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Abstract: The current study aimed to analyze bacterial communities’ diversity and abundance in three different 

deserted areas (Merzouga, Mhamid Elghizlane, and Erg lihoud) located in Moroccan Sahara, as well as to 

investigate osmotolerant microorganisms producing hydrolytic enzymes. The isolates were taxonomically 

affiliated using 16S rRNA gene sequencing. Four different hydrolase activities (amylase, lipase, cellulase, and 

protease) and osmotic stress tolerance were evaluated. The phylogenetic analysis of 364 screened isolates 

belonged to three phyla (Firmicutes 73%, Proteobacteria 26% and Actinobacteria 1%) and 18 different genera, 

from Bacillus, Ornithinibacillus, Paenibacillus, Geobacillus, Pseudomonas, Acinetobacter, Agrobacterium, 

Arthrobacter, Paenarthrobacter, Enterobacter, Staphylococcus, Erwinia, Herbasprillum, Ocuria, Massilia, 

Planomicrobium, Hodococcus, and Stenotrophomonas. The results detected a high proportion of osmotolerant 

and enzymes producing bacteria, many isolates can tolerate up to 55 ℃ (40%, 28%, and 30% in Merzouga, 

Mhamid Elghizlane, and Erg lihoudi, respectively). Meanwhile, the salinity tolerance reached 12% in some 

isolates with different proportions in each site, 29% in Merzouga, 24% in Mhamid Elghizlane, and 9% in Erg 

lihoudi. Furthermore, the enzymatic tests showed the presence of an amylolytic, lipolytic, cellulolytic, 

proteolytic activities in 20%, 31%, 63% and 72% of total strains, respectively. 

As a result, the present study is thus a preliminary yet critical step towards identifying the best bacterial 

candidates for further biotechnological applications. 

Keywords: bacterial diversity; desert; enzyme activity; stress tolerance; Sahara. 
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1. Introduction  

Our planet contains a large number of challenging environments like desert who are known to be exposed 

ecosystems to prolonged moisture deficit periods representing the driest places on Earth. Also known as arid-

deserts, they cover nearly 33% of the Earth's land surface comprising the largest land surface area [1]. With 

increasing global desertification due to the current global warming trends drylands are still in amplification [2]. 

By the end of the century, their expansion will attend more than half of land surfaces [3]. Which make them 

play a substantial part in the biogeochemical cycles of numerous chemical elements and have an impact on the 

gas emission in the atmosphere [4,5]. Many of them are distributed worldwide and categorized in four main 

types, polar frost, polar tundra, cold and hot deserts [6]. They represent harsh environments that are 

characterized by several limiting factors such as water scarcity, high ultraviolet radiation, soil alkalinity and 

salinity, extreme temperatures fluctuations and nutrient poor availability [7,8]. Moreover, increased aridity in 

global drylands diminishes microbial soil diversity and abundance [9]. Due to desert special characteristics some 

of them are considered great analog areas and primers for astrobiological investigations [10,11]. 

Soil biotic composition and activity are highly influenced by the presence, the distribution and the variation 

in chemical composition of organic matter [12]. In arid and semiarid ecosystems, soil biotic functions are mostly 

modulated by the interaction between organic matter availability and moisture [13]. To cope with those harsh 

conditions, soil microorganism developed survival strategies by making changes in the composition of the cell 

envelope. These changes can be manifested through the formation of biofilms and endospores, the production 

of general shock proteins and chaperones or the expression of transcriptional regulators [14]. Recently, two 

more other survival strategies hypothesis sustaining dormancy in arid ecosystems have been reported; the 

continual-energy-harvesting hypothesis and the energy reserve hypothesis which depend on the severity of 

different environmental parameters as extensively explained by Leung et al. [15]. Consequently, both of hot 

and cold deserts harbor a high bacterial diversity [16,17]. For a long time, these bacteria were thought to be 

environmental changes predictors [18]. 

Microbial communities living in these environments cease to metabolize complex organic substrates that 

higher organisms cannot degrade [19], which make them able to produce high amounts of enzyme substances 

that have potential applications in a broad range of industrial, agricultural and medical processes [20,21]. These 

environments have provided a useful source of novel active enzymes from several microorganisms endowing 

special abilities; halophiles, thermophiles, acidophiles, alkaliphiles, and haloalkaliphiles, etc.[22,23]. 

