

Citation: Zhang B, Cui L, Tang R, Ding L, Yan L, Chen Z-J (2017) Reduced Ectopic Pregnancy Rate on Day 5 Embryo Transfer Compared with Day 3: A Meta-Analysis. PLoS ONE 12(1): e0169837. doi:10.1371/journal.pone.0169837

Editor: Qing-Yuan Sun, Institute of Zoology Chinese Academy of Sciences, CHINA

Received: November 7, 2016

Accepted: December 22, 2016

Published: January 25, 2017

Copyright: © 2017 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper.

Funding: 1 Author: ZC, Grant numbers: 2016YFC1000600, Funding name: National Research and Development Plan, The URL: http:// program.most.gov.cn, Role: conceived and designed the experiments; 2 Author: ZC, Grant numbers: 81430029, Funding name: the State Key Program of National Natural Science Foundation of China, The URL: http://www.nsfc.gov.cn, Role: conceived and designed the experiments; 3 Author: ZC, Grant numbers: 201402004, Funding name: **RESEARCH ARTICLE**

Reduced Ectopic Pregnancy Rate on Day 5 Embryo Transfer Compared with Day 3: A Meta-Analysis

Bingqian Zhang^{1,2,3 \circ}, Linlin Cui^{1,2,3 \circ}, Rong Tang^{1,2,3}, Lingling Ding^{1,2,3}, Lei Yan^{1,2,3}*, Zi-Jiang Chen^{1,2,3,4,5}*

1 Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China, 2 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China, 3 The Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China, 4 Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 5 Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China

So These authors contributed equally to this work.

* chenzijiang@hotmail.com (ZC); yanleiandu@163.com (LY)

Abstract

Objective

To compare the risk of ectopic pregnancy (EP) after embryo transfer on day 3(D3-ET) and day 5(D5-ET).

Design

Meta-analysis

Patients

Women with pregnancy resulting from in vitro undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI)

Result(s)

Twenty-two studies were identified through research conducted using the PubMed, Embase, and Cochrane databases and ClinicalTrials.gov. All studies were conducted prior to October 2016. Adding the reproductive data from our center, a total of 143 643 pregnancies were reviewed(D3-ET: n = 62027,D5-ET:n = 81616). A lower EP rate was found in women undergoing D5-ET than in those undergoing D3-ET [relative risk (RR), 0.67;95% confidence interval (CI), 0.54–0.85;143643 pregnancies in 23 studies; $I^2 = 67\%$]. These results were validated in subgroups of fresh embryo-transfer (Fre-ET) cycles [RR, 0.78; 95%CI, 0.69–0.88; 91 871 pregnancies in 21 studies; $I^2 = 29\%$] and frozen-thawed embryo-transfer (Fro-ET) cycles [RR, 0.43; 95%CI, 0.36–0.51; 51 772 pregnancies in 10 studies; $I^2 = 33\%$]. After separating out the randomized controlled trials (RCTs), a significant difference was found in the retrospective studies in both subgroups [both Fre-ET (RR,0.78;95% CI 0.69–0.88);91182 pregnancies in 14 studies; $I^2 = 45\%$] and Fro-ET(RR,0.43;95% CI 0.36–0.51; 51751pregnancies in 9 studies;

Research fund of National Health and Family Planning Commission of China, Role: conceived and designed the experiments; 4 Author: LC, Grant numbers: 81501223, Funding name: National Natural Science Foundation of China, The URL: http://www.nsfc.gov.cn, Role: preparation of the manuscript; 5 Author: LY, Grant numbers: 81571414, Funding name: National Natural Science Foundation of China, The URL: http://www.nsfc. gov.cn, Role: preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

 $I^2 = 33\%$], while the RCTs showed no statistical significance for Fre-ET cycles[RR,0.86;95% CI 0.32–2.26); 689 pregnancies in 7 studies; $I^2 = 0\%$].

Conclusion(s)

The present study indicates that D5-ET reduces the risk for EP in cycles that use IVF or ICSI, compared with D3-ET. It suggests that D5-ET may be a better choice for decreasing the EP rate in assisted reproductive technology. Further high-quality randomized controlled trials are anticipated.

Introduction

Ectopic pregnancy (EP) is a life-threatening clinical gynecologic emergency [1]. Hypovolemic shock resulting from EP rupture is the primary cause of death during early pregnancy [2]. The rate of EP in assisted reproductive technology (ART) reportedly ranges from 1.6% to 8.6%, 4 times higher than with natural conception [3–6].

In nature, the fertilized ovum undergoes cleavage as it passes down the Fallopian tube. The ovum enters the uterine cavity about 3 to 4 days after fertilization (day 3–4) and then forms a single, large cavity as fluid enters and occupies the intercellular spaces; the resulting structure is called a blastocyst. On about day 6 or 7, the blastocyst penetrates the epithelial cells of the uter-ine mucosa [7]. During in vitro fertilization(IVF), the transferred day 3 (D3-ET) embryos will not implant immediately, and may be transported back into the Fallopian tube via the retrograde contractions of the uterine muscular layer, leading to ectopic implantation [7].Therefore, performing embryo transfer on day 5 (D5-ET) can shorten the "wandering" time of the embryo and therefore hypothetically reduce the risk for EP compared with traditional ET on day 3.

Previous studies indicate that the EP rate in blastocyst-transfer cycles is significantly lower than in cleavage-transfer cycles during IVF or intracytoplasmic sperm injection (ICSI)[8–11]. However, the conclusions of these studies are not consistent. Several studies do not find a statistically significant difference in the EP rate between D3-ET and D5-ET [12, 13]. In fact, the opposite results are described by Keegan and Rosman [14, 15], who show that the EP rate is increased in D5-ET compared with D3-ET.

The aim of this study is to elucidate, using a meta-analysis structure, whether the risk of EP may be reduced using D5-ET.

Method and Materials

Literature Search

Two authors (BQ Z and LL C) independently performed the literature search in the online databases (PUBMED, EMBASE, COCHRANE and Clinical Trials. gov) up to October 2016. A search strategy was carried out based on key words and medical subject heading (MeSH) terminology: embryo transfer, IVF, day 3(or three), day 5(or five), cleavage stage, blastocyst stage, ectopic pregnancy and heterotopic pregnancy. We also hand searched the reference listed in the related reviews and articles.

Outcome Measures

EP was defined as a pregnancy with an extra uterine gestational sac, or as the absence of an intrauterine gestational sac but increasing human chorionic gonadotropin (hCG) levels[16].

Heterotopic pregnancy, diagnosed as EP co-existing with a synchronous clinical intrauterine pregnancy, was also grouped into EP in this analysis. The EP rate was calculated as per number of clinical pregnancies.

Study Selection

Two authors (BQ Z and LL C) independently assessed data selection. Where there were any queries, a third author (L Yan) was consulted to discuss any disagreements. The criteria for included studies were: (i) English papers;(ii) compare the EP rate between D3-ET and D5-ET groups. PGD/PGS cycles were excluded. We simply intake the latest and the largest dataset when the studies were overlapped.

Data Extraction and Quality Assessment

We generated characteristic and results forms for the included studies (included the retrospective data in our institute during 2010–2015). The data were extracted by two review authors (BQ Z and LL C) independently according to the selection criteria. Any disagreements were resolved by discussion with another review author (Yan L). We extracted statistical data from the original papers. Seventeen authors were contacted by e-mail to request further data regarding EP rate, with responses received for 2 unpublished datasets.

Furthermore, retrospective data of our institute (Center for Reproductive Medicine, Shandong University) during 2010–2015 were complemented for the meta-analysis. A total of 31115 clinical pregnancies aged from 19 to 49 were recruited. All of the pregnancies included were from IVF or ICSI cycles. Among them, 20347 pregnancies were of D3-ET and 10768 of D5-ET. The total number of EP is 654. Written informed consents were obtained from all the participants. The recruitment of our data was approved approved by the institutional review board of Center for Reproductive Medicine of Shandong University. Characteristics of our data were listed in S1 Table.

Information regarding authorship, publication dates, journals, sample size, location and duration was recorded. All the accessible data were extracted into REVMAN 5.3 for further analysis.

The risk of bias of the included randomized controlled trials (RCTs) were evaluated according to "*Cochrane Handbook for Systematic Reviews of Interventions*[17]". Six related domains were assessed in each included trial:1) random sequence generation;2) allocation concealment;3) blinding of participants and personnel;4) incomplete outcome data; 5) selective reporting;6) other bias. Each item was judged as a rating of "low risk", "unclear risk" and "high risk" of bias. The evaluation results were shown in <u>S1 Fig</u>. The retrospective cohort studies and case-control studies were evaluated according to "*the Newcastle–Ottawa Scale(NOS)*[18]", which were rated based on 8 items and categorized in 3 domains: study subject selection (4 items), comparability between groups (1 items) and outcome measure (3 items). Scores were represented with stars for each quality item and the total score of this assessment is nine. (S2 and <u>S3</u> Tables). Study design (RCTs, retrospective cohort or case control study) were evaluated as part of assessment of the risk of bias across the studies.

