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Validation of a New T2* Algorithm and Its Uncertainty
Value for Cardiac and Liver Iron Load Determination
from MRI Magnitude Images

Sebastian Bidhult,1,2 Christos G. Xanthis,1,3 Love Lindau Liljekvist,1 Gerald Greil,4,5

Eike Nagel,4,5 Anthony H. Aletras,1,6 Einar Heiberg,1,2 and Erik Hedstr€om1,4,5,7*

Purpose: To validate an automatic algorithm for offline T2*
measurements, providing robust, vendor-independent T2*, and
uncertainty estimates for iron load quantification in the heart
and liver using clinically available imaging sequences.
Methods: A T2* region of interest (ROI)-based algorithm was
developed for robustness in an offline setting. Phantom imag-
ing was performed on a 1.5 Tesla system, with clinically avail-

able multiecho gradient-recalled-echo (GRE) sequences for
cardiac and liver imaging. A T2* single-echo GRE sequence
was used as reference. Simulations were performed to assess

accuracy and precision from 2000 measurements. Inter-
and intraobserver variability was obtained in a patient study

(n¼23).
Results: Simulations: Accuracy, in terms of the mean differen-
ces between the proposed method and true T2* ranged from

0–0.73 ms. Precision, in terms of confidence intervals of
repeated measurements, was 0.06–4.74 ms showing agree-

ment between the proposed uncertainty estimate and simula-
tions. Phantom study: Bias and variability were 0.26 6 4.23 ms
(cardiac sequence) and �0.23 6 1.69 ms (liver sequence).

Patient study: Intraobserver variability was similar for experi-
enced and inexperienced observers (0.03 6 1.44 ms versus

0.16 6 2.33 ms). Interobserver variability was 1.0 6 3.77 ms for
the heart and �0.52 6 2.75 ms for the liver.

Conclusion: The proposed algorithm was shown to provide
robust T2* measurements and uncertainty estimates over the

range of clinically relevant T2* values. Magn Reson Med
75:1717–1729, 2016. VC 2015 The Authors. Magnetic
Resonance in Medicine published by Wiley Periodicals,
Inc. on behalf of International Society for Magnetic
Resonance.

Key words: MRI relaxometry; iron-load; offline image process-
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INTRODUCTION

Organ failure caused by iron overload is a major cause of

death in patients with iron load disease. Accurate quan-

tification of organ iron load has been shown useful in

tailoring the therapy for such patients (1). MR imaging is

used as the current reference standard to assess iron load

in different organs. It is noninvasive, has documented

high reliability and has been validated to biopsies in the

heart and liver (2–7).
Different methods for quantification of iron load by

MR T2* are generally used (7–9). T2* measurements can
be performed from signal averages in a delineated region
of interest (ROI) or on a pixel by pixel basis. Differences
between methods are related to what is included in the
ROI, the model used for curve fitting and applied echo

times (TEs). In the presence of zero-mean Gaussian

noise, a standard least-squares (LSQ) estimator is consid-
ered optimal (10). However, the non-Gaussian noise

found in magnitude MR images (11,12) introduces a bias

in the T2* measurement which depends on the signal-to-

noise ratio (SNR). To reduce impact of noise on T2*, an

exponential fit combined with a constant offset (13) and

automatic truncation of data points (14) have been pro-

posed. In addition, noise-correction schemes for single-

channel coils (15) and root-sum-square (RSS) reconstruc-

tion of phased-array coils (16) were recently introduced

to further reduce noise-bias.
Validated inline methods may simplify iron load

measurements and improves clinical availability. How-
ever, robust offline T2* methods may have an important
role in multivendor settings. The maximum likelihood
estimate (MLE) method (17–19) is currently available for
inline processing in some vendors and if the noise statis-
tics are known, it is the optimal estimation method in
terms of variance (17). However, noise statistics of an
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image-set is rarely available offline without requiring
additional user interactions such as manually defining
background regions for noise estimation or specifying
image reconstruction technique. Moreover, uncertainty
estimates for the obtained T2* value are not provided by
current ROI-based methods.

Therefore, the purpose of this study was to introduce
and validate an automatic algorithm for offline T2*
measurements also providing uncertainty estimates for
robust quantification of iron load in the heart and liver,
optimized for a wide range of T2* values. The method
was validated in numerical simulations, in a phantom
study and was applied to cardiac and liver MR imaging
in patients with known or suspected iron load disease.

METHODS

Patients were included at two centers. The protocol and
procedures comply with the Declaration of Helsinki, and
were approved by the local research ethics committees.
All studies were performed using 1.5 Tesla (T) Philips
Achieva systems (Philips Healthcare, Best, The Nether-
lands). An overview of typical sequence parameters used
in this study is provided in Table 1.