Microorganism-derived enzymes provide a number of benefits, including low cost, high stability and substrate 

solubility, increased product recovery, high mass transfer rate, regular availability and better-quality [24]. 

Currently, many research organizations expect that Industrial enzymes will hit $8.7 billion by 2026 with an 

annual growth rate of 6, 3% [25,26]. 75% of them are hydrolytic enzymes [27] and most thermostable enzymes 

studied are protease, amylase, cellulase and lipase [28]. As a result, worldwide an increasing number of 

researchers have advocated identifying viable functional strains from a variety of harsh habitats due to their 

ability to harbor hot active enzymes producing bacteria. In morocco, hot deserts such us Moroccan Sahara desert 

remain an insufficiently explored area. Till now, only few studies limited to one station (Merzouga) in the 

Moroccan Sahara desert have described microbial communities. Therefore, understanding the extent of 

bacterial diversity still incomplete. Efforts are still being made to obtain a comprehensive view of microbial 

community composition and structure, in desert environments.  

The overall goal of the current research is to attempted a better understanding of the microbial community 

diversity in Moroccan Sahara desert, relying on phylogenetic analysis of rRNA gene (16S rDNA) sequences [29] 

in three different regions which two of them are studied for the first time. Further, the isolates osmotic stress 
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tolerance and hydrolytic enzymes activities were explored in order to create a resourceful enzyme repertoire in 

bacterial desert community promoting large-scale applications in the biotechnological field. 

2. Materials and methods 

2.1. Sampling sites and bacteria isolation 

Bacterial strains were isolated from non-vegetated sand dunes covering three different regions of 

Moroccan Sahara desert. Samples were collected in three replicates from the following geometric 

points: (X = −3, 97852083325, Y = 31, 1093333325), (X = −5, 722877, Y = 29, 831673), (X = −5, 686705, 

Y = 29, 90211), representing Merzouga, Mhamid Elghizlane and Erg lihoudi, respectively. The samples, 

from 0–5 cm depth, were immediately transported to the laboratory. From each sample, 1g of samples was 

suspended in 9 ml physiologic water and shaken vigorously for 30 min. Serial dilutions (from 10–3 to 10–7) 

were made. Then 0.1 mL from each dilutions was spread in an appropriate agar based media. Bacterial samples 

were stored in 15% glycerol at −80 ℃. 

2.2. Physio-chemical and climatic parameters 

Physico-chemical properties analysis and ombrothermic parameters were proceeded in order to test 

whether the isolated bacteria are distributed according to abiotic or to spacial factors. To this end, soil samples 

were pooled and analyzed according to standard quality control procedures (SSSA, 1996) at IAV (Agronomic 

and veterinary institute Hassan II, pedoloy laboratory, Morocco) and ombrothermic parameters were analysed 

by CHIRPS [30]. 

2.3. Molecular analysis 

Bacterial pellets were suspended in extraction buffer (100 mM Tris–HCl pH = 8, 100 mM EDTA pH = 8, 5% 

SDS, NaCl and RNAase), mixed and incubated 5-10 min in ice. The supernatant fluid was collected after a 10 min 

centrifugation at 13,000g at room temperature. The nucleic acids were extracted by the addition of an equal 

volume of chloroform/isoamyl alcohol (24:1) followed by centrifugation at 13,000 g for 5 min. DNA was 

precipitated by addition of double volume of 100% ethanol, centrifuged and washed by 70% ethanol. The 

DNA pellets were then airdried and resuspended in 50 μL 1/10 TE buffer (1 mM Tris-HCl pH 8, 0.1 mM Na 

EDTA pH 8).  

Recovered DNA was quantified using NanoDrop™ (Thermo Scientific, Waltham, MA, USA). The 16S 

rDNA was amplified using the universal primers FD1: 

5'CCGAATTCGTCGACAACAGAGTTTGATCCTGGCTCAG-3' and RS16: 5'-

TACGGCTACCTTGTTACGACTT-3'. The 25-μL PCR mixture contained 20 ng bacterial DNA, 250 pmol 

each primer, 5 μL 10X PCR buffer, 2.5 U Taq DNA polymerase (Bioline, Morocco). The PCR temperature 

cycling program consisted of an initial denaturation at 94 ℃ for 5 min then 35 cycles of three levels 94 ℃ 

for 1 min, 56 ℃ for 1 min, and 72℃ for 1 min. Ultimately, by a final extension at 72 ℃ was applied for 7 min. 

