme-inhibitor/enzyme-substrate complexes (see

Figure 5(f)).

More comparisons with respect to the RMSD of the best hit, the

total number of hits, and the lowest RMSD are provided in

Supplement S1.

3.10.3 Effects of post-processing with GB-

rerank. Figure 6 shows the impact of applying GB-rerank

F2Dock 2.0 Docking and GB-Rerank
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(after the initial docking phase) on the rigid-body test cases from

Zlab benchmark 2.0 [36]. GB-rerank improves the ranks of the

top hit for 9 antibody-antigen and antigen-bound antibody

complexes, and 10 complexes of type ‘‘other’’ (see Figure 6).

The post-processor is least effective on enzyme-inhibitor/

enzyme-substrate complexes since the enzyme filter has already

improved the ranks quite well. On the other hand, for the ‘other’

complexes, GB-rerank produces the most significant improve-

ments, since specific filters cannot be applied in these cases. Hence

if the complex is known to be Enzyme, then GB-rerank should not

be applied.

3.10.4 Performance of F2 Dock 2.0 with and without user-

specified complex type. Figure 7 compares the performance

of F2 Dock 2.0 with and without user-specified complex types on

Zlab’s protein-protein docking benchmark 2.0. When no complex

type is specified F2 Dock 2.0 tries to identify antibody-antigen

complexes by locating the CDR loop regions of the antibody.

Among the 17 such complexes in our experiments 16 are correctly

identified by F2 Dock 2.0. It fails to identify 1KXQ which is an

antibody-antigen complex from a Camelid (camels, llamas, etc.)

[60]. Camelids produce functional antibodies that do not have

light chains and CH1 domains, and so F2 Dock 2.0’s antibody

detection system fails to identify such antibodies. Hence for 1KXQ

the set of parameter values optimized for complexes of ‘‘other’’

type is applied, and the result is only slightly worse than what is

obtained with the parameter set optimized for antibody-antigen

complexes. F2 Dock 2.0 fails to select the correct parameter set for

the following three enzyme-inhibitor/enzyme-substrate complexes

among the 21 included in the experiments: 1AY7, 1UDI and

2MTA. While for 1UDI and 1AY7 F2 Dock 2.0 is still able to get a

hit in the top 100 and top 500, respectively, it fails to get any hit in

the top 1000 for 2MTA. For all other complexes the results remain

the same except for 1WEJ for which we get slightly different results

in the two set of experiments due to the non-determinism (arising

from multiple concurrent threads) that exists in the proximity

clustering phase.

3.11 Comparison with ZDock
In this section we compare the performance of F2 Dock 2.0 and

ZDock 3.0.2 [21,61] on the complexes from Zlab benchmark 4.0

[37]. We acquired the executable for ZDock 3.0.2 from their

website and ran it following the steps specified in the accompa-

nying instructions and used the PDB files downloaded from

ZLab’s website without any modification. F2 Dock 2.0 used the

same set of PDBs after performing the preprocessing we

mentioned in Section 2.7. Note that ZDock 3.0.2 also applies

their own preprocessing which is part of the mark_sur script

provided with the executable. Both programs used 15u rotational

sampling. F2 Dock 2.0 used user-specified complex types.

In Figure 8, we show a summary of the performances in terms

of the number of complexes where each protocol found at least

one hit in different ranges (see the X-axis). Note that having a

higher Y-axis value for any instance shows that the corresponding

protocol is successful on complexes than the other. In Figure 8(a)

we compare the performances over the entire Zlab benchmark 4.0

containing 176 complexes. We find that for each of the ranges

except one, F2 Dock 2.0 performs better than ZDock 3.0.2. F2

Dock 2.0 is specially impressive since it gets a hit at rank 1 for 22 of

the complexes (which is 1/8th of the dataset) as opposed to 13

found by ZDock 3.0.2. Overall both ZDock 3.0.2 and F2 Dock 2.0

finds at least one solution for about the same number of

complexes, 104 and 106 respectively.

Figures 8(b)–(d) compares F2 Dock 2.0 and ZDock 3.0.2 using

the same metrics but considers each type of complex separately.

For antibodies there is not much to choose between the two

protocols. For other types F2 Dock 2.0 is successful for a lower

number of complexes, and is comparable only at relatively high

ranks. However, for Enzymes, F2 Dock 2.0 completely outper-

forms ZDock 3.0.2 across the board.

Based on these results, we can clearly see that F2 Dock 2.0

produces much more reliable predictions for Enzymes, but there is

not much difference for antibodies and other type of complexes.

But Tables 1, 2, 3, and 4 show that even for antibodies and other

types F2 Dock 2.0 provides significant contributions since the two

protocols are often successful for different complexes and hence

compliment each other. For example, among the antibodies, F2

Dock 2.0 finds a solution for 1QFW and 1I9R for which ZDock

3.0.2 does not find any solutions, on the other hand ZDock 3.0.2

finds a solution for 1NSN where F2 Dock 2.0 fails. Similarly

among the other complexes, only F2 Dock 2.0 is successful for

1J2J, 2A5T, 2A9K, 2HQS, 3BP8, 1K5D, 1R6Q, 2Z0E, 3CPH

and 1ATN. Hence, it is advisable to use both of these protocols

specially for other type of complexes to increase the possibility of

finding a correct solution.

Next, we compare the rate of success of the two protocols. Let us

assume that the total number of hits (counting multiple hits found

for a complex) found within a range ½0,x� across all the complexes

be H(x). Now we define the rate of success as

y(x)~H(x) � 100=H(1000) which measures how quickly a

protocol finds its hits. A protocol with a higher ratio has higher

true positive rate near the top of the list. If we plot this function, we

expect to see a curve which rises sharply and then gradually

flattens and converges to y(x)~1:0. In Figure 9, we see that F2

Dock 2.0 has consistently better success rate than ZDock 3.0.2.