Proposed T2* Analysis Method

We propose a new algorithm for T2* estimation in mag-
nitude MR images called ADAPtive T2* estimation from
combined Signal models (ADAPTS). It is a ROI-based
algorithm adapting the curve-fitting approach to balance
accuracy and precision. All image processing including
the proposed algorithm was developed using MATLAB
(v8.1.0.604, Mathworks) and was implemented in the
medical image analysis software Segment (20), freely
available for research purposes.

An overview of the algorithm is provided in Figure 1.
In all steps, the ROI average is used for curve-fitting to
increase SNR. The only manual interaction required is
the delineation of a ROI. The first T2* estimate is a
three-parameter offset model (13), initialized by the
weighted least-squares on signal logarithm method
(WLSL) (10). The signal model is shown in Eq. [1]:

S TEð Þ ¼ PD�e�TE=T2� þ C: [1]

The signal S depends on the TE, the proton density
PD and an offset parameter C which approximates
the noise-floor. Compared with a two-parameter
monoexponential, shown in Eq. [2], The increased
degree of freedom of a three-parameter fit enables closer
approximation of the measured signal (13).

S TEð Þ ¼ PD�e�TE=T2� : [2]

This, however, makes three-parameter models inher-
ently sensitive to noise and over fitting to the obtained
data points. The estimated offset parameter is used to
approximate the noise plateau and instead of reporting
the obtained T2* estimate (denoted cT2� in the remainder
of this section) as the final T2* value, ADAPTS uses the
initial fit for data-truncation. TEs exceeding P1 � cT2�,
where P1 is a nonzero constant, are excluded from theTa
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analysis and T2* is re-estimated from a two-parameter
monoexponential fit (Eq. [2]) of remaining TE images,
similar to the automatic truncation algorithm proposed
by He et al (14). To refrain from extensive truncation
which may lead to loss of precision, ADAPTS requires a
minimum number of available TE images, a second con-
stant P2, to proceed with the truncation method. If the
number of valid TEs is below P2, ADAPTS assumes the
number of remaining data points is insufficient for
robust T2* estimation and switches to a noise-correction
approach, similar to the M2NCM method (Second-
Moment Noise-Corrected Model), proposed by Feng et al
(16). This method fits the observed signal in all available
TE images to the expected value of the noncentral chi
distribution in the presence of an underlying monoexpo-
nential decay:

E M2
� �

¼ S2 þ 2Ls2: [3]

Here, M denotes the measured signal contaminated
with noise, S is the underlying exponential decay (Eq.
[2]), s is the noise standard deviation and L the number
of receiver coils in use. As previously proposed (16), the
right term of Eq. [3] is estimated as a free parameter,
resulting in a three-parameter model. This removes the
need for manual noise measurements. The motivation for
balancing the amount of included parameters and data
points in use by switching between signal models was to
enable robust T2* estimation in a wide range of T2* val-

ues. The three-parameter noise correction method is spe-
cifically designed to reduce noise bias in low SNR
conditions and for T2* close to the minimum TE. How-
ever, the use of an additional free parameter may
degrade precision for regions with high SNR where the
noise bias is negligible. In these circumstances, a two-
parameter truncation method may result in improved
precision. Although the signal models in ADAPTS
have all been previously introduced, the proposed
combination scheme is novel. All presented curve-fitting
methods used the Nelder Mead Simplex algorithm (21)
for nonlinear optimization. Values for the constants P1
and P2 were optimized in the phantom study and in
simulations, described in more detail below.

Estimation of Uncertainty

To estimate uncertainty of the obtained T2* value, T2*
was calculated in nonoverlapping, equally sized subre-
gions. From the subregion ensemble of T2* values the
95% confidence interval (CI) size was estimated. The
size of the subregions were defined as a fixed percentage
of the ROI size to produce a near-constant number of
T2* values for each CI estimate. Due to the reduced
number of pixels in the subregions compared with the
ROI, the standard error of the mean (SEM) will increase
for the pixel averages used for subregion T2* estimation.
Assuming statistically independent pixels and a linear
error propagation from the data-points to the T2* esti-
mate, a correction factor may account for the difference
in standard error:

SEMsubroi ¼
sffiffiffi
n
p ; SEM0 ¼

sffiffiffiffiffiffiffi
N
p ¼

ffiffiffi
n
pffiffiffiffiffi

N
p SEMsubroi [4]

ŝT2� ¼
ffiffiffi
n
pffiffiffiffiffi

N
p ŝT2�subrois: [5]

Here, N denotes the number of independent pixels in

the ROI and n denotes the number of independent pixels

in a subregion. Although this measure does not directly

correspond to the precision of the full-ROI T2* estimate,

it serves as an approximation which is further affected

by T2* homogeneity and varying noise levels within the

ROI. Compared with pixelwise T2* estimates, subregion

T2* results in improved precision due to pixel averaging,

which more closely resembles the original ROI estimate.

ADAPTS reports the T2* 95% CI together with the coef-

ficient of variation (CoV; defined as the standard devia-

tion divided by the ROI T2* value). Based on the

obtained CoV estimate the user may be advised to adjust

the ROI delineation.