The PCR products were examined by running them on a 1% agarose gel, and the desirePCR product was 

purified using the PCR Purification Kit (Promega, USA). The PCR products sequencing were performed by 

Genoscreen using 3730xl DNA Sanger sequencer at Pasteur institute (Lille, France). 

https://www.thermofisher.com/order/catalog/product/3730XL
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2.4. Bioinformatic and statistical analyses 

The sequences obtained were initially compared with reference sequences by using BLAST available in 

the National Centre for Biotechnology Information (NCBI). The 16S rRNA gene sequences were aligned using 

the multiple alignment program Genedoc 2.7 software. The phylogenetic tree construction was carried out in 

The Molecular Evolutionary Genetics Analysis (MEGA-X software) [31].The sequences of the 16S rDNA 

gene were submitted to the GenBank database under accession numbers from KX013406 to KX013441. In 

order to compare the bacterial diversity within the three sites, the 16S rRNA gene sequences were used to 

analyze diversity index: Evenness (J) and the Simpson’s index (D). To reveal bacterial communities similarity 

between the three stations, the Jaccard index was calculated and UPGMA tree was generated using popgen 

software. 

2.5. Physiological and Enzymatic assays 

Bacterial growth at different temperatures was determined on nutrient broth agar. Plates inoculated and 

incubated at the following temperatures: 40, 45, 50 and 55 ℃. Tolerance to sodium chloride (NaCl) was 

assessed by determining the growth on nutrient broth agar medium supplemented with 0–12% (w⁄v) NaCl 

after 7 days incubation at 28 ℃.  

Amylolytic activity of the cultures was screened using starch agar medium (Merck) [32], followed by 

incubation at 28 ℃ for 48 hours. The plates were flooded with 0.3% I2–0.6% KI solution. A clear zone around 

the bacterial growth indicates the hydrolysis of starch. To observe protease production, bacterial cultures were 

screened in skim milk agar containing 10% skim milk and 2% agar. Clear halos were observed around the 

bacterial growth after 7 days express protease activity [33] . Lipase production was determined qualitatively on 

plates by following the method described by Jette and Ziomek [34]. The strains were inoculated on nutrient agar 

plates containing olive oil (2.5%), Rhodamine (4 mg.L-1). The plates were incubated at 28 ℃ for 48 hours. The 

orange color under UV is used to identify the lipase producing strains. The presence of Carboxy methyl 

cellulose activity on plates was determined using a medium containing (g.L-1): CMC 10, (NH4)2 SO4 1.4, 

K2HPO4 2 and MgSO4, 7H2O 0.02%, nutrient solution 1 (g.L-1) (FeSO4, 7H2O 5 mg.L-1, MnSO4, 

H2O 1.6 mg.L-1, ZnSO4, 7H2O 1.4 mg.L-1, CaCl2 2 mg.L-1), agar 20 g.L-1. Plates were incubated for 72 hours 

at 28 ℃ in the dark. Cellulase activity is indicated by formation of a cleared zone after staining with 

aqueous Congo red (1 mg.mL-1) for 15 min and incubation in 1 mol.L-1 NaCl for 15 min [35]. 

3. Results 

3.1. Physico-chemical characteristics of samples and climatic parameters 

Several physico-chemical parameters were measured from the three samples as shown in Figure 1, the 

results are shown in Table 1. The Moroccan desert’s soil is sandy with fine sand particles as the major fraction, 

slightly alkaline (pH 8.5), nutrient poor with 0.17% organic content. In the three desert soils, CaCO3 and electric 

conductivity values were between 4.86% and 17.98% and 0.92 mmhos.cm-1 and 2.76 mmhos.cm-1, respectively. 

Potassium concentration ranged from 102 to 118 ppm with the highest concentration in Erg lihoudi soil and the 

lowest concentration in Merzouga soil. Erg lihoudi has significantly higher levels of phosphate and ammonia 

than all other sites. Climatic parameters, show the monthly average of precipitation and temperature at 

Merzouga (A), Erg lihoudi (B) and Mhamid Elghizlane (C) sites. The monthly average of precipitation and 
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temperature represents a clear sinusoidal per year at all sites. Annual precipitation was 134 mm, 233 mm 

and 268 mm at Merzouga, Erg lihoudi and Mhamid Elghizlane, respectively. The monthly average of 

temperature exhibited large variability. The maximum temperature was 46 ℃, 51 ℃ and 49 ℃ in June and the 

minimum temperature was 3 ℃, 4 ℃ and 5 ℃ in January at the Merzouga, Mhamid Elghizlane and Erg lihoudi, 

respectively Figure 2. 