A closer look at Tables 1, 2, 3, and 4 shows that the RMSDs of

the predictions by F2 Dock 2.0 is poorer than ZDock 3.0.2 in more

occasions than it is better. This is due to our softer skin approach

which rewards docking poses which have slightly larger gap

between them, and our stringent clash and VDW filters which

discard ligand poses which comes too close. This is beneficial for

unbound complexes with larger conformational change, but

prevents ligands of rigid (easy cases in the benchmark) from

getting as close as they could be placed. The result clearly shows

that ZDock 3.0.2 gets better RMSDs for rigid cases, and F2 Dock

2.0 is better for non-rigid cases. At this point, it should be

mentioned that F2 Dock 2.0 is designed solely as a initial stage

docking tool, which can quickly perform exhaustive search and

return good leads at high ranks. Hence the poses it finds are

generally acceptable or medium quality as defined in the criteria

used in the CAPRI [62] challenge (tables summarizing F2 Dock

2.0’s performance using the CAPRI criteria can be found in

Supplement S1). Local refinements (rigid body or flexible) can

then be performed on a small number of top solutions to further

improve their RMSDs and minimize the energies. There are a

host of such tools available including ROSETTA [10], Amber

[59], FireDock [63] etc.

We conclude this section with the observation that F2 Dock 2.0

shows better overall performance, with significant improvement

for Enzymes. For other type of complexes the performance is

comparable and sometimes complementary.

3.12 Running Times
To evaluate the average running times and the relative

consumption by each scoring term/filter we performed a set of

experiments run on a 3 GHz 2|dual-core (i.e., 4 cores) AMD

Opteron 2222 processor with 4 GB RAM. On average, the FFT

phase took around 23 minutes or 35% of the total running time,

the interface propensity filter took 20%, GB-rerank accounted for

F2Dock 2.0 Docking and GB-Rerank
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around 42%, and the remaining 3% is spent on the other filters.

GB-rerank and interface propensity filter take longer to compute

than other filters, since the computation is based on surface

quadrature points, whose number is a constant multiple of the

number of atoms. Figure 10 shows how the different components

of F2 Dock 2.0 and GB-rerank contribute to the total running time

of the docking and reranking process on the rigid-body test cases

from Zlab benchmark 2.0 [36]. Overall, about 30% time is taken

up by the FFT based affinity functions, 30% is taken up the the

filters (mostly the interface propensity filter), and around 40% by

the GB-rerank.

F2 Dock 2.0 leverages from the embarrassingly parallel nature

of the computation using multithreaded computations on multi-

core machines. Note that each of the NR FFT computations are

independent of each other and can be run in parallel. Scores for

each of filter terms for each of the poses in Q can also be computed

in parallel. Specifically, given q cores and T tasks the simplest

strategy is to distribute T=q tasks to each cores. But this approach

often leads to unbalanced exploitation of the cores if the tasks

given to different cores take different amount of time to complete.

For example, the running times of the filters are proportional to

the size of the interface which varies between different poses. So

our technique initially sends only one task to each core and

maintains a queue of remaining tasks, and then whenever a core is

done with its task, it gets another one from the queue. This

scheduling ensures that every core is exploited equally and hence

the overall completion time is quicker.

Conclusions
We have developed an enhanced version (F2 Dock 2.0 ) of our

protein-protein docking program F2 Dock 2.0 with improved

scoring functions, complete with dynamic clustering and filtering

and generalized Born based solvation energetic reranking. The on-

the-fly FFT-based scoring function is a weighted combination of

shape-complementarity, Coulombic electrostatics complementar-

ity, and interface propensity terms. The on-the-fly docking also

includes filters based on Lennard-Jones potential, steric clashes,

residue-residue contact statistics and an extremely fast approxi-

mation of solvation energy using a newly developed fast multipole

type implementation with octree data structures. Our implemen-

tation results and numerous tests show that each of these terms

and filters significantly improves the accuracy of docking

predictions. Our use of highly efficient data structures including

the dynamic packing grids for near constant time neighborhood

search and near-far distance clustering using octrees, significantly

speed up the computations for each of the ‘on-the-fly’ scoring and

filtering terms. GB-rerank ’s solvation energy based post-process-

ing suite is also optimized using these efficient data structures with

the best tradeoffs of docking accuracy vs. speed. The entire

software is highly parallel and can be run efficiently on multicores

and clusters of multicores (e.g., many modern supercomputers).

We have also developed a GUI based interface (TexMol) for easily

preparing and running a docking process and interactively

visualize, compare different solutions along with several relevant

statistics including interface area, residue contacts, binding energy

etc.

4.13 Future Work
Currently F2 Dock 2.0 addresses flexibility by simply performing

a ‘soft’ complementarity with the goal of identifying a near-native

solution at a higher rank. The solutions can be optimized further

by side chain refinement near the binding site as well as applying

small rigid-body perturbations which moves all atoms of the

ligand. There are several software including AMBER [59],

ROSETTA [10], SCRWL [64] etc. which can be used to achieve

this objective. We are currently working on an algorithm for dead-

end elimination with better complexities compared to SCRWL.

The automatic assignment of all the docking parameters remains a

very active area of research for us; we are currently pursuing a

semi-supervised computational learning algorithm over the space

of different protein families which will further improve the

performance of F2 Dock 2.0 and GB-rerank. We are exploring

ways to further improve the speed of F2 Dock 2.0 specially using

GPU level parallelism. We are also actively working on extending

F2 Dock 2.0 to Protein-RNA and RNA-RNA docking. Finally, a

web service supporting similar features as TexMol is under

construction.

Supporting Information

Supplement S1. Supplemental materials.

(PDF)
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