Numerical Simulations

Numerical simulations were performed to assess accu-
racy and precision of ADAPTS and to evaluate reliability
of the uncertainty estimate in relation to known T2* val-
ues. RSS reconstruction of 1, 6 and 32 receive-coils was
simulated with identical monoexponential T2* decay on
the real and imaginary part of a complex signal. Zero-
mean Gaussian noise with predefined standard deviation

FIG. 1. Overview of the ADAPTS algorithm.
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(SD) s was added to each channel and the magnitude
signal was created by the root sum of squares operation:

RSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

l¼1
M2

l

r
[6]

Ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im2

l þ Re2
l

q
[7]

Ml denotes the magnitude signal of receive-channel l,
Im denotes the imaginary signal component and Re the
real component. The SNR was defined as S0/r, where S0

is the signal intensity at TE¼ 0. The mean of 40 inde-
pendent signals was averaged before curve-fitting to sim-
ulate ROI-averaging. A T2* range of 1–50 ms for
SNR¼15 was simulated. TEs corresponding to the clini-
cal T2* cardiac and liver sequences were used with TE
ranges of 2.5–25 ms and 1–20 ms, respectively. T2* val-
ues below the minimum TE were not simulated for
either sequence. This resulted in simulated T2* ranges
for cardiac and liver of 2.2–50 ms and 1–50 ms, respec-
tively. Simulations were repeated 2000 times to evaluate
accuracy and precision of ADAPTS. From the 2000 repe-
titions, the mean and 95% CI of the ADAPTS T2* calcu-
lation were computed for each simulated T2* value.

In addition to ADAPTS, a two-parameter version of
the noise correction method M2NCM was simulated
which takes the true noise standard deviation as input.
This enabled a comparison with a near-optimal method.
The optimized parameters P1 and P2, previously derived
from phantom measurements, were refined in simula-
tions and accuracy and precision of ADAPTS was com-
pared with each of the two included signal models (two-
parameter automatic truncation and three-parameter
noise-correction methods).

Reliability of ADAPTS uncertainty estimate was eval-
uated by comparing a total of 2000 CI estimates to the CI
of the 2000 ADAPTS T2* ROI estimates. This procedure
was repeated for multiple subregion sizes and ROI-sizes
to optimize the CI estimates. Simulated ROI-sizes and
region-sizes was (40, 100, 200, 400) pixels and (4%, 6%,
8%, 10%, 12%, 15%, 20% and 25%, respectively).
Simulated ROI-size for evaluating the optimal subregion
size was 40 pixels.

Phantom Study

Twelve 300 mL gel-phantoms with T2*/T1 values corre-
sponding to iron overloaded myocardium (22) were used
for validation. The phantoms consisted of a mixture of
water, agarose, gadolinium (DOTAREM; Guerbet, France)
and a SPIO Ferumoxsil contrast agent solution (LUMI-
REM; Guerbet, France). The concentrations of gadolin-
ium and SPIO contrast-agent were varied to alter T1 and
T2* while the agarose concentration was kept constant.
Each phantom was scanned separately and was sub-
merged in a water-filled container before imaging to
reduce potential susceptibility artifacts.

Phantom Imaging

Phantom imaging was performed using a six-channel
SENSE head-coil. Accuracy and precision of ADAPTS
were evaluated in two clinically used, single breath-

hold, multiecho gradient-recalled echo (mGRE) sequen-
ces for heart and liver imaging.

Accuracy of the clinical T2* sequences combined with
ADAPTS was evaluated by comparison with a single-
echo gradient-recalled echo (sGRE) reference sequence
with (TR>6 T1) to allow full longitudinal recovery
between excitation pulses. T1 was measured in all phan-
toms with a Modified Look-Locker Inversion-Recovery
(MOLLI) sequence using a 5(3s)3 scheme.

Precision was evaluated by calculating CIs in repeated
measurements (n¼ 120 repetitions), in three phantoms for
each sequence, and with target T2* selected to represent
typical values seen in clinical imaging: (4 ms, 10 ms, 20
ms) and (2 ms, 8 ms, 15 ms) for the heart and liver
sequences. All repetitions for a single phantom were per-
formed in the same session, in direct sequence with a
minimum pause of 7 s between repetitions. In addition,
the repeated measurements were used to validate the pro-
posed ADAPTS uncertainty estimate by direct comparison
with the CIs obtained from the 120 repetitions, and the
effect of varying the ADAPTS parameters P1 and P2 was
evaluated in all combinations of a set of parameter values,
specified in Figure 4. In total, 104 parameter configura-
tions were evaluated and final values of parameters were
chosen to maximize precision and minimize bias between
ADAPTS and an inline MLE method. The sGRE method
was not provided as reference in the parameter optimiza-
tion to be able to use it for independent validation of
accuracy for the chosen parameter set.

