
RESEARCH ARTICLE APPLIED PHYSICAL SCIENCES
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We study the propagation of an oscillatory electromagnetic field inside a Weyl
semimetal. In conventional conductors, the motion of the charge carriers in the skin
layer near the surface can be diffusive, ballistic, or hydrodynamic. We show that the
presence of chiral anomalies, intrinsic to the massless Weyl particles, leads to a hitherto
neglected nonlocal regime that can separate the normal and viscous skin effects. We
propose to use this regime as a diagnostic of the presence of chiral anomalies in
optical conductivity measurements. These results are obtained from a generalized kinetic
theory that includes various relaxation mechanisms, allowing us to investigate different
transport regimes of Weyl semimetals.
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Electronic transport phenomena often present particularly direct and accurate probes of
the properties of conducting materials. Conventional metals are well described by the
Drude theory that captures the diffusive movement of charge carriers. In very clean ma-
terials, where the scattering of electrons with impurities is not frequent, transport departs
from being diffusive. Depending on the interaction strength, transport exhibits either
ballistic or hydrodynamic behavior (1, 2). So far the experimental candidates to investigate
such effects are two-dimensional (Al,Ga)As heterostructures (3–5) and graphene (6–12). A
detailed theoretical analysis describing viscous electronics and ballistic-to-hydrodynamic
cross-overs in clean two-dimensional structures is done by means of kinetic theory with
various relaxation times corresponding to different scattering mechanisms (13, 14).

In a parallel line of developments, much effort has been devoted to the study of
topological effects in the transport of massless quasiparticles. In three dimensions, these
can be realized as low-energy electronic excitations in materials known as Dirac semimetals
and Weyl semimetals. In Weyl semimetals either time-reversal symmetry or inversion
symmetry is absent and the spectrum in the vicinity of the Fermi energy consists of an
even number of linear band crossings known as Weyl nodes. Each crossing hosts fermions
with a well-defined chirality, and the sum of the chiralities in the Brillouin zone is zero (15,
16). The fact that the Weyl nodes are generically separated in the reciprocal space makes
these systems an ideal platform to investigate transport phenomena related to the chiral
anomaly. It describes the breaking of the classical chiral symmetry by quantum fluctuations
in parallel electric and magnetic fields (17–19). At weak coupling, the imprint of the
chiral anomaly has been connected to negative magnetoresistance observed in Dirac and
Weyl semimetals (20–28). In the hydrodynamic regime, macroscopic effects tied to chiral
anomalies are the chiral magnetic effect (CME), the chiral vortical effect, and thermal
transport phenomena related to gravitational anomalies (29–38). Despite the above
predictions, on the one hand, the direct identification of the chiral anomalies with negative
magnetoresistance is problematic due to other interfering effects (39); on the other hand,
the hydrodynamic regime is more difficult to control experimentally (for recent progress
see refs. 40 and 41) and the corresponding effects are difficult to measure in practice.

The relevant degrees of freedom to capture transport in semimetals with a finite Fermi
energy and at low temperatures can be modeled as long-lived quasiparticles. In this case the
pertinent quantity is the single-particle distribution function due to the fact that we can
treat interactions perturbatively. The evolution of the single-particle distribution function
is given by the Boltzmann kinetic equation, which incorporates both the single-particle
dynamics and the relaxation processes arising from interactions between constituents of
the system. This provides the semiclassical description of physical observables that vary
slowly in space and time, establishing a statistical description of a many-body electron
system. The effect of collisions of the particles has to be encapsulated by an appropriate
choice of the collision term, which is usually done by a phenomenological treatment of
the appropriate relaxation mechanisms (42, 43). In the case of massless fermions under
the influence of an external magnetic field, the classical evolution gets modified due to the
Berry phase contribution. Thus, the dynamics of the distribution function also change
and are given by the chiral kinetic equation (44–48).
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Transport properties of Weyl semimetals are not limited to
steady flow configurations. In fact, semimetals driven by alternat-
ing current (ac) electric fields exhibit a rich phenomenology and
reveal new effects absent in direct current (dc) settings in both two
(49–57) and three dimensions (58–67).

Here, our goal is to investigate the ramifications of chiral
anomalies on transport properties at finite frequency. One of
the classic examples of a finite driving transport phenomenon is
the skin effect (68). It states that an alternating electric current
is distributed mainly close to the wall of the conductor and
decays exponentially within the conductor. Therefore, the skin
effect increases its effective resistance through the reduction of
the effective cross-section of the conductor. This reduction is
parameterized by a distance, called the penetration depth or the
skin depth, that depends on the driving frequency. Depending on
the dominant relaxation mechanism in the skin layer, which in
general changes with the skin depth, three types of skin effect are
conventionally distinguished: normal, anomalous, and viscous (2,
69). The normal skin effect assumes that the constitutive relation
between the current and the electric field is local. The anomalous
skin effect appears when this assumption is not valid and the
local current depends nonlocally on the field distribution. Note
that the name anomalous skin effect should not be confused
with the influence of chiral anomalies. Both the normal and
anomalous skin effects appear when the interactions between
electrons are weak. Third, the viscous skin effect manifests itself
in clean materials when the interactions between charge carriers
become large and the charge flow is described by hydrodynamics.
It is an example of boundary layer phenomena in fluid mechanics
that arise in the immediate vicinity of a bounding surface where
the effects of viscosity are significant.

The goal of this paper is to study skin effects for a Weyl metal,
focusing on imprints of chiral anomalies. Chiral anomaly leads to
the appearance of the chiral magnetic current (23)

JCME ∝ τ5(E ·B)B, [1]

where τ5 is the time needed for the relaxation of the axial charge
(i.e., the difference between the charge densities of the particles
with opposite chirality). In the standard treatment, which focuses
on the dc conductivity, τ5 is related to internode scattering
induced by impurities (70–72). However, when an ac field is
applied, different relaxation mechanisms may become dominant.