Statistics

Statistical heterogeneity was evaluated by the measure of the I². We used a fixed-effects model in the cases that the I² \leq 50%, which indicate a low or moderate heterogeneity. Otherwise, a random-effects analysis model was developed instead. Subgroup analysis was conducted according to the confounding factor of embryo frozen.

Sensitivity analysis were applied in 3 methods to determine the stability of outcome: repeating meta-analysis with RCTs with low risk of bias by allocation concealment and a NOS score at nine; omitting studies that had day2/3 or day 5/6 embryo transfer; omitting a single study in turn. Sensitivity analysis was performed using Stata 12.0.

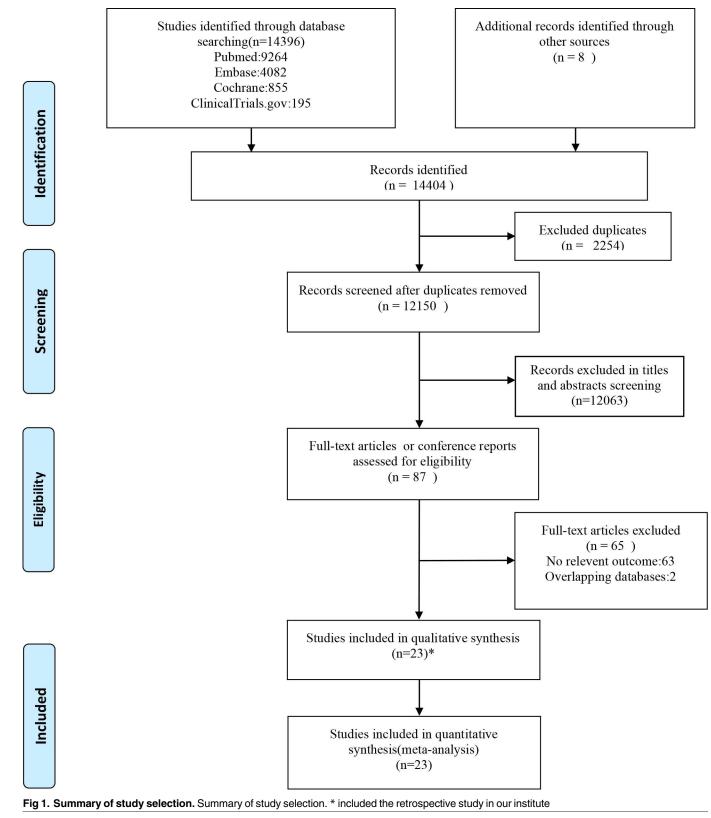
Potential publication bias were assessed by Begg's funnel plots and Egger's linear regression tests [19].Begger's funnel plots and Egger's linear regression test were performed using Stata 12.0. The number of events was pooled into the RevMan5.3 for Mac and analyzed using the modified Mantel-Haenzel method. The summary measures were reported as relative risk(RR) with 95% confidence interval (CI). P <0.05 was considered statistically significant.

The meta-analysis was reported following the Preferred Reporting Item for Systematic Reviews and Meta-analyses (PRISMA) statement[20](S1 File).

Results

Literature Search

A total of 12150 articles were identified. After exclusion Forest plot of EP rate for embryo transfer on day 3 versus day 5 based on titles and abstracts, 87 published papers of full texts and conference reports were screened (Fig 1). We excluded 65 studies for no relevant outcome and overlapped data. Finally, a total of 143643 pregnancies and 2734 events (diagnose of EP) from 23 studies (22 literature researches and retrospective data of our institute) were included in the meta-analysis.


Study Characteristics

Characters of the 23 eligible studies were listed in Fig 2, of which two were conference reports [21, 22], seven were RCTs[23–29], and sixteen were retrospective studies[twelve cohort [8, 10–14, 21, 30–33] and 4 case-control studies[9, 22, 34, 35]] (Fig 2). Thirty-three studies were conducted in combined IVF/ICSI cycles[8, 11, 13, 23–28, 31, 33, 34],9 studies were in IVF [9, 10, 12, 14, 21, 22, 29, 30, 32] and one study were only in ICSI cycles[35]. All studies compared the EP rate between day 3 versus day 5 except two[34, 35], which compared day2/3 versus day 5/6. Embryos transferred on day2/3 were grouped to D3-ET group and embryos transferred on day5/6 were grouped to D5-ET group. All studies except two [9, 13] stated the number of embryo transfer in their studies. A fixed number of single embryo transfer (SET)was in 4 studies[8, 24, 28, 31] and a number of two (DET)was in 1 study[25]. A maximum of three embryos were transferred in both groups in the remaining 16 studies, from which a statistical significance was found in one study[21]. The dataset of donor egg cycles was provided in one study[12](Fig 2).

Systematic risk assessment of methodological bias of included RCTs revealed three RCTs did not[23,26,27]clearly describe an acceptable method of sequence generation and five RCTs [23,25–28]did not clearly describe their methods of allocation concealment, therefore, we rated them at unclear risk of bias. We rated one study [28] at unclear risk in attribution bias domain, because the general random patients were not reported and we were unable to determine the integrity of data. We assessed three studies [24,26,28]at an unknown risk of other bias, for an insufficient information about basic characters (S1 Fig).By assessment using the NOS of retrospective studies, 6 studies [9, 12, 30, 32, 33, 36]were awarded nine scores, while the others were awarded with eight scores (S2 and S3 Tables)

Ectopic Pregnancy

A total of 143643 pregnancies were reviewed (D3-ET: n = 62027, D5-ET: n = 81616). The sample size of each study ranged from 47 to 44102. There was a significant decreased risk of EP on