The sGRE reference sequence used a flip angle of 50�

and typical TEs¼ (1.34 ms, 2 ms, 3 ms, 5 ms, 7.5 ms, 10
ms, 12.5 ms, 15 ms, 20 ms, 30 ms, 40 ms, 50 ms, 75 ms,
100 ms, 150 ms, 200 ms, 300 ms). The mGRE sequence
for liver imaging used a flip angle of 20�, a repetition
time of 38 ms, and TE¼ (1.3, 3.4, 5.5, 7.6, 9.7, 11.8, 13.9,
16, 18, 20.1 ms) and the mGRE sequence for cardiac
imaging used a black blood DIR preparation scheme, a
parallel imaging factor of 2 (SENSE), a flip angle of 20�, a
repetition time of 26 ms and TEs¼ (2.5, 5, 7.5, 10, 12.5,
15, 17.5, 20, 22.5, and 25.0 ms). The MOLLI sequence
used a repetition time TR/TE of 2.4/1.11 ms, and a flip
angle of 35�. The shim volume was placed equivalently
for all sequences in all phantoms and a simulated electro-
cardiogram was generated with a constant heart rate of 60
bpm. Further sequence details are found in Table 1.

Phantom Data Analysis

T1 in each phantom was measured from the provided
inline T1 maps of MOLLI within a 3.1 cm2 ROI. T2*
from the sGRE sequence was determined from the
acquired magnitude images, by a two-parameter monoex-
ponential fit of the pixel-mean using a near-identical
ROI compared to the one used for T1 measurements
(ROI position was approximated due to subtle differen-
ces in resolution). The Nelder Mead Simplex algorithm
(21) was used for nonlinear optimization and the initial
starting values were obtained from the WLSL method
(10). T2* from the two mGRE sequences were deter-
mined from the same 3.1 cm2 ROI using inline MLE
maps (18,23) and ADAPTS. The number of pixels within
the ROIs for T2* estimation in phantoms was similar to

1720 Bidhult et al.



the typical number of pixels in ROIs for heart and liver
in the patient study.

Patient Study

Twenty-three patients (15 male; median age, 18 years;
range, 1–69 years) with known or suspected iron load
disease were included in this study. Written consent
was given by the patients or, in case of minors, their
guardians. MR images for determination of T2* values
were collected as part of routine clinical iron load
assessment.

Patient Imaging

For patient imaging, clinical mGRE sequences were used
with a 5- or 32-channel cardiac coil in two centers. Two
similar sequences were used, one optimized for cardiac
and one for liver imaging (Table 1). The two sequences
differed in initial TE (2.5 ms versus 1.2 ms), and TE incre-
ment (2.5 ms versus 1.5 ms). Both sequences used the gen-
erally available SPIR fat suppression and minor parameter
changes were allowed to adapt for patient heart rate and
field of view (FOV). Fat suppression was applied to avoid
impact of fat on T2* quantification, especially in the liver,
since previous work has indicated improved precision
using fat suppression in mGRE imaging (24).

To assess cardiac iron a mid-ventricular slice was
acquired using the clinical cardiac sequence. A black-
blood double-inversion recovery (DIR) prepulse was

used to decrease measurement error induced by blood
contamination, and to enhance myocardial borders (25).
Images were acquired within a single breath-hold using
parallel imaging factor 2 (SENSE) to improve image reso-
lution. Acquisition was carried out at end-diastole
within a time window of approximately 110 ms per
heartbeat. To assess liver iron, a midhepatic transversal
slice was acquired using the clinical liver sequence.

Online reconstruction of T2* maps from an inline
MLE method (18,23) was automatically performed for
comparison with inter- and intraobserver variability of
ADAPTS. Furthermore, T2* determined from ADAPTS
and MLE in patients were directly compared as a proxy
to the reference standard sGRE sequence, based on the
results from the phantom validation.

Patient Data Analysis

Data were anonymized and randomized for blinded anal-
ysis. The ROIs were manually drawn at two occasions,
by two observers (14 years and no previous MR experi-
ence, respectively) for analysis of intra- and interobserver
variability, also accounting for user experience.

The ROIs were drawn in the acquired images for evalu-
ation of T2* in full thickness myocardial septum and in a
homogenous area of the liver parenchyma, anteriorly if
not prevented by vessels or susceptibility artifacts. These
exact ROIs were copied to the inline-constructed MLE
T2* map to avoid measurement differences related to ROI
delineation. The MLE image was reconstructed from the

FIG. 2. Accuracy and precision in numerical simulations. Solid lines indicate the M2NCM method and dashed lines show ADAPTS.
Number of simulated coils are color-coded. The upper panels show Accuracy in terms of mean differences between true T2* values,
shown on the x-axes. The lower panels show CIs from all simulation experiments (2000 repetitions), for each simulated T2* value. Within

the clinically relevant range, the proposed method results in high accuracy and precision. The gradual decrease in precision with
increasing T2* is most likely attributed to lack of available data-points above 25 ms and 20 ms for cardiac and liver TEs, respectively,

and is also seen in the near-optimal noise-corrected method. Simulated ROI size was 40 pixels.