In this work we provide a detailed study of the change of the
chiral magnetic conductivity across a wide frequency spectrum.
To this end, we generalize the chiral kinetic theory framework
to account for different relaxation processes present in realistic
materials. These processes include momentum-relaxing collisions
coming from the scattering of quasiparticles with impurities as
well as momentum-conserving collisions between quasiparticles.
We follow the path of expanding the collision kernel in the
eigenfunctions of the angular momentum. Such a procedure was
successfully applied in the context of two-dimensional materials
(73–77).

In the process we uncover a transport regime, the existence
of which depends on the presence of the chiral anomaly. In this
regime the relaxation of momentum is dominated by scattering
off impurities, but the relaxation of the axial charge in the skin
layer takes place mainly through the diffusion of particles out of
the layer and into the bulk of the material. This process causes
a significant increase of the skin depth, as well as a different
scaling of the surface impedance with frequency, in the presence of
magnetic field. This observation gives a clear experimental imprint
of the chiral anomalies in optical conductivity measurements.

Transport Regimes and the Skin Effect

The skin effect is concerned with the flow of charge in a conductor
under the influence of an oscillating electric field. It was first
discovered in the context of spherical conductors (78) as a con-
sequence of Maxwell’s equations, which impose the propagation
of electric field in a medium to be described by the equation

∇2E−∇ (∇ ·E)− c−2∂2
t E= μ∂tJ, [2]

where J is the current density, c is the speed of light, and μ is the
magnetic permeability in the medium. When propagating inside a
conductor, the electric field is attenuated by the induced currents
and the magnitude of the field drops exponentially with the
distance. This decay is characterized by a length δ called the skin
depth (Fig. 1). To study the skin effect, one needs to supplement
Maxwell’s equations with a model describing the dynamics of
particles in an electric field. The simplest model providing such
dynamics is of the constitutive type and assumes a local relation
between the current J(x , t) and the electric field E(x , t). This
assumption is not always justified and nonlocal effects have to be
taken into account, which can be done for almost free electrons
by resorting to kinetic theory (79). Finally, in clean materials
the relation between the current and the electric field can be
hydrodynamic and controlled by the fluid viscosity. Kinetic theory
can also be used to capture the effects of viscosity, providing a
unified interpretation of various regimes in terms of different
scattering mechanisms in the conductor, which affects the final
form of the optical conductivity (80).

Electrons moving in the bulk of a (semi)metal experience
different types of scattering: 1) electron–electron collisions,
which conserve the total momentum, and 2) electron–impurity
and electron–phonon collisions, which dissipate momentum.
Correspondingly, we denote the mean free path between
momentum-conserving collisions as lmc and the mean free path
for momentum-relaxing collisions as lmr. Other length scales
essential to the problem are the skin depth δ, as well as the path
traversed by an electron over one period of oscillation of the field,
lω ≈ vF/ω, where vF is the Fermi velocity and ω is the frequency
of the driving electric field. Depending on the relative values of
these length scales, one can distinguish the following different
transport regimes:

1) When lmr � δ or lω � δ, the electric field can be assumed to
be uniform on the length of the free path of an electron,

Fig. 1. A schematic illustration of the skin effect. The propagation of an
electromagnetic wave entering a conductor is limited to a layer of width δ,
called the skin depth. The skin depth changes with the frequency of the
electric field ω, making it possible to probe different transport regimes in
a single sample of a Weyl semimetal. To determine the effect of the chiral
anomaly on transport, the sample is placed in an external magnetic field B
aligned parallel to the propagating electric field.
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and consequently the relation between the electric field and
electric current is local in space: J(x,ω) = σ(ω)E(x,ω).
This is the regime where the usual Drude formula for
optical conductivity can be used. The skin effect in this
regime is called the normal skin effect (78). In this article
we further differentiate between the low-frequency normal
regime (when lmr is the shortest length scale) and the high-
frequency normal regime (when lω is the shortest length
scale).

2) In the case of very pure samples at low temperatures, the
electron–impurity and electron–phonon collisions can be-
come less frequent than the electron–electron collisions; that
is, lmc � lmr. Then, in some frequency range it may happen
that lmc � δ � lmr. In that case, the motion of the electron
can be seen as a random walk with step size equal to lmc.
The length of the path that an electron has to traverse to
cross the skin layer is of the order δ2/lmc, so momentum
relaxation in the skin layer happens on the length scale of
min{δ2/lmc, lmr}. If the condition δ2/lmc � lmr is fulfilled,
we are in the hydrodynamic regime, where the skin effect
is known as the viscous skin effect, first studied by Gurzhi
(81).

3) Finally, when in some frequency range δ is the smallest length
scale, i.e., δ � min{lmr, lmc, lω}, we enter a regime in which
electrons can be assumed not to undergo any scattering in
the skin layer, so the motion of the electrons is ballistic. The
skin effect in this regime is called the anomalous skin effect
(79).

In Weyl metals the presence of the chiral anomaly complicates
this picture. When the material is placed in parallel electric and
magnetic fields, the axial anomaly causes an imbalance between
the densities of quasiparticles with different chiralities, and the
chiral magnetic effect gives rise to the current in Eq. 1. Therefore,
in addition to the rate of relaxation of momentum, also the rate
of relaxation of the axial charge becomes relevant for the transport
of electric charge.