3.2. Bacterial composition and structuration in desert samples 

According to the 16S rRNA gene sequences analysis, all the clustered strains revealed an interval of 

similarity of 99–100%, in the sequences within the GenBank. The phylogenetic tree of the 29 bacterial species 

identified was constructed. Their affiliations analysis of the 16S rRNA gene sequences revealed that 73.35% of 

bacterial collection was gram-positive and 26.65% was gram-negative bacteria. Most of these species are 

Firmicutes species. Interestingly, a greater proportion of Proteobacteria was observed in Erg lihoudi. 

Overall, 1%, 26% and 73% isolates belong, respectively, to three phyla namely Actinobacteria, Proteobacteria 

and Firmicutes. The genus Bacillus was predominant in Merzouga and Mhamid Elghizlane representing 55% 

and 46%, respectively, while the genus Pseudomonas was the most preeminent genera in Erg lihoudi 

representing 45% within the region isolates followed by 30% of Bacillus. (Figure 3). 

Phylogenetic tree of 16S rRNA gene sequences of representative isolates from Moroccan sahara desert 

and reference sequences generated from GenBank 16S database. 16S rDNA gene sequences were aligned using 

ClustalW. A Neighbor-joining method was used to build the tree with 1000 bootstraps using MEGA program 

version X. The GenBank accession No. of the 16SrDNA gene sequences used for phylogenetic tree analysis 

are indicated at the end of each branch (given the MT Numbers). The Drosophila montana (GenBank accession 

number AF 508191) is used as outgroup. 

Moreover, endophytic population were found in Merzouga such as Herbaspirllium sp, Massilia 

alkalitolerans and Erwinia sp. Alignment analysis shows different gene sequences among Bacillus sp and 

Pseudomonas sp., which need further genetic characterization and validation to identify their taxonomic species. 

Under phylogenetic analysis, thirteen strains belong to the phylum Firmicutes, which are further distributed into 

four families: Bacillaceae, Panenibacillaceae, Planococcaceae and Staphylococcaceae. Among Firmicutes, 

six genera represent the phylum whitch are Bacillus, Geobacillus, Ornithinibacillus, Paenibacillus, 

Planomicrobium and Staphylococcus. Four strains are affiliated to the phylum Actinobacteria, represented by 

four genera of Arthrobacter, Kocuria, Paenarthrobacter and Rhodococcus. Ninety-nine strains belong to the 

phylum Proteobacteria and distributed into three classes: α-Proteobacteria with Agrobacterium tumifaciens; β-

Proteobacteria with two strains Herbaspirillum sp. and Massilia alkalitolerans; and γ-Proteobacteria with 

twenty-eight strains of five genera. The latter are Acinetobacter sp., Enterobacter sp., Erwinia sp., Pseudomonas 

sp., Stenotrophomonas sp. (Figure 4). 

Overall, Bacillus, Geobacillus and Pseudomonas are the most frequently recovered genera. All sites have 

four genera in common including Bacillus sp, Geobacillus sp., Pseudomonas sp., and Staphylococcus sp., 

Analysis of results led to the identification of specific bacterial niche genera at two sites Merzouga and Mhamid 

Elghizlane. These specific bacterial niches were represented by Agrobacterium, Erwinia, Herbaspirillum, 

Massilia, Ornithinibacillus, Planomicrobium, Paenarthrobacter, Stenotrophomonas, in Merzouga and 

Kocuria and Rhodococcus in Mhamid Elghizlane. No special bacterial niche was found in Erg lihoudi station 

(Figure 5). The results of Simpson’s index and Evenness are in agreement with each other representing the 

highest value in Erg lihoudi and the lowest in both Merzouga and Mhamid Elghizlane (Table 2). 
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Figure 1. Geographic locations of sampling sites and samples. 

 

Figure 2. Ombrothermic characteristics of studied regions. (A) Merzouga; (B) Mhamid Elghizlane; (C) Erg lihoudi. 
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Table 1. Physico-chemical properties of samples and sampling sites. 