T2* Algorithm for Iron Load Determination 1721



very same acquisition as the ADAPTS analysis. To assure
adequate ROI placement for both ADAPTS and MLE the
curve fit using ADAPTS was visually inspected and the
ROI redrawn in case of obvious incorrect placement. Soft-
ware advice based on CoV for re-evaluation of delineation
was also considered. Motion correction was not per-
formed in the current study, as motion between images
acquired within the same breath-hold was not detected.

Statistics

Statistical analyses were performed in MATLAB
(v8.1.0.604, Mathworks). By default, statistical measures
for the patient study were obtained from the experienced
observer. Bias and variability are presented as mean-
6 1.96 SD and median (range) was used where appropri-
ate. Bland-Altman analysis (26) was used to compare
methods and to analyze intraobserver and inter-observer
variability in the patient study. Accuracy was defined as
the obtained bias compared with a reference standard
and the 95% CI was used to measure precision. In this
study, CI is reported as the size of the 95% CI. A P-val-
ue< 0.001 was used to define statistical significance.

RESULTS

Numerical Simulations

Results from the simulation study are shown in
Figures 2–4. Accuracy and precision for ADAPTS and
the two-parameter M2NCM method is found in Figure 2.
The mean differences between ADAPTS and true T2* for
TEs corresponding to the cardiac and liver clinical
sequences ranged from 0 to 0.73 ms and 0 to 0.40 ms. In
both cases, the largest mean difference was found in the
32-coil simulation. Precision in terms of the 95% CI
ranged from 0.08–4.30 ms for the cardiac TEs and 0.06–
4.74 ms for the liver TEs. Mean differences for the
two-parameter M2NCM method ranged from 0 to 0.04 ms
for the cardiac and 0 to 0.10 ms for the liver TEs. For
M2NCM, the maximum mean difference was found for
the single-coil simulation. CIs were 0.05–1.97 ms and
0.02–2.27 ms for the cardiac and liver sequences. An
increase in bias was observed for the ADAPTS method
when the number of simulated coils increased. Precision
was improved when the number of simulated coils were
increased. Supporting Figure S1, which is available
online, shows bias and CIs of the optimized parameters

FIG. 3. Box-whiskers plots of the ADAPTS uncertainty estimate validation in simulations (top row) and repeated phantom measurements

(bottom row). Simulations: 2.5% (bottom whiskers) and 97.5% (top whiskers) confidence limits from 2000 ADAPTS CI estimates in
numerical simulations compared with the CIs obtained from the 2000 repetitions, shown as crosses directly to the right of each corre-
sponding CI estimate. Boxes indicate first and third quartiles of the CI estimates and the horizontal line splitting the boxes shows the

median. Note that the CI references (crosses outside boxes) all lie well within the confidence limits of the ADAPTS CI estimates for the
simulated T2* values. Simulated ROI size was 40 pixels. Phantom study: 2.5% (bottom whiskers) and 97.5% (top whiskers) confidence
limits from 120 ADAPTS CI estimations in repeated phantom scans, compared with the CIs calculated over all 120 repetitions (crosses

directly to the right of the corresponding CI estimates). Limited overestimation and underestimation of CIs are observed.
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P1 and P2 in simulations. P2¼ 9 was selected as optimal
parameter value. A comparison of accuracy and preci-
sion for ADAPTS and the two implemented signal mod-
els for the liver sequence TEs is shown in Figure 4. The
two-parameter truncation method resulted in a limited
but constant overestimation of T2* over the simulated
range, while bias was minimal for the noise correction
method for T2* below 20 ms. For T2* values above the
maximum TE, an increasing underestimation was
observed for the noise correction method.

The simulation results for ADAPTS uncertainty esti-
mates are shown in Figure 3. Four percent was selected
as the optimal subregion size, resulting in a mean
bias and CI of 0.02 ms and 0.30 ms for all simulated
ROI-sizes. For all simulated T2* values, and TEs, the CI

reference standard lies within the 2.5% and 97.5% confi-
dence limits of the 2000 uncertainty estimates and the
largest observed mean bias between the CI estimate and
the CI reference was 0.10 ms. Supporting Figures S2 and
S3 shows bias and CIs of the uncertainty estimate over
varying ROI- and subregion-sizes. A consistent improve-
ment in precision (CI) was observed when decreasing the
subregion size.