While at low frequencies both momentum and axial charge re-
laxation originate in the same physical processes, namely collisions
with impurities, the relevant length scale for the latter, which we
call linter, can be much longer than lmr (70–72). Consequently, in
a certain frequency range lmr � δ � linter can occur. In analogy
to our discussion of the hydrodynamic regime, in addition to the
internode scattering, relaxation of the axial charge takes place also
through diffusion. Since lmr � δ, we are in the diffusive regime
and the time needed for the charge imbalance to diffuse through
the skin layer is of the order δ2/ (vFlmr). If the condition δ2/lmr �
linter is satisfied, diffusion becomes the primary mechanism of
the axial charge relaxation in place of the internode scattering.
The characteristic feature of this regime is that while the classical
contribution to the conductivity can still be described by the local
Drude formula, the contribution resulting from the quantum
anomaly is nonlocal. Therefore, we call this regime the anomaly-
induced nonlocal (AIN) regime. The interplay between the clas-
sical and quantum contributions has nontrivial consequences for
the skin effect.

Kinetic Theory with Second-Order Corrections

Our aim is to calculate currents in a Weyl semimetal by solving
the Boltzmann kinetic equation. Hereafter, we consider a Weyl
semimetal composed of two Weyl nodes with opposite chirality
and assume that there are no other bands contributing to the con-
ductivity. Consequently, we consider two distribution functions

f (s) labeled by the chirality of the node s =±1. In the vicinity
of the node with chirality s, and in the absence of external fields,
we take the system to be described by the idealized low-energy
Hamiltonian,

H (p) = svσ · p. [3]

For such a Hamiltonian, the dispersion relation for the conduc-
tion bands takes the simple form

ε0(p) = v |p|. [4]

Finally, our semiclassical approach assumes a system whose Fermi
energy εF satisfies the inequalities kT � εF and �ω � εF, such
that there are no antiparticle excitations.

The semiclassical equations of motion in the chiral kinetic
theory are

D (s)ẋ(s) =
[
v
(s)
M + e�E×Ω(s) + e�

(
v
(s)
M ·Ω(s)

)
B
]
,

[5]
D (s)ṗ(s) =

[
eE+ ev

(s)
M ×B+ e2�(E ·B)Ω(s)

]
, [6]

where v(s)
M = ∂pε

(s)
M is the group velocity and

D (s) = 1 + e�B ·Ω(s) [7]

is the volume element of the phase space in the presence of the
Berry curvature Ω(s) (46, 82). Charge and current densities are
defined as

ρ(x, t) = e
∑
s=±1

∫
d3p

(2π�)3
D (s)f (s)(x,p, t), [8]

J(x, t) = e
∑
s=±1

∫
d3p

(2π�)3
D (s)ẋ(s)f (s)(x,p, t). [9]

The distribution functions f (s)(x,p, t) can be determined from
the corresponding Boltzmann equations

∂t f
(s) + ẋ(s) · ∂xf (s) + ṗ(s) · ∂pf (s) = C (s)[f (s), f (−s)],

[10]
where C (s) is the collision integral (discussed in the next section).

The presence of external fields changes the simple dispersion
relation given in Eq. 4. In particular, corrections linear in B,
related to the orbital magnetic moment (OMM) of the wavepack-
ets, have been shown to lead to a qualitative change in the
magnetoconductance (83, 84). As the chiral magnetic effect is
seen on the order B2, corrections to the semiclassical equations
of motion quadratic in B can also potentially affect the result. For
that reason, in this work we include second-order corrections to
the energy (85) (SI Appendix):

ε
(s)
M (p) = v

[
|p| − s

e�B · p
2|p|2 +

e2�2|B|2
8|p|3 − e2�2 (B · p)2

8|p|5

]
.

[11]
The magnetic field also modifies the Berry curvature (85, 86)
(SI Appendix), which up to linear order in � reads

Ω(s)(p) = s
p

2|p|3 − e�B

4|p|4 +
e�(B · p)p

2|p|6 . [12]

Using these formulas, the equations of motion are valid up to
order B2. Second-order corrections to the equations of motion
in the context of chiral kinetic theory were considered before in
refs. 87–89.
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It is important to state that the semiclassical approach is valid
only for sufficiently weak magnetic fields. To be more precise, it is
assumed that the dimensionless parameter

α=
e�|B|v2

2ε2F
[13]

satisfies α� 1; otherwise the analysis would have to take into
account the quantization of the Landau levels. Thus, α quantifies
the magnitude of quantum corrections to the classical equations
of motion.

Linearized Boltzmann Equation

The collision term C (s)[f (s), f (−s)] in Eq. 10 is zero when
both particle species follow the Fermi–Dirac distribution; i.e.,
C (s)[f

(s)
0 , f

(−s)
0 ] = 0 with

f
(s)
0 (p) =

[
exp

(
ε
(s)
M (p)− εF

kT

)
+ 1

]−1

. [14]

To solve the Boltzmann equation, f (s) is expanded around f
(s)
0 .

Setting f (s) = f
(s)
0 + f

(s)
1 in Eq. 10 shows that the leading-order

solution f0 contributes a term proportional to ∂pf
(s)
0 = ∂pε

(s)
M ·

∂εM f
(s)
0 to the equation. Consequently, we parameterize the full

solution as follows:

f (s) = f
(s)
0 (p) + ∂εM f

(s)
0 · η(s)(x,p, t). [15]

For kT � εF, ∂εM f
(s)
0 ≈−δ

[
ε
(s)
M (p)− εF

]
, which means that

we have only to pay attention to η(s)(x,p, t) with momenta
p close to the Fermi surface. The shape of the Fermi surface is
determined by equating the right-hand side (RHS) of Eq. 11 to
εF and solving for |p|. To that end, we introduce the unit vectors
pointing in the direction of magnetic field and momentum,

b̂=B/|B|, p̂= p/|p|, [16]

respectively. The Fermi momentum in the direction p̂ can then be
written, up to the second order in B, as

p
(s)
F (p̂) =

εF

v

[
1 + sα(p̂ · b̂)− 1

2
α2 − 1

2
α2(p̂ · b̂)2

]
. [17]

Using this result it is possible to evaluate the Berry curvature Ω(s)

and the group velocity v(s)
M at the Fermi surface up to the second

order in α:

Ω(s)(p
(s)
F (p̂), p̂) =

1

e�|B|
[
sαp̂− α2b̂

]
, [18]

v
(s)
M (p

(s)
F (p̂), p̂) = v

[
p̂− sαb̂+ 2sα(p̂ · b̂)p̂− 3

2
α2p̂

+α2(p̂ · b̂)b̂− 3

2
α2(p̂ · b̂)2p̂

]
.