doi:10.1371/journal.pone.0169837.g001

PLOS

	ONE
--	-----

Study, year	Jourmal	Location	Duration	Study Design	Fertilization Protocol	Samples Size	Main Outcomes
Kaur,2014	J Hum Reprod Sci.	India	2010.5-2011.4	RCT	IVF/ICSI	Day3:48	CPR,IR,FR.CR,
Kau,2014	5 Hun Repiod Sei.	шша	2010.3-2011.4	KC1	101/1031	Day5:68	MPR,EPR
Kolibianakis,2004	Hum Reprod.	Belgium	2001.1-2003.12	RCT	IVF	Day3:85	OPR,EPR,MR,MPR
Konolanakis,2004	Hun Reprod.	Deigium	2001.1-2005.12	Rei	101	Day5:82	OI K,EI K,WIK,WI K
Papanikolaou,2005	Hum Reprod.	Brussels	2001.1-2003.11	RCT	IVF/ICSI	Day3:27	OPR,LBR,MBR,EPR
r apalikolaou,2005	Hum Reprod.	Diusseis	2001.1-2005.11	Rei	Winesi	Day5:42	OT R,EDR,MDR,ET R
Papanikolaou,2006	N Engl J Med.	Brussels	2003.7-2004.11	RCT	IVF/ICSI	Day3:59	CPR,OPR,MPR,IR,DR,E
r upalikoluou,2000	Tt Engl 7 Med.	Diassels	2003.7 2004.11	Ref	TTTTTCST	Day5:73	
Dalal,2015	IVF Lite	India	2012.3-2013.3	RCT	IVF/ICSI	Day3:83	CPR,IR,MR
						Day5:61	
Hreinsson ,2004	EurJObstet Gynecol Reprod	Sweden		RCT	IVF/ICSI	Day3:25	CPR,MR,IR,EPR
	Biol.					Day5:22	
Fernández-Shaw,2014	J Assist Reprod Genet.	USA	2011.6-2013.10	RCT	IVF/ICSI	Day3:16	OPR
remander on an, 2011	This is reproduced.	0011	2011.0 2015.10		11111001	Day5:31	UTK .
A Milki ,2003	BMC Pregnancy Childbirth.	USA	Since 1998	Retrospective cohort	IVF/ICSI	Day3:623	EPR
11 Wilki ,2005	Divice rregnancy childonan.	CON	Since 1996	study	TTTTCST	Day5:333	LIK
Bu,2016	Fertil Steril.	China	2009.6-2015.8	Retrospective cohort	IVF/ICSI	Day3:14240	EPR
54,2010	i chii Stein.	Cinna	2009.0-2015.0	study	Winesi	Day5:1899	LIK
Cheng,2015	Taiwan J Obstet Gynecol.	Taiwan,	1991.1-2013.12	Retrospective cohort	IVF	Day3:574	CPR,EPR
Cheng,2015	Taiwan's Obside Oynecon.	China	1991.1 2019.12	study		Day5:639	er içer iç
Fang,2015	Fertil Steril.	China	2010.6-2013.11	Retrospective case-	IVF	Day3:1896	EPR
1 ang,2015	retur stem.	Cillia	2010.0-2013.11	control study	111	Day5:1069	LIK
Hendawy,2011	Clin Med Insights Reprod	Egypt	2008-2011	Retrospective case-	ICSI	Day2/3:33	CPR,IR,EPR
Tiendawy,2011	Health.	Lgypt	2000-2011	control study	1051	Day5/6:21	CI K,IK,LI K
Huang,2014	Fertil Steril.	China	2006.1-2013.12	Retrospective cohort	IVF	Day3:2430	CPR,EPR
ruang,2014	reitii Stefii.	Ciiiia	2000.1-2013.12	study	IVF	Day5:3134	CFR,EFR
Ishihara,2011	Fertil Steril	Japan	2008	Retrospective cohort	IVF/ICSI	Day3:5833	LBR,EPR,MR
151111212,2011	retur stern	заран	2008	study	IVI/ICSI	Day5:13025	LDK,EFK,WIK
Kang,2011	Clin Exp Reprod Med.	Korea	2008.8-2009.12	Retrospective cohort	IVF/ICSI	Day3:210	CPR,EPR,LBR
ixing,2011	Chill Exp Reprod Med.	ixorea	2000.0-2009.12	study	Willesi	Day5:84	er içer içebir
Kathiresan,2013	Conference report	Los Angeles	2007 2012	Retrospective case-	IVF	Day3:145	EPR
Kathiresan,2015	contenence report	Los Migeles	2007-2012	control study	101	Day5:191	LIK
Li ,2015	Hum Reprod.	New Zealand	2009.1-2011.12	Retrospective cohort	IVF/ICSI	Day3:17920	EPR
51,2015	Hun reprot.	Tew Zealand	2009.1 2011.12	study	Winesi	Day5:26182	LIK
Mesut, 2010	Conference report	Turkey	2004-2009	Retrospective cohort	IVF	Day3:974	CPR,IR,MR,DR,EPR
Mesu, 2010	contener report	Turkey	2004-2009	study	101	Day5:319	CI R,IR,WIR,DR,LI R
Shen,2014	Iran J Reprod Med	China	2012.1-2012.12	Retrospective case-	IVF/ICSI	Day3:561	CPR,MPR,MR,EPR
5111,2017	nan s reprou wieu	CHINA	2012.1-2012.12	control study		Day5/6:135	or room room, Er r
Smith,2013	Reprod Biomed Online.	USA	1998.1-2011.3	Retrospective cohort	IVF	Day3:12231	EPR
Smill,2015	reprod Diomet Onnie.	001	1770.1-2011.3	study	***	Day5:1423	
Our data	Unpublished data	China	2010-2015	Retrospective cohort	IVF/ICSI	Day3:20453	CPR, EPR
	promoted data		_310 2010	study		Day5:10783	
Li,2013	J Int Med Res	China	2010.1-2011.12	Retrospective cohort	IVF	Day3:1272	CPR,EPR
	- 110 1400 1000	Junia	2010.1-2011.12	study	-14	Day5:236	or regard to
Rosman,2009	Fertil Steril.	Japan	1998-2006	Retrospective cohort	IVF	Day3:1991	CPR,EPR
100511011,2009	i orth otorn.	sapan	1990-2000	study	1,1	Day5:2195	CI ILLI I

Fig 2. Characteristics of all studies included in the systematic review. RCT: randomized controlled trial; IVF: in vitro fertilization; ICSI: intracytoplasmic sperm injection; CPR: Clinical pregnancy rate; EPR: ectopic pregnancy rate; OPR: Ongoing pregnancy rage; LBR: Live birth rate; MR: Miscarriage rate; DR: Delivery rate; IR: Implantation rate.

doi:10.1371/journal.pone.0169837.g002

D5-ET than D3-ET in total pregnancies [RR,0.67; 95% CI, 0.54–0.85;143643 pregnancies in 23 studies; $I^2 = 67\%$](Fig 3). After RCTs separated, significant difference was still found in observation studies[RR,0.67; 95% CI,0.53–0.85;142933 pregnancies 16 studies; $I^2 = 75\%$]. Although a general trend of lower EP risk on D5-ET was showed, it did not reach a statistical significance in RCTs[RR,0.85; 95% CI, 0.29–2.51;710 pregnancies in 7 studies; $I^2 = 0\%$](Fig 3).

As the above results provided a high heterogeneity ($I^2 > 50\%$), we pooled the datasets from the original full text and classified them into the fresh embryo transfer (Fre-ET) and frozenthawed embryo transfer (Fro-ET) cycles de novo. D5-ET showed lower EP rate compared to D3-ET in both Fre-ET cycles [RR,0.78;95% CI, 0.69–0.88; 91871 pregnancies in 21 studies; $I^2 =$ 29%] and Fro-ET cycles [RR,0.43;95% CI,0.36–0.51; 51772 pregnancies in 10 studies, $I^2 =$ 33%] (Fig 4). After RCTs separated, significantly difference was still found in retrospective studies in both subgroups of Fre-ET cycles[RR,0.78;95% CI, 0.69–0.88; 91182 pregnancies in 14 studies; $I^2 = 45\%$] and Fro-ET cycles[RR,0.43;95% CI, 0.36–0.51; 51751 pregnancies in 9 studies; $I^2 = 33\%$], while no statistical significance was found in RCTs of Fre-ET cycles only [RR,0.86;95% CI, 0.32–2.26; 689 pregnancies in 7 studies; $I^2 = 0\%$](Fig 4).

Sensitivity Analysis

Sensitivity analysis with 8 studies of low bias risk by allocation concealment and a NOS score at nine did not substantially influence our findings [RR,0.65; 95% CI 0.56–0.76,79885 pregnancies in 8 studies; $I^2 = 10\%$][9, 12, 24, 29, 30, 32, 33, 36](data not shown). Sensitivity analysis excluding studies of day2/3 or day 5/6 ET [34, 35] obtained similar results [RR, 0.65; 95% CI,0.52–0.82; 142893 pregnancies in 21 studies, $I^2 = 68\%$](data not shown). Omitting single study in turn did not significantly alter the initial association of EP rate between D3-ET and D5-ET(S2 Fig).

Publication Bias

Visual inspection of Begg's funnel plots did not suggest obvious publication bias on study findings Publication Bias. The Egger's linear regression test also indicated no evidence of

	Day		Day			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 RCTs							
Fernández-Shaw 2014	0	41	0	27		Not estimable	
Papanikolaou 2005	0	42	1	27	0.5%	0.22 [0.01, 5.14]	·
Kaur 2014	0	68	1	48	0.5%	0.24 [0.01, 5.69]	·
Papanikolaou 2006a	1	58	1	41	0.7%	0.71 [0.05, 10.98]	
Dalal 2015	2	61	3	83	1.5%		
Kolibianakis 2004	1	82	0		0.5%		
Hreinsson 2004 Subtotal (95% CI)	1	22 374	0	25 336	0.5%		-
Total events	5		6				
Heterogeneity: Tau ² = 0	.00: Chi ²	= 2.74.	df = 5 (P	P = 0.74)	$1^2 = 0\%$		
Test for overall effect: Z							
1.1.2 Retrospective Stu	dies						
Huang 2014	33	3134	91	2430	8.8%	0.28 [0.19, 0.42]	
Fang 2015	8	1069	44	1896	5.2%	0.32 [0.15, 0.68]	
Ishihara 2011	128	13025	128	5833	10.5%	0.45 [0.35, 0.57]	-
our data	131	10768	523	20347	11.0%	0.47 [0.39, 0.57]	-
Mesut 2010	3	319	17	974	2.7%	0.54 [0.16, 1.83]	· · · · · · · · · · · · · · · · · · ·
Li 2015	293	26182	327	17920	11.3%	0.61 [0.52, 0.72]	-
Li 2013	5	236	43	1272	4.1%	0.63 [0.25, 1.57]	
Bu 2016	47	1899	491	14240	9.9%	0.72 [0.53, 0.96]	
Smith 2013	23	1423	254	12231	8.5%	0.78 [0.51, 1.19]	
Kang 2011	2	84	6	210	1.8%	0.83 [0.17, 4.05]	· · · · · · · · · · · · · · · · · · ·
Cheng 2015	12	639	10	574	4.6%	1.08 [0.47, 2.48]	
A Milki 2003	13	333	22	623	5.9%	1.11 [0.56, 2.17]	
Shen 2014	4	135	14	561	3.2%		
Kathiresan 2013	9	191	4	145	2.9%		
Rosman 2009	29	2195	8	1991	5.0%	3.29 [1.51, 7.18]	
Hendawy 2011	1	21	0	33	0.5%	4.64 [0.20, 108,78]	
Subtotal (95% CI)		61653		81280	95.9%	0.67 [0.53, 0.85]	•
Total events	741		1982				
Heterogeneity: Tau ² = 0	.12; Chi2	= 59.74	, df = 15	5 (P < 0.0	00001); I ²	= 75%	
Test for overall effect: Z	= 3.28 (F	^o = 0.00	1)				
Total (95% CI)		62027		81616	100.0%	0.67 [0.54, 0.85]	•
Total events	746		1988				
Heterogeneity: Tau ² = 0				(P < 0.0	00001); I ²	= 67%	0.01 0.1 1 10 10
Test for overall effect: Z	= 3.40 (F	P = 0.00	07)				Favours [experimental] Favours [control]
Test for subgroup differ				(P = 0.6)	(7) $I^2 = 0$	<u>%</u>	Favours (experimental) Favours (control)

