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Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide

protection against some TBFs, and antivirals are available, yet TBF-specific control

strategies are limited. Advances in genomics offer hope to understand the viral

complement transmitted by ticks, and to develop disruptive, data-driven technologies

for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis,

the North American tick vector of the TBF, Powassan virus, and other tick vectors, are

providing insights into tick biology and pathogen transmission and serve as nucleation

points for expanded genomic research. Systems biology has yielded insights to the

response of tick cells to viral infection at the transcript and protein level, and new

protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches

have moved candidate tick antigenic epitopes into vaccine development pipelines.

Traditional drug and in silico screening have identified candidate antivirals, and target-

based approaches have been developed to identify novel acaricides. Yet, additional

genomic resources are required to expand TBF research. Priorities include genome

assemblies for tick vectors, “omic” studies involving high consequence pathogens and

vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural

genomics of TBF and tick proteins. Also required are resources for forward genetics,

including the development of tick strains with quantifiable traits, genetic markers and

linkage maps. Here we review the current state of genomic research on ticks and tick-

borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for

research in the “omics era,” and explore key milestones needed to accomplish the goal

of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.
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INTRODUCTION

Ticks (subphylum Chelicerata, subclass Acari, suborder Ixodida) are ectoparasites of humans and
animals, and vectors of bacteria, protozoa, and viruses (Gulia-Nuss et al., 2016). Scientists have
documented more than 38 species of viruses comprising members of the families Asfarviridae,
Reoviridae, Rhabdoviridae, Orthomyxoviridae, Bunyaviridae, Flaviviridae, and possibly the
Arenaviridae that are transmitted by ticks (Labuda and Nuttall, 2004). Reports of tick-borne viruses
are increasing (Mansfield et al., 2017a,b), and new viruses are emerging such as the Heartland
and Bourbon viruses identified in the U.S.A. (https://www.cdc.gov/heartland-virus/index.html;
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https://www.cdc.gov/ncezid/dvbd/bourbon/index.html). The
geographic ranges of tick species are expanding (Medlock et al.,
2013), yet the implications for disease epidemiology are not well
understood. There is growing appreciation of the complexity of
the tick “microbiome,” defined as the complement of pathogens,
commensals and symbionts carried in or on a tick, variation at
spatial and temporal scale (Narasimhan and Fikrig, 2015; Van
Treuren et al., 2015), and the prevalence of tick co-infections
(Diuk-Wasser et al., 2016; Moutailler et al., 2016). Knowledge
regarding virus species transmitted by ticks is limited, and many
pathogenic viruses may go unnoticed or undiagnosed (Hubalek
and Rudolf, 2012; Lani et al., 2014). Research is now pivoting to
determine the complement of viruses acquired by ticks during
blood feeding, and the role of these viruses in pathogenesis,
with data-driven research likely to facilitate a precision medicine
approach to the diagnosis and treatment of TBFs.

Of the viruses transmitted by ticks, the tick-borne flaviviruses
(TBFs) are considered the most important affecting human
health globally. TBFs are transmitted by multiple species of
ixodid ticks in the families Ixodidae (hard ticks) and Argasidae
(soft ticks) (Table 1). In the past two decades there has been
a notable increase in the incidence of TBF disease (Lasala and
Holbrook, 2010). Among TBFs, tick-borne encephalitis virus
(TBEV) is regarded as one of the most dangerous human
neuroinfections in Europe and Asia where it causes between
10,000 and 15,000 human cases every year, respectively (Gritsun
et al., 2003a,b; Dobler, 2010; Rumyantsev et al., 2013). Other
members of the TBF complex of importance to public health
include Louping-ill virus (LIV) in the United Kingdom, Omsk
hemorrhagic fever virus (OHFV) in parts of Russia, Kyasanur
Forest Disease virus (KFDV) in parts of India, Alkhurma
hemorrhagic fever virus (AHFV) in Saudi Arabia, and Powassan
encephalitis virus (POWV), including deer tick virus Powassan
lineage II, the only human pathogenic TBF detected in North
America to date (Dobler, 2010).

Next generation sequencing (NGS) technologies have allowed
the generation of new resources for tick-borne disease research.
Genomics has enabled reverse genetics to identify tick proteins
and biochemical pathways that could be targeted to disrupt
virus transmission. The assembly of the Ixodes scapularis (black-
legged tick) genome (Gulia-Nuss et al., 2016), a vector of
POWV, is the first such resource for a tick and a nucleation
point for tick genome research. Draft genome assemblies are
available for the castor bean tick, Ixodes ricinus (Cramaro et al.,
2015), also a TBF vector, and for the southern cattle tick,
Rhipicephalus (Boophilus) microplus (Guerrero et al., 2006, 2010;
Barrero et al., 2017). These resources will enable investigations
of tick-pathogen relationships in a “genome-wide” context and
comparative genomic research between lineages comprising
major tick vectors. Progress in gene discovery for species of hard
and soft ticks has been extensive (Meyer and Hill, 2014), with an
emphasis on elucidating gene products associated with tick-host-
pathogen interactions. Whole genome computational analyses
have revealed duplication events involving large numbers of
genes in I. scapularis and other species of hard ticks that may
be associated with the evolution of parasitic strategies (Van Zee
et al., 2016). Transcriptome and proteome studies have examined

the molecular response of Ixodes cells to viral infection (Villar
et al., 2015;Weisheit et al., 2015; Grabowski et al., 2016;Mansfield
et al., 2017a) and functional analyses have investigated proteins
that exhibited differential expression post infection with virus
(Schnettler et al., 2014; Ayllon et al., 2015a; Weisheit et al., 2015;
Grabowski et al., 2017a).

Despite these achievements, there remain challenges to the
identification of protein targets for vaccine, drug, and acaricide
development. Deliberate investment in resources for forward and
reverse genetics with an emphasis on major tick vectors and
pathogenic virus strains is required. Metabolomics and structural
genomics represent new frontiers. When coupled with sequence-
based genetic mapping and tools for genetic transformation,
these fields have the potential to identify molecular targets and
guide the rational design of transmission blocking vaccines and
acaricides. The scope of genomic resources required is substantial
given the biological complexities of TBF transmission. Here we
present a 10-year roadmap for research to expand the arsenal
of TBF control technologies and deliver three new antiviral,
vaccine, and acaricide products by a proposed target date of
2030. The roadmap and associated milestones are intended as a
framework to guide discussions between the research community
and funding agencies. While ambitious, the importance of TBFs
necessitates commitment to strategic research priorities to ensure
the timely achievement of public health goals.