[19]

In what follows we make the dependence on pF implicit;
i.e., Ω(s)(p

(s)
F (p̂), p̂)≡Ω(s)(p̂), v(s)

M (p
(s)
F (p̂), p̂)≡ v

(s)
M (p̂),

η(s)(p
(s)
F (p̂), p̂)≡ η(s)(p̂).

Next, we turn our attention to the collision term on the RHS
of Eq. 10. We linearize this term by introducing the collision
operator Ĉ (s) defined as

Ĉ (s)[η(s), η(−s)]≡
(
∂εM f

(s)
0

)−1

C (s)[f (s), f (−s)], [20]

where f (s) = f
(s)
0 + ∂εM f

(s)
0 · η(s). At first, we neglect possible

interactions between the nodes and consider properties of the col-
lision operator acting on a well-defined chiral state Ĉ (s)[η(s)]≡
Ĉ (s)[η(s), 0]. This collision operator can be shown to be Hermi-
tian and nonpositive with respect to the inner product (73, 90,
91)

〈η|ζ〉(s) =−
∫

d3p

(2π�)3
D (s)(p)

(
∂εM f

(s)
0

)
η(p)∗ζ(p). [21]

In the absence of an external magnetic field, B= 0, the Fermi
surface is a sphere and D (s)(p) = 1. Then, if we assume that the
scattering in the bulk is isotropic, the problem is spherically sym-
metric and the eigenfunctions of Ĉ (s) are the spherical harmonics

Ĉ (s)[Ym
l (p̂)] =−Γl,mYm

l (p̂) (B= 0). [22]

The eigenvalues Γl,m describe the relaxation of the different
modes. For example, if the distribution function η(s) is expanded
in spherical harmonics as

η(s) =
∑
l,m

X
m(s)
l Ym

l (p̂), [23]

where Xm(s)
l = X

m(s)
l (x, t) are some functions of position and

time, the rate of change of the charge density is

dρ(s)

dt
= e

∫
d3p

(2π�)3
df (s)(x,p, t)

dt

= e

∫
d3p

(2π�)3
∂εM f

(s)
0 · Ĉ (s)[η(s)]

=− eε2F
(2π)2

√
π�3v3

Γ0,0

(
−X

0(s)
0

)
.

[24]

A simple calculation shows that ρ(s) ∝−X
0(s)
0 . Thus, Γ0,0 de-

scribes the rate of the particle number relaxation. Similarly, using
the fact that p̂z ∝ Y 0

1 (p̂), p̂x ∝
(
Y −1

1 (p̂)− Y 1
1 (p̂)

)
, and p̂y ∝

i
(
Y −1

1 (p̂) + Y 1
1 (p̂)

)
, it is easy to see that Γ1,M , where M =

−1, 0, 1 describe the rates of relaxation of momentum.
In the case of nonzero magnetic field, we can no longer use

the spherical symmetry to find the eigenfunctions of the collision
operator. Nevertheless, we can assume that they should be of the
form K

m(s)
l = Ym

l +O(α) and that the corresponding eigen-
values,Γ0,0 andΓ1,M , should again describe the rates of change of
ρ and 〈p〉, respectively. The details of finding the functionsKm(s)

l

can be found in SI Appendix. In this work we expand K
m(s)
l in

spherical harmonics to the second order in α.
Last, let us construct a collision operator that includes the

relevant relaxation processes. One of them is the internode scat-
tering, which transfers particles between the two nodes, leading
to a dissipation of the axial charge; we denote the frequency
at which this process happens by Γinter. Another process is the
intranode scattering that, together with the internode scattering,
relaxes momentum; we denote the total rate at which momentum
is dissipated by Γmr and, consequently, we take Γ1,M = Γmr for
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M =−1, 0,+1. Finally, we include in our analysis electron–
electron scattering, which conserves momentum. Because modes
with a high angular momentum do not contribute to the current,
and to simplify the calculations, we assume a constant relaxation
rate Γtot for all modes with the total angular momentum L≥ 2.
All the scattering mechanisms that we consider, i.e., the inter- and
intranode scattering, as well as the electron–electron collisions,
contribute to Γtot. On the basis of the physical origin of the relax-
ation rates we take Γinter < Γmr < Γtot. Introducing the operators

P
(s)
0 = |K 0(s)

0 〉〈K 0(s)
0 | − |K 0(s)

0 〉〈K 0(−s)
0 |,

P
(s)
1 =

∑
M=−1,0,1

|KM (s)
1 〉〈KM (s)

1 |,

P
(s)
higher = 1− |K 0(s)

0 〉〈K 0(s)
0 | − P

(s)
1 ,

[25]

where s defines the distribution function that the operator acts on,
the collision operator can be written as

Ĉ (s) =−ΓinterP
(s)
0 − ΓmrP

(s)
1 − ΓtotP

(s)
higher. [26]

Similar expansions of the collision operator were used in refs. 74–
77 for different systems. It can be verified that with this choice
of collision operator d

dt ρ
(s) ∝−Γinter

(
ρ(s) − ρ(−s)

)
and, in the

absence of external force and internode scattering, d
dt 〈p〉(s) ∝

−Γmr〈p〉(s).
We are now in a position to write down the linearized Boltz-

mann equation (Eq. 10). Recalling that we need to compute η(s)
up to linear order in E and quadratic in B, we can neglect the
anomalous Hall term in the spatial-derivative term

D (s)(p̂)ẋ(s) · ∂xf (s)

= ∂εM f
(s)
0

[
v
(s)
M + e�

(
v
(s)
M ·Ω(s)

)
B
]
· ∂xη(s), [27]

while the relevant contributions of the momentum-derivative
term are

D (s)(p̂)ṗ(s) · ∂pf (s)

=
[
eE+ e2�(E ·B)Ω(s)

]
· v(s)

M ∂εM f0

+ e
[
v
(s)
M ×B

]
· ∂pη(s)∂εM f

(s)
0 .

