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Abstract What factors constrain the arrangement of the multiple fields of a place cell? By 
modeling place cells as perceptrons that act on multiscale periodic grid-cell inputs, we analytically 
enumerate a place cell’s repertoire – how many field arrangements it can realize without external 
cues while its grid inputs are unique – and derive its capacity – the spatial range over which it can 
achieve any field arrangement. We show that the repertoire is very large and relatively noise-robust. 
However, the repertoire is a vanishing fraction of all arrangements, while capacity scales only as the 
sum of the grid periods so field arrangements are constrained over larger distances. Thus, grid-
driven place field arrangements define a large response scaffold that is strongly constrained by its 
structured inputs. Finally, we show that altering grid-place weights to generate an arbitrary new 
place field strongly affects existing arrangements, which could explain the volatility of the place 
code.

Introduction
As animals run around in a small familiar environment, hippocampal place cells exhibit localized firing 
fields at reproducible positions, with each cell typically displaying at most a single firing field (O’Keefe 
and Dostrovsky, 1971; Wilson and McNaughton, 1993). However, a place cell generates multiple 
fields when recorded in single large environments (Fenton et al., 2008; Park et al., 2011; Rich et al., 
2014) or across multiple environments (Muller et al., 1987; Colgin et al., 2008), including different 
physical and nonphysical spaces (Aronov et al., 2017).

Within large spaces, the locations seem to be well-described by a random process (Rich et al., 
2014; Cheng and Frank, 2011), and across spaces the place-cell codes appear to be independent 
or orthogonal (Muller et al., 1987; Colgin et al., 2008; Alme et al., 2014), also potentially consis-
tent with a random process. However, a more detailed characterization of possible structure in these 
responses is both experimentally and theoretically lacking, and we hypothesize that there might be 
structure imposed by grid cells in place field arrangements, especially when spatial cues are sparse 
or unavailable.

Our motivation for this hypothesis arises from the following reasoning: grid cells (Hafting et al., 
2005) are a critical spatially tuned population that provides inputs to place cells. Their codes are unique 
over very large ranges due to their modular, multi-periodic structure (Fiete et al., 2008; Sreenivasan 
and Fiete, 2011; Mathis et al., 2012). They appear to integrate motion cues to update their states 
and thus reliably generate fields even in the absence of external spatial cues (Hafting et al., 2005; 
McNaughton et al., 2006; Burak and Fiete, 2006; Burak and Fiete, 2009). Thus, it is possible that 
in the absence of external cues spatially reliable place fields are strongly influenced by grid-cell inputs.
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To generate theoretical predictions under this hypothesis, we examine here the nature and strength 
of potential constraints on the arrangements of multiple place fields driven by grid cells. On the one 
hand, the grid inputs are nonrepeating (unique) over a very large range that scales exponentially with 
the number of grid modules (given roughly by the product of the grid periods), and thus rich (Fiete 
et al., 2008; Sreenivasan and Fiete, 2011; Mathis et al., 2012); are these unique inputs sufficient 
to enable arbitrary place field arrangements? On the other hand, this vast library of unique coding 
states lies on a highly nonlinear, folded manifold that simple read-outs might not be able to discrim-
inate (Sreenivasan and Fiete, 2011). This nonlinear structure is a result of the geometric, periodi-
cally repeating structure of individual modules (Stensola et al., 2012); should we expect place field 
arrangements to be constrained by this structure?

These questions are important for the following reason: a likely role of place cells, and the view 
we espouse here, is to build consistent and faithful associations (maps) between external sensory 
cues and an internal scaffold of motion-based positional estimates, which we hypothesize is derived 
from grid inputs. This perspective is consistent with the classic ideas of cognitive maps (O’Keefe 
and Nadel, 1978; Tolman, 1948; McNaughton et al., 2006) and also relates neural circuitry to the 
computational framework of the simultaneous localization and mapping (SLAM) problem for robots 
and autonomously navigating vehicles (Leonard and Durrant-Whyte, 1991; Milford et al., 2004; 
Cadena et al., 2016; Cheung et al., 2012; Widloski and Fiete, 2014; Kanitscheider and Fiete, 
2017a; Kanitscheider and Fiete, 2017b; Kanitscheider and Fiete, 2017c). We can view the forma-
tion of a map as ‘decorating’ the internal scaffold with external cues. For this to work across many 
large spaces, the internal scaffold must be sufficiently large, with enough unique states and resolution 
to build appropriate maps.

A self-consistent place-cell map that associates a sufficiently rich internal scaffold with external 
cues can enable three distinct inferences: (1) allow external cues to correct errors in motion-based 
location estimation (Welinder et al., 2008; Burgess, 2008; Sreenivasan and Fiete, 2011; Hardcastle 
et al., 2014), through cue-based updating; (2) predict upcoming external cues over novel trajectories 
through familiar spaces by exploiting motion-based updating (Sanders et  al., 2020; Whittington 
et al., 2020); and (3) drive fully intrinsic error correction and location inference when external spatial 
cues go missing and motion cues are unreliable by imposing self-consistency (Sreenivasan and Fiete, 
2011).

In what follows, we characterize which arrangements of place fields are realizable based on grid-
like inputs in a simple perceptron model, in which place cells combine their multiple inputs and make 
a decision on whether to generate a field (‘1’ output) or not (‘0’ output) by selecting input weights 
and a firing threshold (Figure 1A,B). However, in contrast to the classical perceptron results, which are 
derived under the assumption of random inputs that are in general position (a property related to the 
linear independence of the inputs), grid inputs to place cells are structured, which adds substantial 
complexity to our derivations.