Tick-Borne Flaviviruses
TBFs are enveloped, positive-strand RNA viruses in the family
Flaviviridae that includes dengue (DENV), hepatitis C (HCV),
Japanese encephalitis (JEV), West Nile (WNV), and Zika (ZIKV)
viruses. Many TBFs cause significant human and animal disease
worldwide (Table 1) and are transmitted primarily via the
bite of an infected tick. In nature, TBFs are maintained in a
cycle between small mammal reservoirs and ticks. However,
the complex transmission cycles of many TBFs have not
been resolved and studies to incriminate tick species in virus
transmission are needed. Most TBFs are classified Biosafety-
level (BSL) 3 and 4 (Table 1). In humans, symptoms of TBF
infection range from febrile illness to more serious encephalitis
and hemorrhagic complications. Case fatality rates as high as
20% have been recorded for the most pathogenic TBFs (e.g.,
far-eastern form of TBEV). Multiple vaccines are available
in Europe for TBEV, although no TBF-specific antivirals or
transmission-blocking vaccines have been developed. At present,
TBF treatment and prevention options are considered lacking
(Lani et al., 2014).

The focus of tick-borne disease research is shifting from a
“one pathogen-one disease” mindset toward an understanding
of disease in the context of the “pathobiome” (Vayssier-
Taussat et al., 2015). Genomic studies have emphasized high
consequence pathogens and their impact on the human host, as
well as flavivirus biodiversity and evolution, but there is need
to determine the complement of virus species that circulate
in host and reservoir populations. NGS involving 454 and
Illumina-based 16S rRNA pyrosequencing has been used to
explore bacterial communities associated with I. ricinus (Carpi
et al., 2011), I. scapularis (Van Treuren et al., 2015), and
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TABLE 1 | Summary of tick-borne flaviviruses associated with disease in humans, geographic location, proposed tick vectors and vaccine approaches.

TBF/Subtypes Species of ticks that
serve as potential vectors

Estimated no. human
cases per annum

Geographic distribution Vaccine(s) available Biosafety level in USA

Kyasanur Forest

Disease Virus (KFDV)

Hemaphysalis spinigera

Hemaphysalis turturis

400–500a India Noh 4

Alkhurma Hemorrhagic

Fever Virus (AHFV)

Ornithodoros savignyi

Hyalomma dromedari

77b Arabian Peninsula No 4

Omsk Hemorrhagic

Fever Virus (OHFV)

Dermacentor reticulatus

Dermacentor marginatus

Ixodes persulcatus

Ixodes apronophorus

24c Russia No 4

Tick-Borne Encephalitis

Virus (TBEV)

European/Western

Siberian

Far-eastern

Hemaphysalis concinna

Hemaphysalis punctata

Dermacentor reticulatus

Ixodes ricinus

Ixodes persulcatus

10,000-15,000d Europe and Asia Yes 4

Powassan Virus

(POWV)

Haemaphysalis longicornis

Dermacentor andersoni

Ixodes marxi

Ixodes cookei

Ixodes scapularis (for POWV

lineage II: deer tick virus)

5e North America and Russia No 3

Louping Ill Virus (LIV) Ixodes ricinus No confirmed cases

since early 1990sf
United Kingdom No 3

Langat Virus (LGTV) Ixodes granulatus

Hemaphysalis papuana

Unknown; cases

recorded only during

use of virus in

anti-TBEV vaccination

trialsg

Southeast Asia No 2

Kyasanur Forest disease virus, KFDV; Alkhurma hemorrhagic fever virus, AHFV; Omsk hemorrhagic fever virus, OHFV; Tick-borne encephalitis virus, TBEV; Powassan virus, POWV;

Louping ill virus, LIV; Langat virus, LGTV.
a (Holbrook, 2012; Kasabi et al., 2013; Lani et al., 2014; Grabowski et al., 2016).
b Average from 2009–2011 (Alzahrani et al., 2010; Memish et al., 2014).
c Average from 1946–2000 (Gritsun et al., 2003a; Grabowski et al., 2016).
d (Mansfield et al., 2009; Dobler, 2010).
e Average from 2000–2013 in USA (Paddock et al., 2016).
f (Jeffries et al., 2014).
g (Gritsun et al., 2003a,b).
h A vaccine is licensed and available in endemic areas of India (Holbrook, 2012; Kasabi et al., 2013).

Amblyomma americanum (Ponnusamy et al., 2014; Williams-
Newkirk et al., 2014; Trout Fryxell and DeBruyn, 2016).
Pyrosequencing of DNA enriched for bacteria/arachaea has also
been used to evaluate the microbiome of seven hard tick species
(Nakao et al., 2013). RNAseq revealed that the Flaviviridae
infect a wider range of invertebrate hosts and exhibit greater
diversity in genome structure than previously anticipated (Shi
et al., 2015), but the implications for pathogenesis remain
unclear. The relatively small size of TBF genomes (∼10–15Kb)
makes viral whole genome sequencing (WGS) feasible. Future
studies must emphasize viral metagenomics usingWGS to define
the viral phyla associated with ticks (Brinkmann et al., 2016).
Information from these studies will guide the development of
comprehensive, region-specific molecular diagnostic tools and
healthcare guidelines.

De-convoluting the systems biology of the tick bite—that
is determining the impact of virus, vertebrate host, and tick
genetics (i.e., genome-by-genome-by-genome or GxGxG studies)
on pathogenesis, is a priority. The diagnosis and treatment of
tick-borne disease could be advanced by considering each tick
bite as a “unique” molecular encounter between tick salivary

proteins, the microbial flora delivered by the tick and host
factors produced at the feeding wound (Figure 1). Molecular
analyses support a human genetic component to the severity of
TBF disease. Complete genome sequencing identified amino acid
residues associated with severity of the Far-Eastern subtype (FE)
strains of TBEV isolated from patients with encephalitic (Efd),
febrile (Ffd), and subclinical (Sfd) forms of the disease (Belikov
et al., 2014). Molecular studies revealed polymorphism in the
salivary proteins secreted by individual unfed and feeding ticks
(Wang et al., 2001), and specific combinations of vector and virus
genotype were reported to affect vector competence (Lambrechts,
2011; Fansiri et al., 2013).