[28]

Note that we use the formulas for Ω(s) and v
(s)
M given in Eqs. 18

and 19, respectively, to account for the second-order corrections
to the equations of motion. The last term on the RHS of Eq. 28
results from the Lorentz force and is the source of the classical Hall
effect and classical magnetoresistance. Because these phenomena
are well known and this article focuses on quantum corrections
to the longitudinal conductivity, we do not include them here.
Additionally, we are going to consider a setup where the electric
field is parallel to the (external) magnetic field, in which case
the classical magnetoresistance vanishes in the normal regime.
On the other hand, in the hydrodynamic and ballistic regimes
the situation is more complicated: For details, see SI Appendix.
These considerations allow us to write the linearized Boltzmann
equation

D (s)∂tη
(s) +

[
v
(s)
M + e�

(
v
(s)
M ·Ω(s)

)
B
]
· ∂xη(s)

+ e
[
E · v(s)

M + e�(E ·B)
(
Ω(s) · v(s)

M

)]
=D (s)Ĉ (s)[η(s), η(−s)],

[29]

with Ĉ (s) defined in Eq. 26.

Bulk Conductivities

In this section, we calculate the current flowing through the
bulk of a Weyl semimetal subject to a weak ac electric field. The
material is modeled as an infinite half-space z > 0, while z < 0 is
the vacuum. We place the material in a static external magnetic
field parallel to the surface, B= B x̂, and consider an oscillating
electric field propagating through the bulk and polarized in the
same direction as the magnetic field: E(z , t) = E (z , t)x̂. The
electric field is assumed to be uniform in the xy plane.

The general expression for the current, after taking into account
the orbital magnetization, can be written as

J= Jkin + Jmagn, [30]

where Jkin is given by Eq. 9 and represents the “kinematic” part
resulting from the forward motion of the wavepackets, while

Jmagn =∇×
∑
s=±1

∫
d3p

(2π)3
D (s)(p)

se�v

2|p| p̂f
(s)(q ,p) [31]

is the magnetization current. However, in the setup that we
consider Jmagn = 0 (see SI Appendix for a proof ). Consequently,
in what follows

J= Jkin. [32]

Eq. 9 is now expanded to the second order in α. In this article
we neglect the anomalous Hall effect, i.e., the e�E×Ω(s) term.
In a time-reversal symmetry-breaking Weyl semimetal with a
single pair of nodes this can be justified, if the electric field is
aligned parallel (or near parallel) to the vector connecting the Weyl
nodes in reciprocal space. After switching to spherical coordinates
(p, θ,φ) in momentum space, one obtains

J(z ) = e
∑
s=±1

∫
d3p

(2π�)3
D(p)ẋ(p)(−δ [εM(p)− εF])η(z ,p)

=− eε2F
v2(2π�)3

∑
s=±1

∫
d(cos θ)dφ

[
p̂+ 3sα(p̂ · b̂)p̂− α2p̂+ α2(p̂ · b̂)b̂

]
η(s)(z , p̂),

[33]

where we suppress the (s) labels on all quantities in the first line.
To find the current from Eq. 33, the distribution functions

η(s)(z ,p) have to be determined from the Boltzmann equation
(Eq. 29). We shall work with Fourier-transformed quantities
defined as follows:

η(s)(z ,p, t) =

∫
dωdqeiωt−iqzη(s)(q ,p,ω),

E(z ,p, t) =

∫
dωdkeiωt−iqzE(q ,p,ω).

[34]

The Boltzmann equation is solved perturbatively in α after ex-
panding the out-of-equilibrium distribution in spherical harmon-
ics as

η(s) =
∑
l,m

(
Am

l + sαBm
l + α2Cm

l

)
Ym

l (p̂). [35]

Next, the collision integral on the RHS of Eq. 29 is evaluated
using the definition of the inner product 21; the expansion of
the collision operator into projection operators 25, 26; and the
form of the eigenvectorsKm(s)

l determined in SI Appendix. Then,
Eq. 29 is projected onto a spherical harmonic of degree L and
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order M by multiplying both sides by YM∗
L (p̂) and integrating

over the angles. These integrals can be evaluated analytically, pro-
ducing an infinite system of equations labeled by L,M . Finally,
terms that are of the same order in α are equated, leading to three
systems of equations (for terms of order 1, α, and α2) that are
solved in turn.

We now solve the system of equations corresponding to the
lowest level of approximation (α= 0) to demonstrate the general
strategy of solution, which is in the same spirit as the one used
in ref. 92 for a two-dimensional (2D) system. At this level, the
equations are*

iωA0
0 − iqv

√
3

3
A0

1 = 0, [36]

(iω + Γmr)A
0
1 − iqv

[√
3

3
A0

0 +

√
4

15
A0

2

]
= 0, [37]

(iω + Γmr)A
±1
1 − iqv

√
5

5
A±1

2 ∓ ev

√
2π

3
E = 0, [38]

(iω + Γtot)A
M
L − iqv

1

2

[
AM

L−1 + AM
L+1

]
= 0 (for L≥ 2).