Fig 3. Forest plot of EP rate for embryo transfer on day 3 versus day 5. Forest plot of EP rate for embryo transfer on day 3 versus day 5 in general, as well as in RCTs and reproductive studies separately.

doi:10.1371/journal.pone.0169837.g003

	Day	5	Day	3		Risk Ratio	Risk Ratio
Study or Subgroup	Events		Events		Weight	M-H, Fixed, 95% Cl	M–H, Fixed, 95% Cl
1.5.1 RCTs							
Fernández-Shaw 2014	0	31	0	16		Not estimable	
Papanikolaou 2005	0	42	1	27	0.3%	0.22 [0.01, 5.14]	•
Kaur 2014	0	68	1	48	0.3%	0.24 [0.01, 5.69]	• • • • • • • • • • • • • • • • • • • •
Papanikolaou 2006a	1	58	1	41	0.2%	0.71 [0.05, 10.98]	
Dalal 2015	2	61	3	83	0.4%	0.91 [0.16, 5.26]	
Kolibianakis 2004	1	82	0	85	0.1%	3.11 [0.13, 75.23]	
Hreinsson 2004	1	22	0	25	0.1%	3.39 [0.15, 79.22]	
Subtotal (95% CI)	-	364	6	325	1.4%	0.86 [0.32, 2.26]	
Total events Heterogeneity: Chi ² = 2. Test for overall effect: Z			6 74); I ² =	0%			
1.5.2 Retrospective stu	dies						
Shen 2014	0	54	14	501	0.5%	0.31 [0.02, 5.20]	
_i 2013	5	236	43	1272	2.3%	0.63 [0.25, 1.57]	
our data	24	1420		19265	11.7%	0.65 [0.43, 0.98]	
Li 2015		16845		11511	44.4%	0.67 [0.56, 0.81]	*
ang 2015	6	357	39	1637	2.4%	0.71 [0.30, 1.65]	
shihara 2011	44	2713	104	4599	13.2%	0.72 [0.51, 1.02]	
mith 2013	23	1423		12231	9.0%	0.78 [0.51, 1.19]	
Kang 2011	2	84	6	210	0.6%	0.83 [0.17, 4.05]	
A Milki 2003	9	271	22	615	2.3%	0.93 [0.43, 1.99]	
Cheng 2015	12	639	10	574	1.8%	1.08 [0.47, 2.48]	
Bu 2016	28 9	807 191	299 4	9342	8.1% 0.8%	1.08 [0.74, 1.59] 1.71 [0.54, 5.44]	
Kathiresan 2013 Rosman 2009	29	2195		145 1991	0.8%		
lendawy 2011	29	2195	8 0	33		3.29 [1.51, 7.18] 4.64 [0.20, 108.78]	
Subtotal (95% CI)		27256	0	63926	98.6%	0.78 [0.69, 0.88]	
Fotal events	407		1521				•
Heterogeneity: Chi ² = 23 Fest for overall effect: Z				= 45%			
rest for overall effect: Z	= 3.94 (P	< 0.000	1)				
Total (95% CI)		< 0.000	1)	64251	100.0%	0.78 [0.69, 0.88]	•
Fotal (95% CI) Fotal events	412	27620	1527		100.0%	0.78 [0.69, 0.88]	•
Total (95% CI) Total events Heterogeneity: Chi ² = 26 Test for overall effect: Z Test for subgroup differe	412 5.61, df = = 3.95 (P	27620 19 (P = < 0.000	1527 0.11); I ² 1)	= 29%			• 0.01 0.1 1 10 Favours [experimental] Favours [control]
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z	412 5.61, df = = 3.95 (P ences: Chi	27620 19 (P = < 0.000	1527 0.11); I ² 1) 5, df = 1	= 29%			
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differe Study or Subgroup	412 5.61, df = = 3.95 (P ences: Chi	27620 $19 (P = < 0.000)^{2} = 0.03$ $y 5$	1527 0.11); I ² 1) 5, df = 1	= 29% (P = 0.8 ay 3	5), I ² = 09	%	Favours [experimental] Favours [control] Risk Ratio
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differe Study or Subgroup L.3.1 RCTs Fernández–Shaw 2014	412 5.61, df = = 3.95 (P ences: Chi Da	27620 $19 (P = < 0.000)^{2} = 0.03$ $y 5$ $5 Tota$	1527 0.11); I ² 1) , df = 1 D I Even	= 29% (P = 0.8 ay 3 ts Tot	5), I ² = 09	% Risk Ratio	Favours [experimental] Favours [control] Risk Ratio % CI M-H, Fixed, 95% CI able
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differe Study or Subgroup L.3.1 RCTs Fernández–Shaw 2014 Subtotal (95% CI)	412 5.61, df = = 3.95 (P ences: Chi Da Events	27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota) 1 1	1527 0.11); I ² 1) , df = 1 D I Even 0	= 29% (P = 0.8 ay 3 ts Tot	5), I ² = 09 :al Weig 11	Risk Ratio Jht M-H, Fixed, 95 Not estim	Favours [experimental] Favours [control] Risk Ratio % CI M-H, Fixed, 95% CI able
Total (95% CI) Total events leterogeneity: Chi ² = 26 To overall effect: Z Test for subgroup differe tudy or Subgroup .3.1 RCTs ernández–Shaw 2014 ubtotal (95% CI) Total events leterogeneity: Not app	412 6.61, df = = 3.95 (P ences: Chi Da Events ((licable	27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota 1 1	1527 0.11); I ² 1) , df = 1 D I Even 0	= 29% (P = 0.8 ay 3 ts Tot	5), I ² = 09 :al Weig 11	Risk Ratio Jht M-H, Fixed, 95 Not estim	Favours [experimental] Favours [control] Risk Ratio % CI M-H, Fixed, 95% CI able
Total (95% CI) Total events leterogeneity: Chi ² = 26 rest for overall effect: Z Test for subgroup different study or Subgroup 3.1 RCTs Ternández–Shaw 2014 subtotal (95% CI) Total events leterogeneity: Not app Test for overall effect: 1	412 5.61, df = = 3.95 (P ences: Chi Da Events ((licable Not applid	27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota 1 1	1527 0.11); I ² 1) , df = 1 D I Even 0	= 29% (P = 0.8 ay 3 ts Tot	5), I ² = 09 :al Weig 11	Risk Ratio Jht M-H, Fixed, 95 Not estim	Favours [experimental] Favours [control] Risk Ratio % CI M-H, Fixed, 95% CI able
Total (95% CI) Total events leterogeneity: Chi ² = 26 rest for overall effect: Z Test for subgroup L.3.1 RCTs Ternández–Shaw 2014 Subtotal (95% CI) Total events leterogeneity: Not app Test for overall effect: 1 L.3.2 Retrospective St	412 5.61, df = = 3.95 (P ences: Chi Da Events ((licable Not applid	27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota 1) 1) cable	1527 0.11); 1 ² 1) 1, df = 1 D 1 <u>I Even</u> 0	= 29% (P = 0.8 ts Tot 0 0	5), I ² = 09 aal Weig 11 11	Risk Ratio Jht M-H, Fixed, 95 Not estim	Favours [experimental] Favours [control] Risk Ratio % Cl M-H, Fixed, 95% Cl able able
Total (95% CI) Total events Heterogeneity: Chi ² = 26 Test for overall effect: Z Test for subgroup differe Study or Subgroup L.3.1 RCTs Ternández–Shaw 2014 Subtotal (95% CI) Total events Heterogeneity: Not app Fest for overall effect: I L.3.2 Retrospective St Shen 2014	412 5.61, df = 3.95 (P ences: Chi Da Events (licable Not applid udies	27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota 1) 1 1) cable 8	1527 0.11); 1 ² 1) , df = 1 D I <u>I Even</u> 0 0	= 29% (P = 0.8 ts Tot 0 0	5), I ² = 09 cal Weig 11 11 60 0.	Risk Ratio Jht M-H, Fixed, 95 Not estim Not estim 1% 6.70 [0.37, 122	Favours [experimental] Favours [control] Risk Ratio CI M-H, Fixed, 95% CI able able
Total (95% CI) Total events leterogeneity: Chi ² = 26 rest for overall effect: Z rest for subgroup differe lited or Subgroup lited or Subgr	412 5.61, df = = 3.95 (P ences: Chi Da Events (((() () () () () () () () () () ()	27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota 0 1 1 1 1 2 3 3 4 8 7 9 4 8 7 9 4	1527 0.11); 1 ² (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	= 29% (P = 0.8 ay 3 ts Tot 0 0	5), I ² = 09 cal Weig 11 11 60 0. 82 10.	Risk Ratio Jht M-H, Fixed, 95 Not estim Not estim 1% 6.70 [0.37, 122	Favours [experimental] Favours [control] Risk Ratio CI M-H, Fixed, 95% CI able able
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differed Study or Subgroup L.3.1 RCTs Fernández-Shaw 2014 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: I L.3.2 Retrospective St Shen 2014 Subtata Mesut 2010	412 6.61, df = = 3.95 (P ences: Chi Da Events (((((((((((((((((((27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota 1 1 1 2 3 4 8 7 934 3 1	1527 0.11); 1 ² (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 24 10 27 9	5), 1 ² = 09 cal Weig 11 11 60 0. 82 10. 74 2.	Risk Ratio <u>ht M-H, Fixed, 95</u> Not estim Not estima 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0 1% 0.54 [0.16, 1	Favours [experimental] Favours [control] Risk Ratio CI M-H, Fixed, 95% CI able able .03]
Total (95% CI) Total events Heterogeneity: Chi ² = 26 Test for overall effect: Z Test for subgroup different Study or Subgroup L.3.1 RCTs Ternández–Shaw 2014 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: I L.3.2 Retrospective St Shen 2014 Sur data Mesut 2010 Li 2015	412 6.61, df = = 3.95 (P ences: Chi Da Events (licable Not applie udies 2 107	27620 19 (P = < 0.000 2 = 0.03 y 5 5 Tota 0 1 1 0 cable 4 8 7 934 3 31 3 933	1527 0.11); I ² 1) 1, df = 1 D I Even 0 0 1 8 2 9 1 7 10	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 24 10 27 9	5), 1 ² = 09 al Weig 11 11 60 0. 82 10. 74 2. 09 31.	Risk Ratio ht M-H, Fixed, 95 Not estim Not estima 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0 1% 0.54 [0.16, 1 7% 0.50 [0.37, 0	Favours [experimental] Favours [control] Risk Ratio Cl M-H, Fixed, 95% Cl able able