Control of TBFs
Options to control TBFs (summarized in Figure 2) are limited
and rely largely on personal protective measures, acaricides,
vaccines against TBEV, and management of the symptoms of
infection. Treatment of TBF infections in the human population
focuses on palliative care and management of complications.
There are currently no chemotherapies developed against TBFs.
Viral infection may be treated with the antivirals (ribavirin,
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FIGURE 1 | Schematic depicting the concept of the “systems biology” of a

tick bite. Each tick bite (A) comprises a unique combination of host-derived

factors, tick salivary proteins and the microbial flora delivered to the feeding

site (B), thus underpinning the need for “personalized” approaches to

pathogen detection and treatment. (A) reproduced from Figure 1 of

Gulia-Nuss et al. (2016) and reprinted by permission from Macmillan

Publishers Ltd. ©copyright 2016.

realdiron, larifan, and rifastin) developed to control a variety
of human viral pathogens. Clinical studies to determine the
effectiveness of these chemotherapies against TBF infection
(Loginova et al., 2002; Lani et al., 2014) could have value.

Protective human vaccines are available for TBEV and KFDV.
Currently, five products are considered safe and efficacious
for protection against TBEVs. These are FSME-Immun and
Encepur, manufactured in Austria and Germany respectively,
and based on European strains of the virus, TBEV-Moscow, and
EnceVir manufactured in the Russian Federation and based on
FE strains (WHO), and the SenTaiBao vaccine manufactured in
China (Xing et al., 2017) and also based on the FE subtype.
These inactivated vaccines require multiple doses to induce
and maintain immunity. The development of novel and more
effective vaccines remains a high priority (Wang et al., 2016).

There is broad interest in transmission blocking vaccines for
control of tick-borne diseases (reviewed below), although there
are currently no products registered to prevent transmission
of TBFs. The candidate 64TRP transmission blocking vaccine,
based on a recombinant form of the 15 kDa cement protein of
the African brown ear tick, Rhipicephalus appendiculatus, was
associated with a reduction in TBEV transmission and disease
in an in vivo mouse model (Labuda et al., 2006) and could have
potential as a broad-spectrum anti-tick vaccine (Trimnell et al.,
2005; Havlikova et al., 2009).

Acaricides are used to control ticks of public health and
veterinary importance. Unfortunately, continued tick control
is complicated by widespread resistance of tick populations to
several classes of acaricides, most notably organophosphates
(OPs) and carbamates (George, 2000; George et al., 2004; Abbas
et al., 2014). The situation is most acute with respect to R.
microplus. Large-scale application of chemicals has been effective
(Ostfeld et al., 2006) for tick control in urban, rural and
recreational areas but can also contribute to resistance and
effects on vertebrates and other non-target species. Microbial
insecticides based on the fungi Metarhizium anisopliae and
Beauveria bassiana have been proposed as environmentally
benign alternatives (Benjamin et al., 2002; Hornbostel et al., 2004,
2005; Ostfeld et al., 2006), and other “green” technologies are
under consideration (Benelli et al., 2016). Insecticides based on
plant-derived extracts are attracting attention as new classes of
tick repellants and toxicants, and are the subject of ongoingmode
of action studies (Gross et al., 2015, 2017).

Approaches to reduce transmission via management of either
the vertebrate reservoir or the tick vector have been investigated.
In the U.S., the topical application of acaricides delivered via
baited applicators reduced densities of hard ticks on deer and
small rodents in the field (Pound et al., 2000; Brei et al., 2009;
Carroll et al., 2009; Miller et al., 2009). However, logistics and
cost, including the need for constant maintenance of baited-
field devices, suggest lack of feasibility at broader scale (Harmon
et al., 2011). Passive acaricide applicators remain an option to
reduce local tick burden when used in combination with other
tick control strategies.

Prospects for TBF-Protective and Anti-Tick
Vaccines
Vaccines offer a cost-effective, sustainable, and environmentally
friendly approach to control of arthropod-borne diseases, and
in combination with drugs and insecticides, are the backbone
of global disease control and eradication campaigns. Existing
and developmental products suggest prospects for novel anti-
TBF vaccines. Effective human vaccines for the prophylaxis of
yellow fever (17D live attenuated virus), JEV (live attenuated
and inactivated whole virus), and TBEV (inactivated whole
virus; Heinz and Stiasny, 2012) are available. The live attenuated
Dengvaxia R© product developed by Sanofi Pasteur provides
moderate protection against DENV1-4 strains and is approved
for use in 11 countries. Efforts are also underway to develop
vaccines against ZIKV (Abbink et al., 2016; Marston et al.,
2016). Chimeric, recombinant, attenuated vaccines for TBEV
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FIGURE 2 | Options for control of tick-borne flaviviruses (TBFs). Common approaches for control of TBFs and examples of commercially available products are

shown. DEET, N,N-Diethyl-meta-toluamide; OP, Organophosphate; POWV, Powassan virus; PPE, personal protective equipment; SP, Synthetic pyrethroid, TBEV,

tick-borne encephalitis virus. The images of human, mouse and tick indicate the dead-end (human) host, non-human vertebrate reservoir and arthropod vector, as

appropriate for virus in question.

have been investigated (Pletnev and Men, 1998; Pletnev et al.,
2001; Wang et al., 2016). Live attenuated TBEV vaccines based
on a replication-defective (single-cycle) flavivirus platform that
provide efficacy after a single dose may be feasible (Rumyantsev
et al., 2013). The development of recombinant, live vaccine
candidates incorporating microRNA (miRNA) sequences may
increase the effectiveness of live anti-TBF vaccines (Tsetsarkin
et al., 2016, 2017). However, optimism for vaccine development is
tempered by the theoretical risk of vaccine-related adverse events
such as immune enhancement of infection and the requirement
to induce a long-lasting protective immune response against
multiple serotypes (Heinz and Stiasny, 2012).

In addition to novel anti-TBF vaccines, options may exist
to “repurpose” existing vaccines and exploit cross reactivity
for control of multiple virus species. Several studies suggest
that TBEV vaccines may provide cross protection against
other members of the TBF complex. There is evidence that
immunization with the European/Western-based TBEV vaccine
can reduce OHFV infection in mice and humans (Chidumayo
et al., 2014), while immunization with the Russian-Spring-
Summer Encephalitis virus (RSSEV) form of the TBEV vaccine
was associated with a reduction in KFDV infection in mouse
models (Aniker et al., 1962; Holbrook, 2012). Unfortunately,
preliminary human vaccination studies with the RSSEV-based
anti-TBEV vaccine suggested insufficient protection against
KFDV (Pavri et al., 1962; Shah et al., 1962; Holbrook, 2012).
Similarly, vaccination of mice with the TBEV-Moscow strain did

not protect against POWV (Chernokhaeva et al., 2016; Doughty
et al., 2017), suggesting limited potential for cross protection.