[39]
Note that in the above, due to the cylindrical symmetry of the
system in the absence of an electric field, only equations for a fixed
M are coupled. Eq. 39 is a recurrence relation that can be solved by
the ansatz AM

L = rL−1AM
1 . There are two solutions, from which

we choose the one that ensures convergence of the series,

r =− i

qv

[
Γtot + iω −

√
(Γtot + iω)

2
+ q2v2

]
, [40]

where we take the square root in the bracket to return a value
with a positive real and a positive imaginary part. Inserting AM

2 =
rAM

1 for M =−1, 0,+1 in Eqs. 36–38 yields a closed system of
equations that can easily be solved, while for |M |> 1 the solution
is trivial: AM

L = 0. This way, the full distribution function at the
classical level is found to be

A±1
1 =±

√
2π

3

evE

Γmr + iω −
√
5
5 iqvr

,

A±1
L = rL−1A±1

1 , AM �=±1
L = 0.

[41]

The same procedure can be used to find corrections to η(s) at
higher orders in α as well. First, the solution for AM

L is plugged
into the equations that are linear in α to find BM

L . Subsequently,
the equations for high L are expressed as a recurrence relation
that is then solved, and its solution is used to turn the system
of equations for L= 0, 1, 2 into a closed system. After solving
this system, the solutions for AM

L and BM
L are plugged into

the quadratic-order equations to find CM
L and the procedure

is repeated. As the calculations are lengthy and not particularly
instructive, we relegate the details to SI Appendix.

After finding the distributions η(s)(q , p̂,ω), the current is
evaluated using Eq. 33. The current can be expressed as J(q ,ω) =
σ(q ,ω)E(q ,ω), where the conductivity σ is a complicated func-
tion of q and ω. Here we present only the formulas for the
conductivity in the limiting cases, in which some of the frequency
scales involved in the problem are much greater than the others.

*The factor of 1/2 in front of the bracket in the last equation is in fact an approximate
value, but this approximation works very well here. For a discussion of this approximation,
see SI Appendix.

The relevant frequency scales are the relaxation rates, which satisfy
the inequalities Γinter < Γmr < Γtot, ω (the driving frequency),
and qv . As both qv and ω can in general be placed between
any two relaxation rates in this chain of inequalities, there are in
principle a large number of limiting cases that can be considered.
Instead of analyzing each one of them, we focus only on the
regimes that could be accessed in a skin effect experiment, which
we identify in the following way. We choose certain realistic
material parameters, close to those reported for WP2 (40, 93):
v = 1.4× 105 m/s, εF = 20 meV, Γmr = 109 Hz, Γtot = 1010

Hz. We moreover assume that Γinter is two orders of magnitude
smaller than Γmr as reported for TaAs (26), so Γinter = 107 Hz.
Next, let us note that the classical conductivity can be calculated
using Eqs. 41 and 33 evaluated at the classical (i.e., α= 0) level,
yielding

σcl(q ,ω) = 2 ε ω2
P

1

Γmr + iω −
√
5
5 iqvr

, [42]

where the plasma frequency ωP is defined by

ω2
P =

e2ε2F
6π2ε�3v

[43]

and ε is the electric permittivity of the medium. Then, we can
solve the Fourier-transformed Eq. 2 as(

−q2 +
ω2

c2

)
= i μω σ(q ,ω)cl [44]

to obtain the wavectors q, which correspond to modes that can
propagate through the bulk, as a function of ω. This equation
has in general six solutions, but we can restrict our attention to
those with a negative imaginary part and a positive real part, which
in accordance with Eq. 34 correspond to modes propagating in
the positive direction along z and decaying with the distance. It
turns out that out of the six solutions one satisfies this condition
for all ω, and one satisfies it at high frequencies only; we denote
these solutions q1 and q2, respectively. The characteristic length
scales at which these modes decay, defined as δi =−Im[qi ]

−1,
can be used as a proxy for the classical skin depth and they are
plotted in Fig. 2. Based on the different scaling of qi with ω we
can identify four relevant regimes, which we call low-frequency
normal, hydrodynamic, ballistic, and high-frequency normal. In
all these regimes, except the last one, ω is smaller than all the
relevant frequency scales and can thus be neglected in the analysis.

When quantum effects are included, the low-frequency normal
regime splits into two, as discussed in the Introduction. The dif-
ferent regimes and the corresponding conductivities are assembled
in Table 1. It can be seen that while in both the low-frequency
normal and the anomaly-induced nonlocal regimes the relaxation
of momentum and axial charge are related to different frequency
scales, in the other regimes they both happen at a comparable rate.

We can extract further information as to the origin of the nu-
merical coefficients in Table 1 if before the start of the calculations
we multiply the term corresponding to the OMM in Eq. 11 (that
is, −s e�B·p

2|p|2 ) by a factor ξ1, and similarly we multiply all the
terms resulting from the second-order corrections to the energy
and Berry curvature in Eqs. 11 and 12 by ξ2, and then we keep
track of these coefficients during the computations. This allows us
to determine the following:

• The second-order corrections to the equations of motion have
no influence on the conductivity either in the normal or the
AIN regimes, affecting only the hydrodynamic and ballistic
results.
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Fig. 2. Dependence of the characteristic length scales at which a propa-
gating electric field decays on ω. The two curves represent two solutions
of Maxwell’s equations in the form of Eq. 44 supplemented by the formula
for the classical conductivity Eq. 42 and experimentally realistic parameters
(main text): v = 1.4 × 105 m/s, εF = 20 meV, Γmr = 109 Hz, and Γtot = 1010

Hz. We select only solutions satisfying Re[qi] > 0, Im[qi] < 0 and plot their
characteristic decay lengths, defined as δi = −Im[qi]

−1. At low frequencies
there exists only one solution q1 satisfying these conditions. We can observe
three transport regimes (identified as low-frequency normal, hydrodynamic,
and ballistic) where δ1 shows different scaling with ω, and the cross-overs
(marked with dashed black lines) happen around the values of ω for which
|q1v| ≈ Γmr and |q1v| ≈ Γtot. Above a certain value of ω, around the point
when |q1v| ≈ ω, another solution q2 becomes relevant. Since δ2 is the longer
of the two decay lengths, it dominates the propagation of the electric field and
we are in what we call the high-frequency normal regime.