Phantom Study

The T2* and T1 ranges of the 12 phantoms were 2.20–
40.24 ms and 470–1012 ms according to the T2* refer-
ence standard (sGRE) and MOLLI T1. T1 values are in
the range of myocardial tissue. T2* of the six phantoms

FIG. 4. Parameter optimization from phantoms (left column and bottom table) and simulated optimal parameters of the ADAPTS method
for the liver sequence TEs (right column). Parameter optimization: Top row shows how varying ADAPTS two parameters impacts bias,
defined here as the mean difference between ADAPTS and the inline MLE method. Bottom row shows precision, measured as the CI

size of 120 phantom measurements over different parameter values, together with the list of evaluated parameters. In both top and bot-
tom rows, solid lines indicate measurements performed for the cardiac sequence and phantoms and the dashed lines indicate measure-

ments from the liver sequence and phantoms. Circles show the selected parameter set used in the remaining parts of this study. The
results indicate a robustness to variations in parameters above a threshold of approximately P1>3. Right column compares accuracy
and precision of the optimized ADAPTS method with the two included signal models (truncation and noise-correction) individually in

simulations. The solid lines indicates the two-parameter truncation method, the dashed line shows the three-parameter noise correction
method and the dotted line shows ADAPTS using the optimized parameter values. The optimized ADAPTS method balances low bias

with maintained precision over the simulated T2* range. The shown simulations use TEs from the liver sequence, a SNR of 15, a ROI-
size of 40 and uses RSS reconstruction with six receive-coils. The list of evaluated parameter values (bottom table) indicates the
selected values of P1 and P2 with an underlined bold font.
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used to evaluate precision was 2.3, 3.9, 7.2, 7.7, 13.2,
and 18.3 ms, obtained from the inline MLE method. The
results from the phantom validation of ADAPTS uncer-
tainty estimates for both clinical sequences are shown in
Figure 3 (bottom row). The maximum observed differ-
ence between ADAPTS uncertainty estimate and the ref-
erence CI (from 120 repetitions) was limited to 0.58 ms
for the cardiac sequence, and 0.27 ms for the liver
sequence.

The results from the parameter optimization of

ADAPTS are shown in Figure 4. The selected parameter

set was number 63 (P1¼ 4.5 and P2¼ 9), where precision

in terms of the range of obtained CIs was 0.49–1.36 ms

and 0.29–1.60 ms for the six phantoms used for preci-

sion evaluation for the cardiac and liver sequences,

respectively. The ADAPTS and MLE results from the

phantom validation of accuracy for both the cardiac and

liver sequences are shown in Figures 5 and 6. For the

cardiac sequence, bias and variability (expressed as lim-

its of agreement) for ADAPTS was 0.26 6 4.23 ms, while

MLE resulted in a bias and variability of 0.35 6 4.63 ms.

The liver sequence resulted in ADAPTS having bias and

variability of �0.23 6 1.69 ms, while bias and variability

for the MLE was �0.22 6 1.55 ms. The number of pixels

within the drawn ROIs ranged from 194 to 200 pixels.

Patient Study

All images and reconstructed T2* maps were of adequate
quality for determination of T2* in both heart and liver.
In one patient, however, the cardiac image quality was
visually suboptimal due to breathing artifacts, albeit
adequate for analysis, and was, therefore, included in
further analysis. In this patient we also found the largest
intraobserver difference of 3.96 ms (11%). The range of
cardiac and liver T2* was 9.6–51.2 ms and 0.6–25.0 ms,
respectively, using the ADAPTS method. The range of
obtained uncertainty estimates for the ADAPTS method,
expressed as coefficient of variation (the estimated stand-
ard deviation divided by the ROI T2* value), was 0.05–
0.46 for cardiac and 0.01–0.27 for liver measurements.
The number of pixels within the drawn ROI:s ranged
from 53–561 pixels for liver images and 44–358 pixels
for heart images.

T2* by the ADAPTS and MLE Methods

The ADAPTS and the MLE methods showed good agree-
ment determining T2*, resulting in a bias and variability
with limits of agreement of �1.28 6 2.19 ms for the car-
diac sequence; �0.13 6 0.38 ms for the liver sequence
and �0.71 6 1.94 ms for the cardiac and liver sequences

FIG. 5. Scatter plots (left) and

difference plots (right) of T2* by
ADAPTS (top) and MLE (bottom)

using the clinical cardiac
sequence, compared with the
T2* reference standard (sGRE) in

phantoms. Scatter plots: solid
lines indicate linear regression
and dashed lines represent iden-

tity lines. Difference plots: Solid
lines indicate bias and dashed

lines represent bias 6 1.96 SD.
T2* values by ADAPTS and MLE
using the clinical cardiac mGRE

sequence agree well with the ref-
erence standard sGRE over a

wide range of T2* values.
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combined (Fig. 7). T2* measured by the ADAPTS
method ranged from 0.60–51.2 ms, while the MLE
method ranged from 0.7�51.5 ms. A subtle trend toward
higher T2* values was found for the MLE method com-
pared with the ADAPTS method (Fig. 7) resulting in a
statistically significant linear-regression slope (P< 0.0001
for the null-hypothesis). However, poor goodness of fit
was found (r2¼0.43).