Anti-tick vaccines represent an effective and environmentally
benign approach to control ticks and the pathogens they transmit
(de la Fuente et al., 2016). The vaccines TickGARD and
Gavac used to control R. microplus, a serious pest of cattle in
the southern hemisphere and the vector of bovine babesiosis,
are based on the Bm-86 midgut protein antigen of the tick.
During tick feeding on an immunized host, the ingestion of
host immunological factors is thought to induce lysis of tick
midgut cells, thus reducing feeding and ultimately tick burden
(Willadsen et al., 1989; Willadsen and Jongejan, 1999; Valle et al.,
2004; Londono-Renteria et al., 2016). There is need to explore
the potential of TickGARD and Gavac to reduce tick infestations
on other vertebrate hosts. Vaccination against recombinant Bm-
86 has been suggested as a strategy to reduce R. microplus
infestations in white-tailed and red deer (Carreon et al., 2012),
but there remain questions as to feasibility. TickGARD reduced
transmission of TBEV from infected I. ricinus ticks to mice, but
did not provide protection against infection (Labuda et al., 2006).
TickGARD and/or Gavac may have efficacy against other vectors
of TBFs, although cross-species activity has not been determined
(Londono-Renteria et al., 2016). The 64TRP candidate may
have potential as a vaccine to prevent TBEV transmission;
mice immunized with the recombinant protein and exposed to
infected I. ricinus were protected against lethal challenge with
TBEV (Labuda et al., 2006) but the potential scope of protective
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immunity provided by the vaccine (i.e., the tick species and TBFs
controlled) requires investigation.

Strategies for de novo development of anti-tick vaccines are
under investigation. Vaccines against concealed or exposed tick
antigens could reduce TBF pathogen load in vector and reservoir,
host exposure to ticks, and tick populations (Nuttall et al., 2006;
de la Fuente and Merino, 2013). Theoretically these products
could be delivered via the vertebrate host (e.g., via oral bait to
wildlife or by vaccination of humans and domestic animals).
Proteins associated with feeding, reproduction, development,
immune response, subversion of host immunity, and that are vital
for pathogen infection and transmission have been suggested as
candidate protective antigens (Contreras et al., 2016). Multiple
recombinant tick proteins are under investigation as candidates
for vaccines to control ticks and are described in recent reviews
(de la Fuente and Contreras, 2015; de la Fuente et al., 2016).
The aquaporin trans-membrane proteins involved in transport
of solutes and water, ferritin 2 (Fer2) iron regulating proteins and
64TRP are considered some of the most “promising” candidate
antigens (Hussein et al., 2015; de la Fuente et al., 2016). These
proteins are associated with a variety of physiological functions;
in challenge studies they provided protection against multiple
species of ticks, and the potential for immunogenic protection
against pathogen transmission is now under investigation.
Combinatorial products have also been proposed that would
deliver multiple antigens to control transmission of several
pathogens (de la Fuente et al., 2016).

High-throughput vaccine discovery platforms have been
proposed. Transcriptomic and proteomic data provide a starting
point for identification of candidate protective antigens from I.
scapularis (Contreras et al., 2016). Bioinformatics-based reverse
vaccinology approaches (i.e., in silico predictions of antigenic
epitopes based on ab initio gene models or “omics” datasets) are
described in a recent review (Lew-Tabor and Rodriguez Valle,
2016).

Prospects for TBF Antivirals
Some progress has been made toward the development of
antivirals (Patkar and Kuhn, 2006). Nucleoside analogs have been
studied for control of arthropod-borne flaviviruses (Yin et al.,
2009) and could help to expand the toolbox of small molecule
inhibitors of TBEV. Structure-activity relationship (SAR) studies
have identified nucleoside moieties that may inhibit entry
of the virus to the host cell or interaction with the non-
structural protein 5 methyltransferase and the RNA-dependent
RNA polymerase domains of TBEV (Orlov et al., 2017). Drug
“repurposing” could expand chemical control options for TBFs.
The NITD008 adenosine analog active against mosquito-borne
flaviviruses and POWV (Yin et al., 2009) exhibited antiviral
activity against KFDV, AHFV, and OHFV in vitro, while the
BCX4430 analog suppressed WNV, TBEV, LIV, and KFDV in
vitro, suggesting the potential to suppress “pan-flaviviral activity”
(Lo et al., 2016; Eyer et al., 2017).

Small molecule chemistries that target the envelope proteins
(E proteins) of TBFs have potential as antivirals (Zhou et al.,
2008; Mayhoub et al., 2011a,b). E proteins are involved in virus
infection of the host cell, and virus assembly and morphogenesis.

The crystal structure of the soluble ectodomain of the DENV
type 2 E protein revealed a hydrophobic pocket lined by residues
that influence the pH threshold for virus fusion with host
cells. Features of the pocket point to a structural pathway for
the fusion-activating transition and a mechanism that could
be targeted by small-molecule inhibitors of flaviviruses (Modis
et al., 2003). The phenylthiazole ring system has emerged as a
template for design of antivirals. Virtual screening of the National
Cancer Institute (NCI) drug database combined with medicinal
chemistry strategies identified small molecules that may be active
at this target (Li et al., 2008). Analogues that preserve antiviral
activity while reducing adverse effects could provide a new class
of antivirals against TBFs.

Prospects for Novel Acaricides
Insecticides are effective tools for control of vector-borne
diseases. Unfortunately, widespread resistance among pest
populations represents a threat to continued disease control.
The identification of pesticide chemistries that operate via novel
modes of action (MoA) by binding at alternative sites on existing
insecticide targets) or via disruption of novel molecular targets in
the arthropod, is a high priority (Van Zee and Hill, 2017). Disease
control is expected to rely on insecticides for the next several
decades and new acaricides that operate via targets distinct from
acetylcholinesterase (the main target of OPs and carbamates)
and the voltage-gated sodium channel (the main target of SPs)
are sought. The Innovative Vector Control Consortium (IVCC)
has issued a call for three new MoA insecticides by 2023 to
control mosquito vectors of malaria (Hemingway et al., 2006).
We suggest that a similar challenge would also be appropriate for
control of ticks and TBFs.