• For a relatively high Γinter, namely Γinter > 15Γmr/22≈
0.7Γmr, the magnetoconductivity in the low-frequency regime
changes sign from positive to negative, in qualitative agreement
with refs. 83 and 84. This is found to be caused by the
contribution of the OMM, as setting ξ1 = 0 and neglecting
electron–electron collisions (so that Γtot = Γmr) would result
in a different formula for the conductivity, denoted here as σ̃,

σ̃(q ,ω) = ε ω2
P

[
2

Γmr
+ α2 3

Γinter
− α2 42

15

1

Γmr

]
, [45]

and the magnetoconductivity would always be positive, again
in agreement with refs. 83 and 84.

• In the hydrodynamic regime the large negative coefficient is
also due to the OMM as setting ξ1 = 0 would result in a
positive coefficient

σ̃(q ,ω)≈ ε ω2
P
Γtot

q2v2

[
9.0 + 5.2α2

]
. [46]

• In contrast, magnetoconductivity in the AIN regime is not
affected by either the OMM or the second-order corrections
and results solely from the leading-order term in the Berry
curvature. The nonlocality of the quantum correction to the
conductivity can be seen in its dependence on q, absent in the
classical part.

Skin Effect

To find the skin depths and the surface impedance in the regimes
identified in the previous section, we have to include the presence
of a boundary in our analysis. This is done by imposing appro-
priate boundary conditions on the distribution functions. As a
particularly simple choice we impose specular boundary condi-
tions, meaning that during reflection the transverse components
of velocity stay the same but the perpendicular component gets in-
verted; i.e., η(s)(z = 0, vx , vy , vz ) = η(s)(z = 0, vx , vy ,−vz ).
These boundary conditions can be naturally implemented if,
following ref. 42, we add a mirror-symmetric counterpart (for
z < 0) to the original (physical) half-space system. Then, in the
augmented setup the condition of specular reflection means that
the particles move freely across the z = 0 boundary (Fig. 3).
Because the electric field is parallel to the surface, its mirror-
reflected components are related byE(−z , t) =E(z , t). Further-
more, the external magnetic field B does not change under the
mirror reflection, which allows us to use a single formula for the
conductivity in the whole space.

From Maxwell’s equations we obtain the relation (using
E(z , t) = E (z , t)x̂)

∂2
zE (z , t) =

1

c2
∂2
t E (z , t) + μ∂tJ (z , t). [47]

Fourier transforming the left-hand side (LHS),∫ ∞

−∞

dz

2π
E ′′(z )eiqz

=

∫ ∞

−∞

dz

2π

(
E ′(z )eiqz

)′
dz − iq

∫ ∞

−∞

dz

2π
E ′(z )eiqzdz .

[48]

The first derivative of E (z ) has a discontinuity at z = 0, so that
E ′(z = 0−) =−E ′(z = 0+), which means that the integration
of the first term should be done separately in (−∞, 0) and (0,∞).
The second term can be integrated by parts once again, producing∫ ∞

−∞

dz

2π
E ′′(z )eiqz =− 1

π
E ′(z =+0)− q2E (q). [49]

Table 1. Conductivity and surface impedance in the different regimes and their regions of validity
Regime Valid when Conductivity σ(q,ω) Surface impedance Z(ω)
Low-frequency

normal q2v2 � ΓinterΓmr ω � Γinter ε ω2
P

[
2

Γmr
+ α2 3

Γinter
− α2 66

15
1

Γmr

]
eiπ/4μ

√
ωc2

ω2
P

(
2

Γmr
+ α2 3

Γinter
− α2 66

15
1

Γmr

)− 1
2

Anomaly-induced
nonlocal ΓinterΓmr � q2v2 � Γ2

mr ω � q2v2/Γmr ε ω2
P

[
2

Γmr
+ α2 18Γmr

q2v2

]
See Eq. 56

Hydrodynamic ΓmrΓtot � q2v2 � Γ2
tot ω � q2v2/Γtot ε ω2

P
Γtot
q2v2

[
9.0 − 26α2] 1

2

(
eiπ/8 + ei5π/8)μ(

ω3v2c2

ω2
PΓtot[9.0−26α2]

)1/4

Ballistic Γtot � qv ω � qv ε ω2
P

1
qv

[
4.5 + 4.3α2] 4

√
3

9 eiπ/3μ

(
ω2vc2

ω2
P[4.5+4.3α2]

)1/3

High-frequency

normal qv � ω Γtot � ω −iε ω2
P

1
ω

[
2 + 8

5α
2
]

−iμωc
ωP

(
2 + 8

5α
2
)− 1

2

The numerical coefficients in the hydrodynamic and ballistic regimes are rounded up to two significant numbers.
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Fig. 3. Implementation of specular boundary conditions. To the original
system located in z > 0 its mirror-reflected version is added in z < 0, which
creates a discontinuity in the derivative of the electric field at the boundary. A
specular reflection of a particle can be seen as its mirror-reflected counterpart
freely crossing the boundary.

The Fourier transform of J (z ,ω) is σ(q ,ω)E (q ,ω), where
σ(q ,ω) was determined in the previous section, so from Eq.
47 we obtain

E (q ,ω) =
−E ′(z = 0+)

π

1

q2 − ω2

c2 + iμωσ(|q |,ω)
, [50]

where we explicitly write |q | because conductivity has to be an
even function of q. Finally, we obtain

E (z ) =−E ′(z = 0+)

π

∫ ∞

−∞
dq

e−iqz

q2 − ω2

c2 + iμωσ(|q |,ω)

=−2E ′(z = 0+)

π

∫ ∞

0

dq
e−iqz

q2 − ω2

c2 + iμωσ(q ,ω)
.