Intraobserver Variability

Low intraobserver variability was found for T2* determi-
nation by the experienced observer using both ADAPTS
(0.12 6 1.92 ms for the cardiac sequence, �0.06 6 0.63
ms for the liver sequence and 0.03 6 1.44 ms for both
sequences combined; Figure 8, top left panel) and the
MLE (0.20 6 2.39 ms for the cardiac sequence,
�0.12 6 0.65 ms for the liver sequence and 0.04 6 1.74
ms for both sequences combined; Figure 8, top right
panel). Intraobserver variability was low also for the
inexperienced observer using ADAPTS (0.01 6 2.63 ms
for the cardiac sequence, 0.31 6 1.94 ms for the liver
sequence and 0.16 6 2.33 ms for both sequences
combined; Figure 8, bottom left panel) and MLE
(0.06 6 2.66 ms for the cardiac sequence, 0.30 6 1.85 ms
for the liver sequence and 0.18 6 2.25 ms for both sequen-
ces combined; Figure 8, bottom right panel) methods.

Interobserver Variability

Interobserver variability was low for both methods. Good
agreement was found for both ADAPTS (limits of agree-
ment of 1.0 6 3.77 ms for the cardiac sequence,
�0.52 6 2.75 ms for the liver sequence and 0.24 6 3.62
ms for both sequences combined; Figure 9, left panel)
and MLE (limits of agreement of 1.17 6 4.16 ms for the
cardiac sequence, �0.53 6 2.90 ms for the liver sequence
and 0.32 6 3.88 ms for both sequences combined; Figure
9, right panel).

DISCUSSION

This study shows that the proposed automatic ADAPTS
method provides accurate and precise determination of
T2* in heart and liver for iron-load quantification in a
wide and clinically relevant range for use in an offline
setting. The ADAPTS method provides uncertainty
estimates of the calculated T2* value, which is of
importance to assess the reported T2* validity, especially
in follow-up studies and for titrating treatment. The pro-
cess of dividing pixels within the ROI into subregions to
estimate uncertainty is not unique for ADAPTS and can
be applied to most other T2* algorithms. However, vali-
dation both numerically and experimentally of such
uncertainty measurements are crucial for clinical utility.

FIG. 6. Scatter plots (left) and
difference plots (right) of T2* by

ADAPTS (top) and MLE (bottom)
using the clinical liver sequence

compared with the T2* reference
standard sGRE in phantoms.
Scatter plots: solid lines indicate

linear regression and dashed
lines represent identity lines. Dif-

ference plots: Solid lines indicate
bias and dashed lines represent
bias 6 1.96 SD. T2* values by

ADAPTS and MLE using the clin-
ical liver mGRE sequence agree
well with the reference standard

sGRE over a wide range of T2*
values.
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T2* determination by MRI is commonly used to esti-
mate iron load in patients and has been shown to pro-
vide good interscanner and interobserver reproducibility
(4,5). The requirement for manual interaction in some of
the current analysis methods adds a subjective factor
which, although often clinically insignificant in myocar-
dial T2* measurements (27), may present challenges in
liver T2* determination (9,19,28). Iron overload is usu-
ally first found in the liver (29). Therefore, accurate early

determination of liver iron load and treatment thereof
may prevent accumulation of iron throughout the body
and thus avert organ failure (30–32).

However, extremely low T2* values related to severe
iron load of the liver may give few usable data points
from the acquired images, due to current limitations in
hardware to further reduce TE. This may lead to incor-
rect iron-load assessment and possibly erroneous follow-
up of chelation therapy.

The automatic MLE method has been compared with
other available methods for iron-load determination,
showing good agreement but also superiority for lower
T2* values found in severe liver iron overload (19). By
removing the need for manual curve-fitting interaction,
the MLE method decreases user dependency. Using the
MLE method thereby allowed us to test ADAPTS’s valid-
ity in patients with reduced user bias. We found that
ADAPTS reports accurate T2* values with inter- and
intraobserver variability comparable to the MLE method,
and thereby can be reliably used, strengthened by phan-
tom validation with the sGRE reference standard. In
addition, ADAPTS was shown to have similar precision
as a near-optimal, noise correction method in numerical
simulations. Although ADAPTS resulted in increased
bias, the two-parameter M2NCM used the true noise
standard deviation generally unavailable to offline esti-
mation methods. Compared with a single simulated
receive-coil, bias was increased for 6 and 32 coils in

FIG. 8. Bland-Altman analyses of

intraobserver variability for the
experienced user for ADAPTS
(top left) and MLE (top right).

Corresponding analyses for the
inexperienced user (bottom row).

Good agreement was found
between all measurements.

FIG. 7. Bland-Altman analysis of ADAPTS and MLE in patients
measured by the experienced user. Good agreement was found.
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simulations. The observed increase in bias agrees with
the expected increase in noise bias for the noncentral chi
distribution present in the simulated RSS reconstruction
(12). This indicates that a slight sensitivity to noise-bias
remains for ADAPTS. However, the observed bias were
limited and converged when the number of coils
increased from 6 to 32. An increase in precision for both
T2* methods was observed when the number of coils
increased. The gain in SNR associated with increasing
the number of coils in RSS reconstruction may explain
this (33).