The availability of genome data permits target-based
approaches to acaricide discovery. For example, the “genome-
to-lead” approach (Meyer et al., 2012) was employed to identify
small molecule antagonists of an I. scapularis dopamine
receptor (DAR). The target was selected from several hundredG
protein-coupled receptors (GPCRs) predicted from the IscaW1.1
assembly (Gulia-Nuss et al., 2016). High throughout chemical
screening (HTS), followed by “hit-to-lead” and structure-activity
studies (SAR) were used to discover several chemistries with
high in vitro potency for the receptor (Meyer et al., 2011; Ejendal
et al., 2012) that may provide leads for new pesticides. Research
has also focused on pharmacological characterization of the R.
microplus octopamine receptor, a suspected target of botanical
insecticides (Gross et al., 2015, 2017), and an I. scapularis ligand-
gated chloride channel considered the target of ivermectin
(Gulia-Nuss et al., 2016). These proteins could be used in small
molecule screens and targeted by genetic control strategies based
on dsRNA/siRNA-mediated RNAi knock-down or Crispr/Cas9
knock out, although protocols for efficient tick transformation
would be required for success of the latter.

Tick-Virus “Interactomics”; Understanding
Pathogenesis, and Identifying New Vaccine
and Acaricide Targets
The identification of protein targets is a major roadblock to
development of novel anti-TBF and transmission blocking
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vaccines and acaricides; it is here that “omics” research may
have greatest impact. Genomics has aided understanding of
tick-pathogen interactions and rapid identification of multiple
candidate protein targets en-masse. Systems biology studies
have identified metabolic pathways and enzymes perturbed
during viral infection of cells. These studies could help to
pinpoint proteins critical to cellular invasion, replication,
and transmission of the virus. Transcriptomic and proteomic
analyses have focused on the mosquito-DENV (Behura et al.,
2011; Bonizzoni et al., 2012; Chauhan et al., 2012; Chisenhall
et al., 2014) and tick-Anaplasma phagocytophilum (bacterium
that causes human granulocytic anaplasmosis) (Ayllon et al.,
2015b; Villar et al., 2015; Alberdi et al., 2016; Cabezas-Cruz
et al., 2017) “interactomes”. The limited concordance between
these studies highlights the value of equivalent research in
tick-virus systems.

Several transcriptome and proteome studies have analyzed
the global response of tick cell lines to infection with TBFs
and identified protein candidates for vaccine and acaricide
development (Weisheit et al., 2015; Grabowski et al., 2016,
2017a). These studies were conducted using TBEV or the less
pathogenic Langat virus (LGTV; Table 1; McNally et al., 2012;
Weisheit et al., 2015; Grabowski et al., 2016). The involvement
of multiple biochemical pathways was suggested following viral
infection, with perturbation of pathways for protein folding and
degradation, and metabolic processes (Figure 3). Some of these
pathways have also been implicated in studies of mammalian
cells exposed to HCV, DENV, and JEV (Table S1), suggesting the

involvement of common cellular responses to flavivirus infection
and potential for vaccines with cross-protective immunity.
Metabolic pathways have also been investigated in studies of
other host-flavivirus (Diamond et al., 2010; Perera et al., 2012;
Fischer et al., 2013; Merino-Ramos et al., 2015) and tick-
pathogen (Cabezas-Cruz et al., 2017) systems. Proteomic and
metabolomics studies also have the potential to uncover proteins
and pathways that are unique to the infectious state, an area of
research that deserves further attention.

RNAi was used to investigate the role of tick proteins in
LGTV infection of the ISE6 cell line derived from I. scapularis
(Grabowski et al., 2017a) (Figure 3, Figure S1). Results suggest
involvement of proteins that mapped via in silico methods
to pathways for amino acid, carbohydrate, lipid, cofactor
and vitamin, terpenoid, and polykeytide metabolism. Proteins
associated with processing in the endoplasmic reticulum (ER)
may also function to facilitate or suppress virus infection
(Figure 3, Figure S2; Weisheit et al., 2015; Grabowski et al.,
2017a). Future work must distinguish metabolic changes
associated with direct manipulation of the host cell by the virus
versus the generalized cellular stress response. The involvement
of orphan proteins reported in LGTV infected I. scapularis ISE6
cells (Grabowski et al., 2017a), highlights the need to characterize
“hypothetical” proteins predicted by “omic” studies.

One priority is to understand the biology of TBFs in the
context of the tick tissues and cells associated with primary
and secondary cycles of virus infection and replication. In
vivo studies have validated several protein targets in tick

FIGURE 3 | Enzymes and biochemical/metabolic pathways associated with the infection and replication of the tick-borne flavivirus, LGTV (Weisheit et al., 2015;

Grabowski et al., 2017a). RNAi-induced knockdown of transcripts for proteins identified to (A) the pantothenate and CoA biosynthesis, and TCA cycles, and (B)
Protein folding and degradation processes was associated with reduced LGTV infection in Ixodes scapularis ISE6 cells. Viral infection was assessed by the end points

of viral genome replication and infectious virus release. Biosynthetic pathways (teal or blue rectangles), protein states (gray shaded rectangles) and enzymes/proteins

(magenta or green rectangles) are shown. VNN and ACAT1 reduced LGTV genome replication and viral replication, while ALDH, MDH2, and FAH reduced LGTV

replication only. HSP90B (ISCW022766); ERP29 (ISCW18425); HSP1_8 (ISCW024057, ISCW024910); VNN, (ISCW004822); ACAT1 (ISCW016117); ALDH

(ISCW015982); MDH2 (ISCW003528); FAH (ISCW020196). ACAT, acetyl-CoA acetyltransferase; ALDH, aldehyde dehydrogenase; ER, endoplasmic reticulum; ERAD,

endoplasmic reticulum-associated degradation; ERP29, endoplasmic reticulum protein 29; FAH, fumarylacetoacetate hydrolase; HSPA1_8, heat shock protein 70

family A members 1-8; HSP90B, heat shock protein 90 beta family; MDH2, malate dehydrogenase 2; TCA, tricarboxylic acid.
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tissues and whole ticks (Narasimhan et al., 2004; de la Fuente
et al., 2005; Karim et al., 2010; Kocan et al., 2011). Electron
tomography studies have investigated the three-dimensional
architecture of structures derived from host cell membranes
that form during DENV infection and replication in mosquito
and human cells (Junjhon et al., 2014), and multiple studies
suggest virus manipulation of host lipid pathways and cellular
membranes (Heaton et al., 2010; Perera et al., 2012; Jordan
and Randall, 2016). Similar studies have been performed in
tick cells exposed to TBFs (Senigl et al., 2006; Offerdahl et al.,
2012; Hirano et al., 2014; Bily et al., 2015) and investigations
focused on tissues such as the midgut and salivary glands are
needed. TBF infection and spread has been demonstrated in
short-term culture of I. scapularis organs, providing a platform
for tissue-specific studies of virus infection (Grabowski et al.,
2017b). Phosphorylation and acetylation of host proteins has
been associated with viral infection (Liu et al., 2014; Jeng et al.,
2015; Oberstein et al., 2015; Ohman et al., 2015). Metabolomic
studies are expected to improve understanding of how post-
translational modification (PTM) of host proteins affects viral
replication and transmission, consider another area of research
priority.