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Test for overall effect: Z Fest for subgroup differe Study or Subgroup L.3.1 RCTs Fernández–Shaw 2014 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: I L.3.2 Retrospective St Shen 2014 bur data Mesut 2010 Li 2015 shihara 2011	412 5.61, df = = 3.95 (P ences: Chi Da Events (licable Not applid udies 2 107 3 78	27620 19 (P = < 0.000 2 = 0.03 y 5 5 Tota 0 1 1 0 cable 4 8 7 934 3 933 4 1031	1527 0.11); ² 1) 1, df = 1 D I Even 0 0 0 1 8 2 9 1 7 10 2 2 2 2 2 2 2	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 4 4 10 7 9 8 64	5), $ ^2 = 0$ al Weig 11 11 60 0. 82 10. 74 2. 09 31. 34 10.	Risk Ratio Jht M-H, Fixed, 959 Not estime Not estime 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0 1% 0.54 [0.16, 1 7% 0.52 [0.37, 0 1% 0.54 [0.16, 1 7% 0.52 [0.37, 0	Favours [experimental] Favours [control] Risk Ratio % Cl M-H, Fixed, 95% Cl able able .03] 83] 0.66]
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 rest for overall effect: Z Fest for subgroup differe Study or Subgroup L.3.1 RCTs Fernández–Shaw 2014 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 1 L.3.2 Retrospective St Shen 2014 Jur data Mesut 2010 Li 2015 Shihara 2011 Huang 2014	412 5.61, df = 3.95 (P ences: Chi Da Events (licable Not applie Not applie adies 2 107 3 78 84 33	27620 19 (P = < 0.000 ² = 0.03 y 5 5 Tota 9 3 3 313 3 313	1527 0.11); ² 1) 1, df = 1 D I Even 0 0 0 1 2 3 7 1 2 2 4 5 4 5 2 4 5 2 2 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	= 29% (P = 0.8 ay 3 ts Tol 0 0 0 24 10 7 9 8 64 24 12 91 24	5), 1 ² = 09 al Weig 11 11 60 0. 82 10. 74 2. 9 31. 34 10. 30 25.	Risk Ratio Jht M-H, Fixed, 959 Not estim Not estima 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0 1% 0.54 [0.16, 1 7% 0.50 [0.37, 0 0% 0.42 [0.27, 0 4% 0.28 [0.19, 0	Favours [experimental] Favours [control] Risk Ratio % Cl M-H, Fixed, 95% Cl able able .83] .66] .66] .66] .66]
Total (95% CI) Total events leterogeneity: Chi ² = 26 rest for overall effect: Z Test for subgroup differe l.3.1 RCTs rernández–Shaw 2014 Subtotal (95% CI) Total events leterogeneity: Not app Test for overall effect: I l.3.2 Retrospective St Shen 2014 Sur data Mesut 2010 .i 2015 Shihara 2011 Juang 2014 Sang 2015	412 5.61, df = = 3.95 (P ences: Chi Da Events (((((((((((((27620 19 (P = < 0.000 2 = 0.03 y 5 5 Tota 10) 10) cable 8 8 9 34 3 933 4 1031 3 313 2 71	1527 0.11); 1 ² 1) 1, df = 1 D 1 Even 0 0 1 8 2 9 1 7 10 2 2 2 2 2	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 0 24 10 7 9 8 64 4 12 9 64 4 12 9 64 5 2	5), $ ^2 = 0$; al Weig 11 11 60 0. 82 10. 74 2. 9 31. 34 10. 30 25. 59 1.	Risk Ratio Int M-H, Fixed, 955 Not estim 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0] 1% 0.54 [0.16, 1] 7% 0.52 [0.33, 0] 1% 0.54 [0.12, 2] 6% 0.42 [0.27, 0] 6% 0.28 [0.19, 0] 8% 0.15 [0.03, 0]	Favours [experimental] Favours [control] Risk Ratio M-H, Fixed, 95% CI able
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differe	412 5.61, df = 3.95 (P ences: Chi Da Events (licable Not applie Not applie adies 2 107 3 78 84 33	27620 19 (P = < 0.000 2 ² = 0.03 y 5 5 Tota 1 0 1 1 0 cable 8 9 34 3 933 4 1031 3 9133 2 71 0 109	1527 0.11); 1 ² 1) 1) 1 D 1 Even 0 0 1 8 2 9 1 7 10 2 2 4 2 2 2 1 5 2 2 2 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 0 24 10 7 9 8 64 4 12 9 64 4 12 9 64 5 2	5), l ² = 09 cal Weig 11 11 60 0. 82 10. 74 2. 09 31. 34 10. 30 25. 59 1. 98 17.	Risk Ratio Int M-H, Fixed, 955 Not estim 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0] 1% 0.54 [0.16, 1] 7% 0.52 [0.33, 0] 1% 0.54 [0.12, 2] 6% 0.42 [0.27, 0] 6% 0.28 [0.19, 0] 8% 0.15 [0.03, 0]	Favours [experimental] Favours [control] Risk Ratio M-H, Fixed, 95% CI able
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differe Extra Subgroup differe Extra Subgroup differe Fernández–Shaw 2014 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: 1 L.3.2 Retrospective St Shen 2014 bur data Mesut 2010 .i 2015 shihara 2011 Huang 2014 Fang 2015 Su 2016 A Milki 2003	412 5.61, df = = 3.95 (P ences: Chi Da Events (((((((((((((27620 19 (P = < 0.000 2 ² = 0.03 y 5 5 Tota 1 0 1 1 0 cable 8 9 34 3 933 4 1031 3 9133 2 71 0 109	1527 0.11); 1 ² (1) (1) (1) (1) (1) (1) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 24 10 7 9 8 64 24 12 9 1 24 5 2 20 48 0	5), l ² = 09 cal Weig 11 11 60 0. 82 10. 74 2. 09 31. 34 10. 30 25. 59 1. 98 17.	Risk Ratio Jht M-H, Fixed, 95! Not estim Not estim 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0] 1% 0.54 [0.16, 1] 7% 0.50 [0.37, 0] 6% 0.42 [0.27, 0] 8% 0.15 [0.03, 0] 3% 0.44 [0.28, 0] 2% 1.29 [0.08, 21]	Favours [experimental] Favours [control] Risk Ratio M-H, Fixed, 95% Cl able
Total (95% CI) Total events leterogeneity: Chi ² = 26 rest for overall effect: Z Test for subgroup different Study or Subgroup L.3.1 RCTs Fernández–Shaw 2014 Subtotal (95% CI) Total events leterogeneity: Not app Test for overall effect: 1 L.3.2 Retrospective St Shen 2014 Mesut 2010 J. 2015 Shihara 2011 Huang 2014 Tang 2015 Shihara 2011 Huang 2015 Su 2016 A Milki 2003 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1	412 5.61, df = 3.95 (P ences: Chi Da Events (licable Not applid udies 2 107 78 84 33 2 19 2 4 334 11.90, df	27620 19 (P = < 0.000 2 = 0.03 y 5 5 Tota y 5 5 Tota 0 1 1 0 1 3 313 2 71 3 313 3 71 3 313 2 71 3 313 3 313	1527 0.11); ² 1) 1) 1 Even 0 0 1 7 1 2 2 2 4 2 2 4 5 7 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0	= 29% $(P = 0.8$ $ay 3$ $ts Tot$ 0 0 0 0 0 0 0 0 0 0	5), ² = 09 al Weig 11 11 11 11 11 11 11 11 11 1	Risk Ratio Jht M-H, Fixed, 95! Not estim Not estim 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0] 1% 0.54 [0.16, 1] 7% 0.50 [0.37, 0] 6% 0.42 [0.27, 0] 8% 0.15 [0.03, 0] 3% 0.44 [0.28, 0] 2% 1.29 [0.08, 21]	Favours [experimental] Favours [control] Risk Ratio M-H, Fixed, 95% Cl able
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differed Study or Subgroup I.3.1 RCTs Fernández–Shaw 2014 Subtotal (95% CI) Fotal events Heterogeneity: Not app Fest for overall effect: I I.3.2 Retrospective St Shihara 2014 Huang 2014 Fang 2015 Shihara 2011 Huang 2014 Fang 2015 Su 2016 A Miki 2003 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 1 Fest for overall effect: Z	412 5.61, df = 3.95 (P ences: Chi Da Events (licable Not applid udies 2 107 78 84 33 2 19 2 4 334 11.90, df	27620 19 (P = < 0.000 2 = 0.03 y 5 5 Tota y 5 5 Tota 0 1 1 0 1 3 313 2 71 3 313 2 71 9 109 4 6 3439 4 6 3439 4 6 (P = (P < 0.0)	1527 0.11); ² 1) 1) 1 D 1 Even 0 0 0 1 8 2 9 1 2 2 2 2 2 2 7 4 € 0.16); 0001)	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 24 10 7 9 98 64 12 124 5 2 24 8 0 173 1 1 2 ² = 33%	5), ² = 09 al Weig 11 11 60 0. 82 10. 74 2. 93 1. 34 10. 30 25. 59 1. 8 0. 54 100. 5	Risk Ratio Jht M-H, Fixed, 959 Not estim Not estima 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0] 1% 0.54 [0.16, 1] 7% 0.50 [0.37, 0] 6% 0.42 [0.27, 0] 6% 0.42 [0.27, 0] 0% 0.42 [0.28, 0] 0% 0.43 [0.36, 0]	Favours [experimental] Favours [control] Risk Ratio M-H, Fixed, 95% Cl able
Fotal (95% CI) Fotal events Heterogeneity: Chi ² = 26 Fest for overall effect: Z Fest for subgroup differe Study or Subgroup 1.3.1 RCTs Fernández–Shaw 2014 Subtotal (95% CI) Total events Heterogeneity: Not app Test for overall effect: 1 1.3.2 Retrospective St Shen 2014 Dur data Mesut 2010 Li 2015 Ishihara 2011 Huang 2014 Fang 2015 Bu 2016	412 5.61, df = 3.95 (P ences: Chi Da Events (licable Not applid udies 2 107 78 84 33 2 19 2 4 334 11.90, df	27620 19 (P = < 0.000 2 = 0.03 y 5 5 Tota y 5 5 Tota 0 1 1 0 1 3 313 2 71 9 303 4 031 3 313 2 71 9 109 4 6 3439 4 6 3440	1527 0.11); ² 1) 1) 1 D 1 Even 0 0 0 1 8 2 9 1 2 2 2 2 2 2 7 4 € 0.16); 0001)	= 29% (P = 0.8 ay 3 ts Tot 0 0 0 24 10 7 9 8 64 24 12 9 8 64 24 12 9 2 48 0 173 1 2 ² = 33% 1730	5), ² = 09 al Weig 11 11 11 11 11 11 11 11 11 1	Risk Ratio Jht M-H, Fixed, 959 Not estim Not estima 1% 6.70 [0.37, 122 7% 0.52 [0.33, 0] 1% 0.54 [0.16, 1] 7% 0.50 [0.37, 0] 6% 0.42 [0.27, 0] 6% 0.42 [0.27, 0] 0% 0.42 [0.28, 0] 0% 0.43 [0.36, 0]	Favours [experimental] Favours [control] Risk Ratio M-H, Fixed, 95% Cl able