The T2* uncertainty estimate gives the user possibility
to evaluate the precision of measurement and helps
determine whether changes in iron load levels have
actually occurred between scans. This is especially
important in high liver iron load which has a very steep
T2* curve and where individual data points may have a
large impact on reported T2* values.

Over- and underestimation of the reference T2* CI
was observed in phantoms. This behavior was not seen
in the numerical simulations where the proposed uncer-
tainty estimate followed the reference CIs with low bias.
The images acquired in the phantom experiments may
include some degree of noise correlations between
receive-channels or adjacent pixels which could partly
explain the discrepancy. Furthermore, the uncertainty
estimate is sensitive to spatial variations in SNR and
T2*. This, however, may aid the user in ROI adjust-
ments by reporting elevated uncertainty in ROIs contain-
ing unwanted, heterogeneous T2* regions and noise
levels.

Noteworthy, with decrease in iron load a statistically
significant trend toward higher T2* values was found in
patients for the MLE method compared with the
ADAPTS. It remains to study why this happens, and
more importantly the clinical significance of these differ-
ences. A retrospective study in a large population with
biopsy samples available may help shed light on clinical
significance and impact of cutoff values for severity of
iron load.

Subtle differences were found between ADAPTS and
MLE for intra- and interobserver variability. The sam-

ple size was, however, too small for deductions of
increased performance in regards to user-dependency.
One major difference between MLE and ADAPTS is
the pixelwise fit performed by the MLE. This may, in
part, explain some of the observed discrepancies. Pre-
vious studies have shown decreased performance of
other pixelwise methods (27,34,35), however, investi-
gating the extent to which these findings are valid for
the MLE method is beyond the scope of this study.
Bias between observers and intraobserver variability for
the inexperienced observer using the ADAPTS method
were lower than previously published data (36). This
implies that ADAPTS may be straight-forward to
start using in centers with low experience of iron
load analyses, which may increase availability of iron
load determination using MR imaging, in turn leading
to enhanced patient care and further decrease of mor-
tality (37).

Limitations

A single-slice approach was applied for patient imaging
as this is clinical routine at one of the including centers.
The algorithm is, however, not restricted to single-slice
acquisition and can be extended to multislice analysis
where needed.

Simulations of spatially varying noise were not per-
formed. Future simulation studies using advanced MRI
pulse-sequence simulations (38) may provide improve-
ments in this regard.

CONCLUSIONS

ADAPTS is a validated automatic algorithm for T2*
determination providing accurate iron load measure-
ments over a wide range of clinically relevant T2* values
for the heart and liver. Uncertainty estimates of the
reported T2* allows more reliable determination of
changes in iron load at follow-up. To allow practical
utility of the method the software is freely available for
research purposes. Phantom data will be made available
upon request for algorithm benchmarking.

FIG. 9. Bland-Altman analysis of

interobserver variability using the
ADAPTS method (left panel) and

MLE (right panel). Good agree-
ment was found between the
experienced and inexperienced

observer.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Figure S1. Parameter optimization from simulations. Two near-optimal val-
ues of P1 was simulated over the entire range of P2 values. Left column
shows Confidence intervals (Top) and mean bias (bottom) for the simulated
parameter values for the cardiac sequence TEs and the right column shows
the corresponding plots for the liver sequence TEs. In all graphs, the solid
lines and dashed lines represent simulations using one and six coils,
respectively. The line marked with triangles indicates 32 simulated coils.
The dotted vertical line shows the selected parameter set, corresponding
to P1 5 4.5 and P2 5 9. A P1 value was selected by mainly considering sta-
bility, as shown in Figure 4.

Figure S2. Optimization of the uncertainty estimate in simulations with rela-
tive subregion sizes of 4–10%. Top row shows confidence intervals of the
uncertainty estimates in simulations and the impact of varying simulated
ROI-size and subregion size percentages. Bottom row shows Mean bias of
CI estimates with the left and right column showing the results from the
cardiac and liver sequence TEs, respectively. Decreasing subregion percen-
tages and increasing the ROI size improve precision of CI estimates. For
the liver sequence TEs, bias is consistently decreased when the subregion
size is reduced. The observed behavior is also seen in Supporting Figure
S3.

Figure S3. Optimization of the uncertainty estimate in simulations with rela-
tive subregions sizes of 12–25%. Top row shows confidence intervals of
the uncertainty estimates in simulations and the impact of varying simu-
lated ROI-size and subregion size percentages. Bottom row shows Mean
bias of CI estimates with the left and right column showing the results from
the cardiac and liver sequence TEs, respectively. Decreasing subregion
percentages and increasing the ROI size improve accuracy and precision
of CI estimates. The order of accuracy and precision among simulated sub-
region sizes is preserved over the evaluated ROI-size interval. This may
suggest that the relative percentages used to define the subregion size is
robust to changes in ROI size. The observed behavior is also seen in Sup-
porting Figure S2.
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