Sampling 

sites 

Clay 

(%) 

Limon 

fin 

(%) 

Limon 

coarse 

(%) 

Limon 

total 

(%) 

Fine 

sand 

(%) 

Coarse 

sand 

(%) 

Sable 

total 

(%) 

CaCO3 

total 

(%) 

pH Electric 

conductivity 

(mmhos.cm-1) 

Organic 

content  

(%) 

NH4-N 

(ppm) 

P Olsen 

(ppm) 

K+ 

(ppm) 

Merzouga 3.41 0.54 0.68 1.22 58.85 36.52 95.37 4.86 8.53 0.92 0.18 10.92 7.85 102 

Erg lihoudi 3.33 0.23 1.60 1.83 73.62 21.22 94.84 12.27 8.5 2.58 0.16 12.04 11.68 118 

Mhamid 

Elghizlane 

0.78 1.26 0.40 1.66 73.68 23.88 97.56 17.98 8.5 2.76 0.17 6.58 7.85 112 

Table 2. Diversity indices for the isolates from different sites of Moroccan desert. 

Locations Total abundance* Species Richness Simpson’s (D) Evenness (EV) 

Merzouga 176 25 0.47 0.41 

Erg lihoudi 111 9 0.65 0.61 

Mhamid Elghizlane 78 9 0.34 0.39 

*Note: Total abundance is equal to number of isolates according to16S rRNA data. 

Table 3. Jaccard similarity index of the desert sand samples. 

Locations Merzouga Mhamid Elghizlane Erg lihoudi 

Merzouga 1   

Mhamid Elghizlane 0.69 1  

Erg lihoudi 0.57 0.56 1 
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Figure 3. (A) Bacterial composition of the desert samples at the phylum level; (B) distribution of 

total bacteria in three sampling sites; (C) Bacterial composition of the desert samples at the genera 

level. 

C) 
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Figure 4. Phylogenetic tree. 

*Note: Phylogenetic tree of 16S rRNA gene sequences of representative isolates from Moroccan sahara desert and reference sequences 

generated from GenBank 16S database. 16S rDNA gene sequences were aligned using ClustalW. A Neighbor-joining method was used 

to build the tree with 1000 bootstraps using MEGA program version X. The GenBank accession No. of the 16SrDNA gene sequences 

used for phylogenetic tree analysis are indicated at the end of each branch (given the MT Numbers). The Drosophila montana (GenBank 

accession number AF 508191) is used as outgroup. 
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Figure 5. Venn’s diagram of the bacterial groups of the desert samples representing the distribution 

of the percentage of genera. 

*Note: Venn’s diagram represents the percentage of shared and exclusive genera in the three regions. 

Similar relationships among the samples are observed in Jaccard index (Table 3). 

The most closely related populations are Merzouga and Mhamid Elghizlane samples UPGMA tree is 

generated in order to graphically reveal the relationships between these three samples (Figure 6). 

 

Figure 6. UPGMA tree of the bacterial population of the desert samples. 

*Note: The tree was generated with popgen. The distance for each samples are indicated by the position of the node between them, 

according to the Jaccard similarity indices. 

Bacterial populations Merzouga and Mhamid Elghizlane samples were found similar and differ from Erg 

lihoudi sample. 

3.3. Enzymatic and physiological traits 

Bacterial strains were screened for thermo-tolerant bacteria at different temperatures 40, 45, 50 and 55 ℃. 

All the strains were able to survive under a temperature of 40 ℃. Moreover, rich groups of thermotolerant 
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strains were found representing 40%, 28% and 3% in a temperature of 55 ℃ in Merzouga, Mhamid Elghizlane 

and Erg lihoudi, respectively (Figure 7A). Merzouga harbor the highest percentage of halotolerant strains 

representing 23% at 10% of salt followed by Mhamid Elghizlane which the isolates show their highest tolerance (17%) 

at 7% Meanwhile Erg lihoudi represent 30% of halotolerant bacteria at 4%. The percentage of halotorant strains 

decreased while salt concentration increased in the medium (Figure 7B). In the entire collection, 38 strains from 

two genera, Bacillus sp. and Geobacillus sp., tolerate to a temperature of 55 ℃ and 10% of salt, simultaneously, 

while producing at least two enzymes. The collection of strains were examined for their ability to secrete 

hydrolytic enzymes. Among all the collection isolates, the distribution ratio of hot active enzyme activities by 

protease and cellulase producing strains were high (72% and 62%, respectively) compared to Lipase and 

Amylase (31% and 20%, respectively) in the three regions (Figure 8). 