[51]

This result allows us to calculate surface impedance, defined as
(94)

Z =
E (z = 0)∫∞
0

J (z )dz
. [52]

Using Maxwell’s equations this formula can be rewritten as

Z =−iμω
E (z = 0)

E ′(z = 0+)
. [53]

As the conductivities in all the regimes except AIN show only
quantitative changes with respect to their classical counterparts,
we restrict ourselves to presenting the impedances obtained from
Eqs. 53 and 51 in Table 1.

Skin Effect in the AIN Regime. We now present a detailed analysis
of the skin effect in the most interesting case of the anomaly-
induced nonlocal regime. In fact, we can also capture the crossover
from the low-frequency normal regime by approximating the
conductivity as

σ(q ,ω)≈ σ0

[
1 + α2 Γmr

2Γinter/3 + q2v2/9Γmr

]
, [54]

where σ0 = 2εω2
P/Γmr. This approximation for the conductivity

works only when Γinter � Γmr, qv � Γmr, and ω � q2v2/Γmr.

We want to evaluate the integral in Eq. 51, which can be
done using standard contour integration methods. The resulting
impedance in both the low-frequency normal and the AIN
regimes can be seen in Fig. 4.

The AIN regime can be observed when (ωμσ0)v
2 
 ΓmrΓinter.

For z = 0 we integrate over the contour in the lower half-plane,
and thus we are interested in the poles with a negative imaginary

part. There are two such poles: q1 ≈ e−iπ/4

√
μωσ0 + iα2 9Γ2

mr
v2

and q2 ≈−i
√

Γmr (6Γinter + 9α2Γmr)/v . Please note that
|q2| � |q1|. The electric field is

E (z ) = iE ′(z = 0+)

[
exp(−iq1z )

q1
+ α2 9Γ

2
mr

q21 v
2

exp(−iq2z )

q2

]
.

[55]

This result shows that there is an anomalous component of the
electric field with the skin depth much larger than the classical skin
depth, so at large distances the anomalous component dominates
over the classical one. The impedance is then

Z = eiπ/4
√

μω

σ0 + iα2 9Γ2
mr

μωv2

− α2 9Γmr

σ0v

(
6
Γinter

Γmr
+ 9α2

)− 1
2

.

[56]
Therefore, in a finite magnetic field the impedance in this regime
no longer scales with the square root of ω, as seen in Fig. 4. This
regime with its characteristic impedance is a central finding of the
present article.

Discussion and Conclusions

We provided a detailed analysis of the chiral magnetic conductiv-
ity across various transport regimes. To do so, we constructed a
collision operator that captures three different relaxation mecha-
nisms by exploiting its algebraic properties. We also included in
our analysis second-order semiclassical corrections. The computed
conductivities show a quantitative influence of these corrections in
the hydrodynamic and anomalous regimes, although it has to be

Fig. 4. Dependence of the real part of the surface impedance Z on frequency
ω in the low-frequency normal and the AIN regimes, obtained from Eqs. 53,
51, and 54 in the cases of no magnetic field (α = 0) and a nonzero magnetic
field (α = 0.1). The dashed line is plotted on the basis of the impedance of
the low-frequency normal regime as found in Table 1, and it is the result that
would be measured in the absence of the nonlocal behavior. The material
parameters are v = 1.4 × 105 m/s, εF = 20 meV, Γmr = 109 Hz, and Γinter =
107 Hz. The transition to the AIN regime takes place around ω = 105 Hz. We
see that changing the external magnetic field leads to a noticeable change of
the surface impedance, especially shortly before the onset of the AIN regime,
and moreover in this regime the scaling with frequency changes with respect
to the no-field result.

8 of 10 https://doi.org/10.1073/pnas.2200367119 pnas.org

https://doi.org/10.1073/pnas.2200367119


noted that due to the coexistence of classical magnetoconductivity
in these regimes, the quantum corrections could be difficult to
separate out experimentally.

More importantly, we uncovered an entirely different transport
regime where the conductivity is a combination of a classical local
part and a nonlocal quantum part. This leads to a change of scaling
of the surface impedance with the driving frequency when the
material is placed in an external magnetic field. This phenomenon
is related to a significant increase in the skin depth, which might
be possible to observe in thin enough samples.

In the end, we note that there are various other phenomena
that affect transport in Weyl semimetals that we did not include
in our analysis. We neglected the influence of the Fermi arcs
and the anomalous Hall effect (which plays a significant role in
the propagation of light in time-reversal symmetry-breaking Weyl
semimetals), as well as all the effects nonlinear in the electric
field. Nonetheless, the results of this article hold for time-reversal
symmetry-breaking Weyl semimetals placed in weak fields when
the positions of the nodes are properly aligned with the elec-
tric field, as well as (qualitatively) for noncentrosymmetric Weyl
semimetals. In particular, the presence of the anomaly-induced
nonlocal regime should be discernible experimentally.

Our work serves as a starting point for detailed analyses of
transport regimes in Weyl semimetals, including different scat-
tering mechanisms relevant for realistic experimental situations.
As a result, one can construct a detailed theoretical description of
a generation of transport measurements beyond two-dimensional

analogs. This allows one to investigate effects absent in two dimen-
sions, such as chiral vortical effect or anomalous thermal transport.
It also permits one to include realistic boundary conditions,
important in electron hydrodynamics and usually neglected in
high-energy applications of chiral kinetic theory.

Note. When this article was being prepared, a preprint appeared
(95), in which the existence of a nonlocal regime with the same
qualitative features as the AIN regime was predicted. While ref.
95, contrary to the present work, assumes ω 
 Γinter, it is worth
noting that when Γinter is replaced with iω/2 in Eq. 55, the results
of the two articles are found to be in good agreement.

Data Availability. There are no data underlying this work.
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