Fig 4. Forest plot of EP rate for embryo transfer on day 3 versus day 5 in subgroups. Forest plot of EP rate for embryo transfer on day 3 versus day 5 in subgroups. A. Forest plot of EP rate for embryo transfer in fresh cycles on day 3 versus day 5 in general, as well as in RCTs and reproductive studies separately. B. Forest plot of EP rate for embryo transfer in frozen-thawed cycles on day 3 versus day 5 in general, as well as in RCTs and reproductive studies separately.

doi:10.1371/journal.pone.0169837.g004

publication bias among studies of ART and adverse obstetric outcomes (P = 0.10 for total EP)(S3 Fig).

Discussion

The current meta-analysis suggests that the EP rate is significantly lower with D5-ET than with D3-ET. Similar results are found in both the Fre-ET and Fro-ET subgroups.

One explanation may relate to myometrial contractility. In the past few decades, scientists have studied the mechanism of myometrial contractile activity using ultrasonographic and 3-dimensional reconstruction software [37–39]. The primary direction of the uterine contractile waves following ovulation is from the cervix toward the fundus [40]. This movement gradually decreases during the luteal phase, then reaches a nearly quiescent state by day 7 after HCG administration [37]. As we supposed, D5-ET shortens the "wandering" phase of the embryo prior to implantation, which decreases the likelihood of retrograde travel into the Fallopian tube. In addition, the blastocyst-stage embryo has a larger diameter than the previous stage, which probably allows it to be more resistant to the contractile waves of the uterine muscle.

The higher quality of the blastocyst may be another reason for the observed difference in EP rate. In nature cycles, aneuploidy could cause delayed migration, abnormal trophoblasts are more active and therefore implant at an earlier stage [41, 42].While in IVF-ET, Sekhon reported that there was a 60% decrease in the risk of ectopic pregnancy after IVF-PGS[43]. It has been reported that embryos with aneuploidy fail to develop in extended culture to the blastocyst stage [44, 45].Considering the decreased developmental potential of aneuploidy embryos, prolonging in vitro culture to day 5 allows the selection of chromosomally competent embryos [46, 47],and therefore leads to a reduced EP rate.

In the present meta-analysis, the impact of frozen-embryo use might be the most confounding factor. It is well known that estrogen promotes peristalsis in the wall of the Fallopian tube. It has also been shown that EP tends to occur when an excessive estrogen level or a much higher estrogen-to-progesterone ratio is present [48, 49]. Higher estrogen levels may promote tubal implantation through a deleterious impact on Fallopian-tube function [50]; the negative impact can be seen in ciliary-beat frequency [51], tubal-protein secretion [52], embryonic motility [53], and in the implantation process [54]. In our subgroup analysis, a reduced EP rate was seen for D5-ET in both the Fre-ET and Fro-ET populations. This information strengthened our hypothesis.

EP is a life-threatening complication of ART. Therefore, it is important to identify the related risk factors so that they may be avoided or decreased during the ART process. The present meta-analysis suggests strong support for D5-ET in IVF and ICSI. To the best of our knowledge, this is the first large-scale meta-analysis focused on the differing risk for EP between D3-ET and D5-ET. However, our study does have limitations. The majority of the studies included in this meta-analysis were retrospective; the potential for selection bias cannot be avoided, and the robustness of the findings is therefore limited. To correct for this potential bias, we separated out the RCTs and analyzed them independently. We observed a general trend toward a better outcome for D5-ET, but no statistical significance was proven. However, it should be noted that there were only 7 RCTs available for review, each with an insufficient

sample size (theoretically, a total of 1920 subjects in each group are needed for 80% power, but no more than 374 subjects, each group, were included in the available RCTs). Therefore, the significance shown in retrospective studies and in our general results cannot be ignored. The benefits of D5-ET for lowering the EP risk should be fully considered in the ART process. A multicenter RCT using a large sample size is anticipated in the future. Besides, the studies involved in our meta-analysis stepped over a long time (since 1998 to 2015), and there might be some bias on embryo quality during culture/embryo transfer methodology during this long period, however, whether these bias affect our results can not be sure.