Review of tick-virus “interactome” studies reveals several
gaps and impediments to the research goals outlined in this
manuscript. Firstly, “omic” research must expand beyond the
Ixodes-TBF model to other tick-TBF systems (see Table 1),
emphasizing major vectors and high consequence pathogens.
Unfortunately, the biosafety level of the more pathogenic TBFs
such as TBEV and POWV restricts research to institutions
with appropriate containment facilities. To ensure that data
are relevant in a biological context, the field must develop
community resources and in vivo, ex vivo, and in vitro research
tools reflective of the vector species and viruses involved.
Multiple tick cell lines derived from vectors of TBFs are available
for in vitro studies via the Tick Cell Biobank (Bell-Sakyi et al.,
2007) and in-bred laboratory colonies of ticks competent for
TBF transmission must be established. To provide frameworks
for resource development, the role of tick species in virus
transmission must be addressed via natural history and vector
incrimination studies (Nuttall and Labuda, 2003).

The Next Frontier: Structural Genomics
and Paradigm Shifts in HTP Vaccine, Drug,
and Acaricide Discovery Platforms
The selection of suitable antigens is a major constraint to
vaccine development (Havlikova et al., 2009). Target-based
antiviral and acaricide discovery also requires validated protein
targets amenable to high-throughput (HTP) virtual (i.e., in
silico) or compound library screening. Advances in structural
genomics could facilitate radical changes in HTP discovery
platforms for new technologies to control TBFs. Structural
genomics is enabling experimental characterization of the
three dimensional (3-D) atomic structure of proteins and
other molecules having an important biological role in human
infectious diseases. Experimental 3-D protein structures and
protein-ligand complexes have been generated for organisms
causing emerging and re-emerging diseases, including CDC

Category A-C priority agents, by the techniques of X-ray, nuclear
magnetic resonance (NMR), and cryo-electron microscopy
(cryo-EM). These technologies have enabled molecular screening
of proteins in complex with inhibitors, cofactors, and substrate
analogs, with data from structural studies used to guide virtual
screening (Wang et al., 2015).

The past decade has seen an explosion of studies to determine
the structure of arthropod-borne flaviviruses in both mature
and immature state (Table 2). Knowledge of virion structure,
assembly and cellular entry mechanisms can support prediction
of antigenic epitopes for rational design of vaccines and in silico,
structure-based discovery of drugs that interfere with viral entry
and replication (Patkar and Kuhn, 2006). Cryo-EM has enabled
resolution of virion architecture for DENV, WNV, and ZIKV
(Heinz and Stiasny, 2012) (Table 2). Structural investigations
involving TBFs are limited to X-ray crystallography and NMR
studies of the TBEV and LGTV E glycoproteins (Rey et al.,
1995; Mukherjee et al., 2006), considered the most important
immunogen. Homology modeling and molecular docking
have been used to identify inhibitors of TBF reproduction,
with several compounds showing inhibition of POWV and
TBEV in vitro (Osolodkin et al., 2013). The structure of human
antibodies in complex with ZIKV (Hasan et al., 2017) and DENV
(Pokidysheva et al., 2006; Lok et al., 2008) has been determined,
suggesting potential for development of neutralizing antibodies.

TABLE 2 | Summary of structural studies of Flaviviridae transmitted by arthropods.

Virus
and
Strain

Year Resolution
(Å)

Reference(s) Protein Data
Bank (PDB)
Accession(s)

DENGUE VIRUS (DENV)

DENV2

S1

strain1

2002 24 Kuhn et al.,

2002

1K4R

DENV2 2003 9.5 Zhang et al.,

2003

1JCH/1P58

/1SVB

DENV2 2013 3.5 Zhang et al.,

2013

3J27

DENV1 2013 4.5 Kostyuchenko

et al., 2013

4B03/4AZX

DENV4 2014 4.1 Kostyuchenko

et al., 2014

4CBF

WEST NILE VIRUS (WNV)

NA2 2007 Zhang et al.,

2007

2OF6

NY

19991
2003 Mukhopadhyay

et al., 2003

–

ZIKA VIRUS

H/PF/20131 2016 3.8 Sirohi et al.,

2016

5IRE

NA2 2017 9 Prasad et al.,

2017

5U4W

Crystal structure of virus E glycoprotein available; DENV (Modis et al., 2003), JEV (Luca

et al., 2012), LGTV (Mukherjee et al., 2006), TBEV (Rey et al., 1995) and ZIKV (Prasad

et al., 2017) and virus structure in complex with other proteins (Zhang et al., 2015).
1Denotes structure of mature virus.
2Denotes structure of immature virus.
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Greater knowledge of virion structure will enable equivalent
studies for TBFs.

Structural genomic studies of tick proteins could generate data
for the rational design of next generation transmission blocking
vaccines and acaricides (Figures 4, 6). Crystal structures are
available for a salivary cystatin from the soft tick, Ornithodorus
moubata (Salat et al., 2010) and a thrombin from the Tropical
Bont tick in complex with S-variegin (Koh et al., 2011). The
development of HTP platforms for protein expression and
purification could permit atomic level resolution of structures
for soluble tick proteins. Advances in techniques for the
genetic manipulation of arthropods such as the Crispr/Cas9
gene editing technology could facilitate HTP validation of
protein targets in vivo. Paradigm shifts in the approach to
vaccine and acaricide discovery are expected. Future efforts are
likely to incorporate (1) systems biology studies to identify
novel protein targets en masse, (2) in vitro validation of
multiple protein targets in parallel via RNAi or Crispr/Cas9
screens, (3) structure-based and virtual screening, and (4) in
vivo functional studies in tick tissues and whole ticks (see
Figure 4).