A) 

 

B) 

 

Figure 7. Distribution of bacteria according to temperature (A) and salinity (B) tolerance abilities 

in different soil samples. 
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Overall, three strains from two different genus Pseudomonas sp. (MDMC 118) and Geobacillus 

stearothermophilus (MDMC153 and MDMC159), from both Mhamid Elghizlane and Erg lihoudi were found 

able to produce all the studied enzymes. 

 

 

Figure 8. Percentages of enzymes production in each region. 

4. Discussion 

In the present investigation, a total number of 364 cultivable bacteria were isolated and identified from 

three different regions in Moroccan Sahara desert. This study revealed that Firmicutes, followed by 

Proteobacteria, are the most dominant phylum in Moroccan desert soils. These divisions have been observed in 

different hot deserts of the Tanami Desert, the Eastern Desert, and the Saudi Arabia Desert [36], While 

Actinobacteria phyla was less prevalent Contrary to other studies conducted in similar locations in the Atacama 

Desert, Namib Desert, and Thar Desert [37–40]. These findings indicate that these phyla have adapted 

effectively to the scorching desert environment. Their existence could be explained by a variety of processes of 

desiccation resistance, as extensively described by Heulin et al. [41] including sporulation, hydrobiosis, and 

encystment, or yet unravelled mechanisms. In contrast, among identified bacteria, the prominent genera isolated 

are Bacillus, Geobacillus and Pseudomonas, which is not surprising, Bacillus, Geobacillus and Pseudomonas 

genera are ubiquitous in nature and were previously reported in all niches in the environment [42–44]. However, 236 

isolates remained unidentified to the species level, most of them were assigned to Bacillus sp. with 164 isolates 

and to Pseudomonas sp. with 50 isolates. This could be an indication for the presence of potential new 

interesting species. These isolates need expanding genes analysis including additional metabolic genes [45]. It 

should be noted that phylogenetic analysis of nucleotide sequences obtained from some strains of the same 

species revealed 100% similarity, while their colonies morphology and physiological behavior differed 

significantly in terms of temperature and salinity tolerance, as well as hydrolytic enzyme production. This 

demonstrates, as Belov et al. [46] confirmed, that these strains are intrapopulation variation. Among firmicutes 
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phylum, the isolation of Arthrobacter genus related strains from hot deserts has already been reported in the 

literature [47] even though it is more likely to be isolated from cold desert [48,49]. Less commonly genera 

like Planomicrobium, Paenibacillus and Staphylococcus, Geobacillus have been also reported in several 

deserts [50–52]. While, to our knowledge this is the first report for presence of Ornithinibacillus scapharcae 

in hot desert. This bacteria is usually found in salt lakes [53] which may explain the strains high salt tolerance 

potential. Contrary to our results, members of proteobacteria have been revealed predominant in several hot 

deserts, pseudomonas in eastern Utah (USA) [54], Acinetobacter in Asian deserts such as Gobi (Mongolia) desert 

and Taklamaken (China) desert [55], Enterobacter in Saudi Arabia desert [56]. Representatives of this phyla were 

also found in different deserts, Stenotrophomonas in north Sinai deserts, Egypt [57], Massilia from sahara and 

Gibson deserts, Australia [46]. Noteworthy is the revelation of endophytic species like Erwinia sp., 

Herbaspirillum sp. and Agrobacterium sp., in complete unvegetated site in Merzouga, may be related to 

exposure to past vegetation history or by sandstorms in winter and the permanent movement of sand particles 

carried by the wind and carrying microorganisms clinging to them [58–60], since nearby zones contain major 

vegetation [61]. Minor components of the Actinobacteria phyla's Arthrobacter, Paenarthrobacter, 

Kocuria, and Rhodococcus genera were also detected in other hot deserts [16,62–65]. In line with other 

studies [46], desert ecosystems may harbor additional pathogenic bacteria, as several pathogenic bacteria, 

including Erwinia sp., Pseudomonas stutzeri, and Staphylococcus epidermidis, were found in three of the 

stations studied. Furthermore, Invasion of pathogens into desert soil could also be a key element in decreasing 

microbial diversity [66]. 

Major physical and chemical aspects affect microbial populations in soils distribution [67]. Interestedly, 

no significate correlation between the physico-chimic data and bacterial diversity in three station was proven. 