Conclusion

The present study suggested that D5-ET can reduce the EP rate compared with D3-ET in IVF/ ICSI cycles, no matter fresh or frozen-thawed embryo transfer was performed. D5-ET may be a better choice for decreased EP risk in ART treatment.

Supporting Information

S1 File. PRISMA 2009 Checklist. (DOC)

S1 Fig. Risk of bias using Cochrane risk assessment tool for RCT. A. Summary of risk bias for each trial. Plus sign, low risk of bias; minus sign, high risk of bias; question mark, unclear risk of bias **B.** Risk of bias graph about each risk of bias item presented as percentages across all included studies.

(TIF)

S2 Fig. Sensitivity analysis of omitting single study in turn. (TIF)

S3 Fig. Publication bias of included study. In the current meta-analysis of ectopic pregnancy between day 3 and day 5 embryo transfer, the publication biases were evaluated by the Begg's funnel plots and Egger's linear regression. **A** Begg's funnel plots of publication bias of EP rate. **B** Egger's linear regression test of publication bias of EP rate, P = 0.10. (TIF)

S1 Table. Characteristics of women with clinical pregnancy in Center for Reproductive Medicine, Shandong University, 2010–2015. (DOCX)

S2 Table. Newcastle-Ottawa quality assessment scale of the included retrospective cohort studies.

(DOCX)

S3 Table. Newcastle–Ottawa quality assessment scale of the included retrospective cohort studies.

(DOCX)

Acknowledgments

The authors thank Dr. Rutvij Dalal and Dra. Sylvia Fernández-Shaw for dataset supporting. We especially thank all the women who participated in this study.

Author Contributions

Conceptualization: LC.

Data curation: LC BZ.

Formal analysis: BZ LC.

Funding acquisition: ZC LC LY.

Methodology: LC BZ.

Project administration: ZC.

Resources: ZC LY.

Software: BZ.

Supervision: ZC LY.

Validation: ZC.

Visualization: LC RT LD LY.

Writing – original draft: BZ.

Writing - review & editing: LC.

References

- Lawani OL, Anozie OB, Ezeonu PO. Ectopic pregnancy: a life-threatening gynecological emergency. International journal of women's health. 2013; 5:515–21. Epub 2013/08/29. PubMed Central PMCID: PMCPMC3751381. doi: 10.2147/IJWH.S49672 PMID: 23983494
- Pisarska MD, Carson SA, Buster JE. Ectopic pregnancy. Lancet (London, England). 1998; 351 (9109):1115–20.
- 3. Van Den Eeden SK, Shan J, Bruce C, Glasser M. Ectopic pregnancy rate and treatment utilization in a large managed care organization. Obstet Gynecol. 2005; 105(5 Pt 1):1052–7.
- Nazari A, Askari HA, Check JH, O'Shaughnessy A. Embryo transfer technique as a cause of ectopic pregnancy in in vitro fertilization. Fertility and sterility [Internet]. 1993; 60(5):[919–21 pp.]. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/837/CN-00096837/frame.html.
- Clayton HB, Schieve LA, Peterson HB, Jamieson DJ, Reynolds MA, Wright VC. Ectopic pregnancy risk with assisted reproductive technology procedures. Obstetrics and Gynecology. 2006; 107(3):595–604. doi: 10.1097/01.AOG.0000196503.78126.62 PMID: 16507930
- Perkins KM, Boulet SL, Kissin DM, Jamieson DJ. Risk of ectopic pregnancy associated with assisted reproductive technology in the United States, 2001–2011. Obstetrics and gynecology [Internet]. 2015; 125(1):[70–8 pp.]. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/644/CN-01078644/frame.html.
- 7. Pansky B. Week 1 of Embryonic Development: Ovulation to Implantation. Review of Medical Embryology: McGraw-Hill; 1982.
- Ishihara O, Kuwahara A, Saitoh H. Frozen-thawed blastocyst transfer reduces ectopic pregnancy risk: an analysis of single embryo transfer cycles in Japan. Fertil Steril. 2011; 95(6):1966–9. doi: 10.1016/j. fertnstert.2011.02.015 PMID: 21377154
- Fang C, Huang R, Wei LN, Jia L. Frozen-thawed day 5 blastocyst transfer is associated with a lower risk of ectopic pregnancy than day 3 transfer and fresh transfer. Fertil Steril. 2015; 103(3):655–61 e3. doi: 10.1016/j.fertnstert.2014.11.023 PMID: 25542820
- Huang B, Hu D, Qian K, Ai J, Li Y, Jin L, et al. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles. Fertil Steril. 2014; 102(5):1345–9. doi: 10.1016/j.fertnstert.2014.07.1245 PMID: 25241365
- Li Z, Sullivan EA, Chapman M, Farquhar C, Wang YA. Risk of ectopic pregnancy lowest with transfer of single frozen blastocyst. Hum Reprod. 2015; 30(9):2048–54. doi: 10.1093/humrep/dev168 PMID: 26202917

- Smith LP, Oskowitz SP, Dodge LE, Hacker MR. Risk of ectopic pregnancy following day-5 embryo transfer compared with day-3 transfer. Reprod Biomed Online. 2013; 27(4):407–13. doi: 10.1016/j. rbmo.2013.06.015 PMID: 23953586
- Milki AA, Jun SH. Ectopic pregnancy rates with day 3 versus day 5 embryo transfer: A retrospective analysis. BMC Pregnancy and Childbirth. 2003; 3 (no pagination)(7). doi: <u>10.1186/1471-2393-3-7</u> PMID: <u>14604439</u>
- Rosman ER, Keegan DA, Krey L, Liu M, Licciardi F, Grifo JA. Ectopic pregnancy rates after in vitro fertilization: a look at the donor egg population. Fertil Steril. 2009; 92(5):1791–3. doi: <u>10.1016/j.fertnstert</u>. 2009.05.041 PMID: 19524897
- Keegan DA, Morelli SS, Noyes N, Flisser ED, Berkeley AS, Grifo JA. Low ectopic pregnancy rates after in vitro fertilization: do practice habits matter? Fertility and Sterility. 2007; 88(3):734–6. doi: 10.1016/j. fertnstert.2006.11.169 PMID: 17316634
- Barnhart K, van Mello NM, Bourne T, Kirk E, Van Calster B, Bottomley C, et al. Pregnancy of unknown location: a consensus statement of nomenclature, definitions, and outcome. Fertil Steril. 2011; 95 (3):857–66. PubMed Central PMCID: PMCPMC3032825. doi: 10.1016/j.fertnstert.2010.09.006 PMID: 20947073
- Higgins JPT, Altman DG, Sterne JAC. Assessing risk of bias in included studies. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 510 [updated March 2011]. Chichester: John Wiley & Sons: The Cochrane Collaboration; 2011.
- Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. 2010.
- Egger M, Davey Smith G, Schneider M, C. M. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997; 315:629–34. PMID: 9310563
- Moher D, Liberati A, Tetzlaff J, DG; A, Group tP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009; 62(1006–12). doi: <u>10.1016/j.jclinepi.</u> 2009.06.005 PMID: <u>19631508</u>
- Mesut N, Ciray HN, Mesut A, Aksoy T, Bahceci M. Effectiveness of frozen embryo transfers by comparing outcomes from day 3, day 5 and post-thawed extended culture of day 3 until day 5. Human Reproduction. 2010; 25:i183.
- 22. Kathiresan ASQ, Rodriguez M, Wang E, Pisarska MD, Hill D, Alexander C. Ectopic pregnancy rates in day 3 versus day 5 embryo transfers in fresh IVF cycles. Fertility and Sterility. 2013;1):S508–S9.
- 23. Kaur P, Swarankar ML, Maheshwari M, Acharya V. A comparative study between cleavage stage embryo transfer at day 3 and blastocyst stage transfer at day 5 in in-vitro fertilization/intra-cytoplasmic sperm injection on clinical pregnancy rates. J Hum Reprod Sci. 2014; 7(3):194–7. PubMed Central PMCID: PMCPMC4229795. doi: 10.4103/0974-1208.142481 PMID: 25395745
- Papanikolaou EG, Camus M, Kolibianakis EM, Van Landuyt L, Van Steirteghem A, Devroey P. In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. The New England journal of medicine. 2006; 354(11):1139–46. Epub 2006/03/17. doi: <u>10.1056/NEJMoa053524</u> PMID: 16540614
- 25. Papanikolaou EG, D'Haeseleer E, Verheyen G, Van de Velde H, Camus M, Van Steirteghem A, et al. Live birth rate is significantly higher after blastocyst transfer than after cleavage-stage embryo transfer when at least four embryos are available on day 3 of embryo culture. A randomized prospective study. Hum Reprod. 2005; 20(11):3198–203. doi: 10.1093/humrep/dei217 PMID: 16055454
- 26. Fernandez-Shaw S, Cercas R, Brana C, Villas C, Pons I. Ongoing and cumulative pregnancy rate after cleavage-stage versus blastocyst-stage embryo transfer using vitrification for cryopreservation: impact of age on the results. J Assist Reprod Genet. 2015; 32(2):177–84. PubMed Central PMCID: PMCPMC4354180. doi: 10.1007/s10815-014-0387-9 PMID: 25403438
- Dalal R, Mishra A, Pai H, Palshetkar N. A prospective trial comparing sequential day 3/day 5 transfer with cleavage stage transfer and blastocyst stage transfer. IVF Lite. 2015; 2(1):30.
- Hreinsson J, Rosenlund B, Fridstrom M, Ek I, Levkov L, Sjoblom P, et al. Embryo transfer is equally effective at cleavage stage and blastocyst stage: a randomized prospective study. Eur J Obstet Gynecol Reprod Biol. 2004; 117(2):194–200. doi: 10.1016/j.ejogrb.2004.06.011 PMID: 15541857
- Kolibianakis EM, Zikopoulos K, Verpoest W, Camus M, Joris H, Van Steirteghem AC, et al. Should we advise patients undergoing IVF to start a cycle leading to a day 3 or a day 5 transfer? Hum Reprod. 2004; 19(11):2550–4. doi: 10.1093/humrep/deh447 PMID: 15298978
- Cheng LY, Lin PY, Huang FJ, Kung FT, Chiang HJ, Lin YJ, et al. Ectopic pregnancy following in vitro fertilization with embryo transfer: A single-center experience during 15 years. Taiwan J Obstet Gynecol. 2015; 54(5):541–5. doi: 10.1016/j.tjog.2015.08.004 PMID: 26522107