Forward Genetics to Understand Tick
Vector Competence and Identify Genetic
Elements Associated with TBF
Transmission
Forward genetics (i.e., “phenotype to gene studies”) represents a
powerful approach to identify loci associated with phenotypes
such as acaricide resistance, tick host preference and vector
competence (Meyer and Hill, 2014). Reverse genetics (i.e., the
“gene to phenotype studies” described above) has advanced
understanding of the function of tick gene products, yet the
“major players”—those gene products critical to viral infection,
replication, and transmission, remain elusive. The feasibility and
cost of developing genetic resources has stymied forward genetics
of ticks. Below, we discuss the potential of forward genetics for
tick-virus research, and the resources required to support this
work.

Genetic mapping and genome wide association studies
(GWAS) are techniques employed to identify quantitative trait
loci (QTL) associated with key phenotypes. Genetic studies
have been used to investigate mosquito-virus systems. Genetic

FIGURE 4 | Schematic depicting the major steps in (A) wet-lab “omic” and (B) in silico-processes to identify tick protein targets for development of transmission

blocking vaccines, antivirals and acaricides to control TBFs. Antigenic virus or tick proteins identified in (A,B) would proceed to vaccine clinical trial. Virus and tick

proteins identified in (A) would proceed to high-throughput screen (HTS) development and identification of small molecule drugs and acaricides. Tick proteins

identified in (B) would proceed to pharmacological assays and development of additional HTS. Third panel from left depicts RNAi functional studies in tick salivary

glands and midgut, and whole ticks. Cryo-EM, cryo-electron microscopy; HTP, high-throughput; HTS, high-throughput screen; NMR, nuclear magnetic resonance;

RNAi, RNA interference.
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differences among populations of the Aedes aegypti mosquito
vector of DENV, ZIKV, yellow fever, and CHIKV were correlated
with vector competence for flavivirus transmission (Black et al.,
2002). For example, QTL for the “midgut infection barrier”
phenotype associated with reduced DENV2 serovar infection of
Ae. aegypti were mapped to several chromosomes and found to
account for a significant percentage of the phenotype (Bosio et al.,
2000; Gomez-Machorro et al., 2004). Fine-scale mapping, map-
based positional cloning and functional studies are typical next
steps to identify genes associated with QTL.

Assembled genomic sequence coupled with expression data,
genetic (linkage) maps, and physical maps (Figure 5) represent
key resources for genomic research. Currently, the I. scapularis
IscaW1 assembly (ABJB010000000) is the only genome assembly
for a tick that comprises sequence scaffolds of Mb length. The
assembly consists of 369,495 scaffolds that provide ∼ 3.8X
coverage of the 2.1 Gbp haploid genome. Annotation of scaffolds
representing ∼57% of the genome, revealed 20,486 protein-
coding genes and expansions of gene families associated with
tick–host interactions. Improvement of the I. scapularis assembly
and the generation of draft assemblies for other tick species are
high priorities. However, haploid genome size and complexity
make this a costly and challenging goal (Meyer and Hill, 2014).
The haploid genomes of multiple hard and soft tick species
are estimated to exceed 1 Gb, and typically comprise relatively
high levels of repetitive DNA sequence as compared to many
arthropods (Ullmann et al., 2003; Geraci et al., 2007; Meyer and
Hill, 2014; Gulia-Nuss et al., 2016). Third generation genomic
technologies such as long-read sequencing (PacBio and Hi-C)
and optical mapping (Jiao and Schneeberger, 2017) are expected
to enable chromosome-level assemblies for ticks. Optical
mapping is ideally suited for the improvement of fragmented

genome assemblies and scaffolding of de novo assemblies from
high throughput sequence reads (Howe and Wood, 2015). These
technologies have been used to generate an improved assembly
for Ae. aegypti (Dudchenko et al., 2017) and will likely be useful
to generate genome assemblies for tick species.

Future genome sequencing targets identified by the Tick
and Mite Genomes Consortium are described in a white paper
(Hill, 2010; Van Zee and Hill, 2017). This project, approved
by the National Institutes of Health, is a community-ratified
guide for genomic and genetic research on ticks and mites of
medical and veterinary importance. The whitepaper proposes
sequencing of species representing the major lineages comprising
the subclass Acari (ticks and mites). Beachhead species include
(1) the prostriate vectors of TBFs in Europe and Asia, I. ricinus
and I. persulcatus, (2) the metastriate ticksDermacentor variabilis
(American dog tick), the vector of the Rickettsia rickettsia
bacterium that causes Rocky Mountain Spotted Fever (RMSF)
and A. americanum (lone star tick), the vector of erlichiosis
and Borrelia spp, (3) the soft tick Ornithodoros moubata (family
Argasidae), and (4) the Leptotrombidium deliense mite vector of
scrub typhus (Superorder Acariformes). These species represent
key phylogenetic nodes, and were selected based on their
significance as vectors and potential to nucleate additional
genomic research.

Forward genetics requires mapping populations (i.e., in-
bred laboratory lines with quantifiable traits), large numbers
of molecular markers for coarse and fine-scale mapping,
and high-density genetic maps. The development of mapping
populations of ticks has been stymied by the relatively long
lifecycle of many species and the costs associated with colony
maintenance. Multiple types of molecular markers have been
produced for species of tick vectors (Meyer and Hill, 2014;

FIGURE 5 | Schematic diagram showing the integration of genetic, sequence and physical maps. Genetic markers such as single nucleotide polymorphism (SNP)

markers enable the association of assembled sequence reads with genetic linkage groups. Sequence can be oriented on chromosomes via physical mapping.

Integrated maps and fine scale genetic mapping techniques can be used to identify regions of the genome associated with quantitative trait loci (QTL) and genes

associated with phenotypes of interest.
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Araya-Anchetta et al., 2015). Notably, thousands of single
nucleotide polymorphism (SNP) markers have been identified
from populations of I. scapularis using the technique of
Restriction Site-Associated DNA sequencing (RADseq) (Gulia-
Nuss et al., 2016) and PCR (Van Zee et al., 2013, 2015). The
preliminary I. scapularis linkage map, generated according to the
segregation of 127 loci in 232 F1 intercross progeny from a single
female tick and using a combination of RAPD, sequence-tagged
RAPD (STAR), cDNA, and microsatellite markers, represents
the only such resource for any tick (Ullmann et al., 2003).
Fourteen linkage groups were identified that may correspond to
the haploid number of chromosomes in I. scapularis. The map of
606 centimorgans (cM) had a marker interval of 10.8 cM and the
estimated relationship of physical to genetic distance was ∼663
kb/cM. More than 7M SNPs identified via the study of Gulia-
Nuss et al. (2016) and available at VectorBase (www.vectorbase.
org/) provide a basis for development of a high-density linkage
map for I. scapularis. Such maps should also be the goal for other
TBF vectors.