On the other hand, Erg lihoudi and Mhamid Elghizlane are geographically closer to each other and far away 

from Merzouga. The two later regions are dominated by Firmicutes and have more similarities in bacterial 

abundance, with a slight difference in the community structure, than Erg lihoudi which is dominated by 

Proteobacteria. Based on Venn diagram, biodiversity indices of communities’ similarity (Shannon, Evenness 

and jaccard index). According to jaccard similarity index and related UPGMA tree, in which express the degree 

of ecological resemblance concerning species composition between the three regions, bacterial abundance in 

Merzouga and Mhamid Elghizlane stations have shown to be more similar compared to Erg lihoudi. These 

findings show that abiotic soil characteristics are less involved in the distribution of the microbial communities, 

as well as regional characteristics. Microbial variability is determined by sampling location, in agreement with 

other studies [68], since establishing the mains factors controlling diversity remains difficult, microniche 

variability is given a role in guiding such diversity [69]. In contrast to what generally assumed that the 

distribution of desert microbes depend essentially on environmental factors [70]. 

The soil temperature in Moroccan Sahara are subject to day-night variations. It spans from a low level 

of 2 ℃ to high level of 50 ℃, with poor rainfall values, across the year. Thus, 34% of the bacterial population 

in the Moroccan Desert tolerates high temperature reaching 55 ℃. Based on these data, it is possible to presume 

that there is a high proportion of strains with thermotolerant and halotolerant properties in the studied soil. As 

expected, the analysis of the isolates resistance to temperature revealed that more than 59% of the isolates have 

thermotolerant properties, the highest levels of resistance to temperature were found mainly Bacillus genera. 

Thermotolerant isolates pertaining to Pseudomonas, Staphylococcus, Paenibacillus, Acinetobacter, 

Enterobacter, Arthrobacter, Geobacillus, Ornithinibacillus and Planomicrobium were also found. 

Representatives of Bacillus, Paenibacillus and Enterobacter genera were reported in previous study [56,71–73]. 

Meanwhile, no previously published reports on thermotolerant behavior of any representatives 

Ornithinibacillus and Planomicrobium were found. Furthermore, the finding of the specie Planomicrobium 
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glaciei in sahara desert, discovered first in glacier then from desert environments and more often isolated from 

volcano mud [74,75] lead us to believe that, in response to extreme conditions prevailing in both cold and hot 

deserts, the intracellular mechanisms determining the resistance and survivability are adaptable. These results 

are consistent with the data obtained previously in the other regions of Sahara and Gibson deserts [76]. High 

tolerance to salt (8%–12%) was found in 80 isolates belonging to the genera Bacillus, Staphylococcus and 

Enterobacter, various forms of halotolerant bacteria had previously been isolated in deserted areas [77–79]. As 

shown, multiple osmotic tolerance is found in Bacillus, Geobacillus and Staphylococcus genera. In terms of 

enzyme activity levels, industrial enzymes are running out in tough physicochemical conditions. On the other 

hand, based on bacteria survival ability under multiple extreme environmental conditions, osmotolerant 

bacteria have been reported to produce high and stable enzymes [80,81]. Hence, they could therefore 

provide potential answers to variety of industrial challenges [82,83]. Among thermo-halotolerant bacteria 

recovered, Geobacillus stearothermophilus was found able to produce 4 enzymes, cellulase, protease, amylase 

and lipase [84,85], Meanwhile no data on cellulase and protease produced by Geobacillus stearothermophilus 

was found. Furthermore, 13 strains all of them from Bacillus are capable to produce 3 enzymes, which is well 

documented [86–88]. Additionally, the majority for the isolates represented at least two hydrolytic activities. 

For instance, the obtained results represent a preliminary step to identify novel valuable enzymes. Hence, this 

study provides a rich repertoire, from halo-tolerant or thermo-tolerant bacteria producing different hydrolytic 

enzymes, for further biotechnological concerns. 

5. Conclusion 

To sum up, the current study has shown that Moroccan Sahara Desert has a rich microbial diversity, 

dominated by Bacillus, Geobacillus and Pseudomonas genera. Recently, high Throughput sequencing 

techniques were developed [89,90] which would help to understand the ecological significance of bacterial 

diversity in the Moroccan Sahara. Likewise, our study provides a collection of 364 isolates among them bacteria 

capable of producing hot active hydrolytic enzymes of industrial significance. The collection contains a major 

part of bacteria proven to be halo-tolerant, thermo-tolerant and represents a resource for producing industrial 

enzymes. The combination of the latter two characteristics reveal interesting candidates for industrial uses. 

Furthermore, advanced studies will be focalized on hall genome sequencing for each of the candidates. 
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