- Kang SM, Lee SW, Jeong HJ, Yoon SH, Lim JH, Lee SG. Comparison of elective single cleavageembryo transfer to elective single blastocyst-embryo transfer in human IVF-ET. Clin Exp Reprod Med. 2011; 38(1):53–60. PubMed Central PMCID: PMCPMC3283049. doi: 10.5653/cerm.2011.38.1.53 PMID: 22384419
- **32.** Li RR, Dong YZ, Guo YH, Sun YP, Su YC, Chen F. Comparative study of pregnancy outcomes between day 3 embryo transfer and day 5 blastocyst transfer in patients with progesterone elevation. J Int Med Res. 2013; 41(4):1318–25. doi: 10.1177/0300060513489480 PMID: 23812114
- Bu Z, Xiong Y, Wang K, Sun Y. Risk factors for ectopic pregnancy in assisted reproductive technology: a 6-year, single-center study. Fertil Steril. 2016.
- Shen C, Shu D, Zhao X, Gao Y. Comparison of clinical outcomes between fresh embryo transfers and frozen-thawed embryo transfers. Iranian Journal of Reproductive Medicine. 2014; 12(6):409–14. PMID: 25071849
- Hendawy SF, Raafat T. Comparison between Cleavage Stage versus Blastocyst Stage Embryo Transfer in an Egyptian Cohort Undergoing in vitro Fertilization: A Possible Role for Laser Assisted Hatching. Clin Med Insights Reprod Health. 2011; 5:41–8. PubMed Central PMCID: PMCPMC3888070. doi: 10. 4137/CMRH.S7735 PMID: 24453510
- **36.** Li C, Zhao WH, Zhu Q, Cao SJ, Ping H, Xi X, et al. Risk factors for ectopic pregnancy: A multi-center case-control study. BMC Pregnancy and Childbirth. 2015; 15 (1) (no pagination)(187).
- Fanchin R, Ayoubi JM, Righini C, Olivennes F, Schonauer LM, Frydman R. Uterine contractility decreases at the time of blastocyst transfers. Hum Reprod. 2001; 16(6):1115–9. Epub 2001/06/02. PMID: 11387279
- Lesny P, Killick SR, Tetlow RL, Robinson J, Maguiness SD. Uterine junctional zone contractions during assisted reproduction cycles. Human reproduction update. 1998; 4(4):440–5. Epub 1998/11/24. PMID: 9825859
- Biervliet FP, Lesny P, Maguiness SD, Robinson J, Killick SR. Transmyometrial embryo transfer and junctional zone contractions. Hum Reprod. 2002; 17(2):347–50. Epub 2002/02/01. PMID: <u>11821276</u>
- Schoolcraft WB, Surrey ES, Gardner DK. Embryo transfer: techniques and variables affecting success. Fertil Steril. 2001; 76(5):863–70. Epub 2001/11/13. PMID: <u>11704102</u>
- **41.** Toikkanen S, Joensuu H, Erkkola R. DNA aneuploidy in ectopic pregnancy and spontaneous abortions. Eur J Obstet Gynecol Reprod Biol. 1993; 51(1):9–13. Epub 1993/09/01. PMID: 8282147
- Elias S, LeBeau M, Simpson JL, Martin AO. Chromosome analysis of ectopic human conceptuses. Am J Obstet Gynecol. 1981; 141(6):698–703. Epub 1981/11/15. PMID: <u>7198382</u>
- Sekhon L, Lee J, Mehta S, Mukherjee T, Sandler B, Copperman AB. Are Euploid Embryos Less Likely to Result in Ectopic Implantation? [16]. Obstet Gynecol. 2016; 127 Suppl 1:6s. Epub 2016/05/14.
- Karaki RZ, Samarraie SS, Younis NA, Lahloub TM, Ibrahim MH. Blastocyst culture and transfer: a step toward improved in vitro fertilization outcome. Fertil Steril. 2002; 77(1):114–8. Epub 2002/01/10. PMID: 11779600
- 45. Abdelmassih V, Balmaceda JP, Nagy ZP, Abdelmassih S, Abdelmassih R. ICSI and day 5 embryo transfers: higher implantation rates and lower rate of multiple pregnancy with prolonged culture. Reprod Biomed Online. 2001; 3(3):216–20. Epub 2003/01/07. PMID: 12513858
- Jones GM, Trounson AO, Gardner DK, Kausche A, Lolatgis N, Wood C. Evolution of a culture protocol for successful blastocyst development and pregnancy. Hum Reprod. 1998; 13(1):169–77. Epub 1998/ 03/25. PMID: 9512252
- Staessen C, Platteau P, Van Assche E, Michiels A, Tournaye H, Camus M, et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod. 2004; 19(12):2849– 58. Epub 2004/10/09. doi: 10.1093/humrep/deh536 PMID: 15471934
- Hoover RN, Hyer M, Pfeiffer RM, Adam E, Bond B, Cheville AL, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. The New England journal of medicine. 2011; 365 (14):1304–14. Epub 2011/10/14. doi: 10.1056/NEJMoa1013961 PMID: 21991952
- 49. Acharya KS, Acharya CR, Provost MP, Yeh JS, Steward RG, Eaton JL, et al. Ectopic pregnancy rate increases with the number of retrieved oocytes in autologous in vitro fertilization with non-tubal infertility but not donor/recipient cycles: An analysis of 109,140 clinical pregnancies from the Society for Assisted Reproductive Technology registry. Fertility and Sterility. 2015; 104(4):873–8. doi: 10.1016/j.fertnstert. 2015.06.025 PMID: 26171996
- Shao R, Feng Y, Zou S, Weijdegard B, Wu G, Brannstrom M, et al. The role of estrogen in the pathophysiology of tubal ectopic pregnancy. American journal of translational research. 2012; 4(3):269–78. Epub 2012/09/01. PubMed Central PMCID: PMCPMC3426394. PMID: 22937205

- Nakahari T, Nishimura A, Shimamoto C, Sakai A, Kuwabara H, Nakano T, et al. The regulation of ciliary beat frequency by ovarian steroids in the guinea pig Fallopian tube: interactions between oestradiol and progesterone. Biomedical research (Tokyo, Japan). 2011; 32(5):321–8. Epub 2011/10/29.
- 52. Shao R, Egecioglu E, Weijdegard B, Kopchick JJ, Fernandez-Rodriguez J, Andersson N, et al. Dynamic regulation of estrogen receptor-alpha isoform expression in the mouse fallopian tube: mechanistic insight into estrogen-dependent production and secretion of insulin-like growth factors. American journal of physiology Endocrinology and metabolism. 2007; 293(5):E1430–42. Epub 2007/09/13. doi: 10. 1152/ajpendo.00384.2007 PMID: 17848632
- Parazzini F. Oestrogens and progesterone concentrations and risk of ectopic pregnancy: an epidemiological point of view. Hum Reprod. 1996; 11(2):236–8. Epub 1996/02/01. PMID: 8671198
- 54. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nature reviews Genetics. 2006; 7(3):185–99. Epub 2006/02/18. doi: 10.1038/nrg1808 PMID: 16485018