Physical mapping is a complementary technique to assign
and orient sequence data on chromosomes, integrate sequence
and genetic maps, and improve genome assemblies (Figure 5).
Physical maps support cytogenetic research, including the
development of karyotypes and studies of chromosome synteny.
Chromosome number has been determined for multiple species
of ticks (Oliver, 1977) providing insights into reproductive
strategies among members of the Acari. Physical mapping using
species of repetitive DNA and assembled sequence data have
enabled investigations of genome organization for pro- and
metastriate ticks (Meyer and Hill, 2014). Preliminary physical
maps were produced for I. scapularis and R. microplus using the
technique of fluorescent in situ hybridization (FISH) to study
the chromosomal arrangement of families of tandem sequence
repeats (Hill et al., 2009; Meyer et al., 2010; Gulia-Nuss et al.,
2016). Physical maps must be developed for additional species
of hard and soft ticks to support genome research on a range of
TBF vectors.

An understanding of population structure and dynamics is
critical for determining the role of ticks in disease transmission
and for modeling and managing new control strategies. Studies
of genetic diversity have been reported for at least 22 tick
species representing six genera and the families Argasidae
and Ixodidae. In the last several decades, the development of
molecular markers has permitted the resolution of phylogenetic
relationships at different taxonomic levels and population genetic
analyses for multiple species (reviewed in Araya-Anchetta
et al., 2015). Observed levels of population genetic structure
range from negligible to high across the Ixodida, and for
some species, suggest a correlation to host movement and
significant host-race adaptation. Increasingly, research is directed
at the contribution of tick population structure to the diversity
and phylogeography of the pathogens they transmit, and the
implications for disease risk (Qiu et al., 2002; Girard et al.,
2009; Humphrey et al., 2010; Swei et al., 2015). Collectively,
genetic mapping, GWAS and population genomic studies
should enable the identification of loci that contribute to TBF
transmission.

Priority Areas for Research Investment
Below, we suggest priorities for “omics” research and outline a
proposed roadmap for delivery of new TBF control technologies
by a target date of 2030. We challenge the field to develop three
or more vaccine candidates and three or more leads for novel
antivirals and acaricides within this timeframe. Key deliverables
and proposed milestone dates are shown in Figure 6.

Research on TBFs

1. Metagenomic studies to define the complement of viral phyla
and the prevalence of TBFs in the microbiome of tick vectors
at regional scale.

2. Studies to determine the pathogenicity of viruses circulating
in tick populations.

3. Studies to understand the systems biology of individual
tick bites and the molecular interplay between microbial
complement and tick and vertebrate host factors (i.e., GxGxG
studies; Figure 1).

4. Precision medicine and improved passive surveillance
for TBFs; the development of comprehensive molecular
diagnostic tools (i.e., wearable devices, point of care
diagnostics, and field sensors that detect hundreds rather than
tens of pathogens, coupled with disease risk matrices to guide
health care delivery).

5. Cryo-EM structural studies of high consequence TBFs and
virus-antibody complexes.

Research on Tick Vectors of TBFs

1. Field studies focused on elucidation of natural TBF
transmission cycles and incrimination of tick vector and
reservoir species.

2. Prioritization of research in biologically relevant “tick-virus”
systems; the development of resources including in-bred tick
strains and tick cell lines derived from major tick vectors,
and pathogenic viral species and strains. Dissemination of
resources to the scientific community via resource sharing
platforms such as the NIH funded BEI Resources (https://
www.niaid.nih.gov/research/bei-resources-repository).

3. Development of resources for genome research on high
priority tick vectors, including:

• Improvement of the exitsing I. scapularis IscaW1 reference
genome assembly (Gulia-Nuss et al., 2016) using third-gen
technologies.

• Production of high quality draft genome assemblies for
“node” species, including representatives of the pro- and
metastriate lineages, the major genera of hard (Ixodes,
Dermacentor, Amblyomma, Hyalomma, Rhipicephalus) and
soft (Ornithodorus) ticks, and the major vectors of tick-
borne diseases in Europe, Asia, and the Americas (see
Table 1 and Hill, 2010).

• Generation of “omic” (transcriptomic, proteomic, and
metabolomic) datasets for major tick vectors to support
gene annotation, protein prediction and pathway analyses.

4. Structural genomic studies of the tick proteome via cryo-EM
and crystal structures of key tick proteins to support in silico
research.
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FIGURE 6 | Ten-year roadmap for “omics” research to combat tick-borne flaviviruses. The proposed timeline for delivery of new antiviral, vaccine and acaricide control

technologies by a target date of 2030 is shown on the horizontal axis. Key deliverables (boxed text) and corresponding major milestone dates of 2020, 2023, 2025,

and 2030 (circles) are shown. GWAS, genome-wide association studies; HTP, high-throughput; HTS, high throughput screening; TBF, tick-borne flavivirus; QTL,

quantitative trait loci.

5. Development of resources to support tick genetics and
population genomics research, including:

• Mapping populations of tick species with quantifiable
traits, with an emphasis on strains that exhibit differences
in vector competence and capacity for transmission of
TBFs.

• Genetic markers (e.g., SNPs) for genetic mapping, GWAS,
population genomics and phylogenomics.

• High density genetic and physical maps for major vector
species (Figure 5).

Research on Vaccines, Antivirals, and Acaricides to

Control TBFs

1. Radical redesign of discovery pipelines incorporating virus
and tick protein targets and rational, in silico design of vaccines,
antivirals and acaricides (see Figure 4).

Conclusions: Potential at the Convergence
of Forward and Reverse Genetics
Genome assemblies provide an essential framework to support
both forward and reverse genetics on ticks. In coming years,
the field will witness additional tick genome projects, including
assemblies for tick vectors of TBFs. Omic studies must emphasize
tick-virus systems and will expand to include metabolomics.
Structural studies embracing tick and TBF proteins will enable

the redesign of drug discovery pipelines. Finally, it is hoped that
forward tick genetics will become a reality, and converge with
reverse genetic strategies to permit identification of the gene
products associated with transmission of TBFs. Thus positioned,
the field can realistically expect a paradigm shift toward precision
medicine, and realization of the overarching objective long
promised by genomics—the improved control of TBFs.
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