We show analytically that each place cell can realize a large repertoire of arrangements across all 
possible space where the grid inputs are unique. However, these realizable arrangements are a special 
and vanishing subset of all arrangements over the same space, suggesting a constrained structure. We 
show that the capacity of a place cell or spatial range over which all field arrangements can be realized 
equals the sum of distinct grid periods, a small fraction of the range of positions uniquely encoded by 
grid-like inputs. Overall, we show that field arrangements generated from grid-like inputs are more 
robust to noise than those driven by random inputs or shuffled grid inputs.

Together, our results imply that grid-like inputs endow place cells with rich and robust spatial scaf-
folds, but that these are also constrained by grid-cell geometry. Rigorous proofs supporting all our 
mathematical results are provided in Appendix 1. Portions of this work have appeared previously in 
conference abstract form (Yim et al., 2019).

Modeling framework
Place cells as perceptrons
The perceptron model (Rosenblatt, 1958) idealizes a neuron as computing a weighted sum of its 
inputs (‍xj ∈ RN

‍) based on learned input weights (‍w ∈ RN ‍) and applying a threshold (‍θ‍) to generate 
a binary response that is above or below threshold. A perceptron may be viewed as separating its 

https://doi.org/10.7554/eLife.62702


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Yim et al. eLife 2021;10:e62702. DOI: https://doi.org/10.7554/eLife.62702 � 3 of 50

Figure 1. The grid-like code and modeling place cells as perceptrons. (A) Grid-like inputs and a conceptual view of a place cell as a perceptron: each 
place cell combines its feedforward inputs, including periodic drive from grid cells (responses simplified here to one spatial dimension) of various 
periods and phases (blue and red cells are from modules with different periods) to generate location-specific activity that might be multiply peaked 
across large spaces. Can these place fields be arranged arbitrarily? (B) Idealization of a place cell as a perceptron: in discretized 1-D space, the grid-like 
inputs are discrete patterns that for simplicity we consider to be binary; place fields are assigned at locations where the weighted input sum exceeds 
a threshold ‍θ‍. A place field arrangement can be considered as a set of binarized output labels (1 for each field, 0 for non-field locations) for the set of 
input patterns. We count field arrangements over the range of locations where the grid-like inputs have unique states; for two modules with periods 

‍{2, 3}‍, this range is 6 (the LCM of the grid periods). LCM = least common multiple; GCD = greatest common divisor.

https://doi.org/10.7554/eLife.62702
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high-dimensional input patterns into two output categories (‍y ∈ {0, 1}‍) (Figure 2A), with the catego-
rization depending on the weights and threshold so that sufficiently weight-aligned input patterns fall 
into category 1 and the rest into category 0:

	﻿‍

y(xj) =




1 if w · xj − θ > 0 ,

0 otherwise . ‍�
(1)

If each partitioning of inputs into the ‍{0, 1}‍ categories is called a dichotomy, then the only dichoto-
mies ‘realizable’ by a perceptron are those in which the inputs are linearly separable – that is, the set of 
inputs in category 0 can be separated from those in category 1 by some linear hyperplane (Figure 2). 
Cover’s counting theorem (Cover, 1965; Vapnik, 1998) provides a count of how many dichotomies 
a perceptron can realize if input patterns are random (more specifically, in general position). A set of 
patterns ‍{x1, . . . , xP}‍ in an ‍N ‍-dimensional space is in general position if no subset of size smaller than 

Figure 2. Linear separability, counting dichotomies, and separating capacity for perceptrons. (A) A set of patterns (locations given by circles) that are 
assigned positive and negative labels (filled versus open), called a dichotomy of the patterns, is realizable by a perceptron if positive examples can 
be linearly separated (by a hyperplane) from the rest. The perceptron weights ‍w‍ encode the direction normal to the separating hyperplane, and the 
threshold sets its distance from the origin. (B) An example with input dimension ‍N = 3‍ (the input dimension is the length of each input pattern vector, 
which equals the number of input neurons). When placed randomly, ‍P = 4‍ random real-valued patterns optimally occupy space and are said to be 
in general position (left); these patterns define a tetrahedron and all dichotomies are linearly separable. By contrast, structured inputs may occupy a 
lower-dimensional subspace and thus not lie in general position (right). This square configuration exhibits unrealizable dichotomies (as in A, bottom). 
(C) Cover’s results (Cover, 1965): for patterns in general position, the number of realizable dichotomies is ‍2P‍, and thus the fraction of realizable 
dichotomies relative to all dichotomies is 1, when the number of patterns is smaller than the input dimension (‍P < N ‍). The fraction drops rapidly to zero 
when the number of patterns exceeds twice the input dimension (the separating capacity).

https://doi.org/10.7554/eLife.62702
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‍N + 1‍ is affinely dependent. In other words, no subset of ‍n + 1‍ points lies in a ‍(n−1)‍-dimensional plane 
for all ‍n ≤ N ‍. (Figure 2B) and establishes that for ‍P ≤ N ‍ patterns, every dichotomy is realizable by a 
perceptron – this is the perceptron capacity (Figure 2C). For ‍P = 2N ‍, exactly half of the ‍2P‍ possible 
dichotomies are realizable; when ‍P ≫ N ‍ for fixed ‍N ‍, the realizable dichotomies become a vanishing 
fraction of the total (Figure 2C).

Here, to characterize the place-cell scaffold, we model a place cell as a perceptron receiving grid-
like inputs (Figure 1B). Across space, a particular ‘field arrangement’ is realizable by the place cell if 
there is some set of input weights and a threshold (Lee et al., 2020) for which its summed inputs are 
above threshold at only those locations and below it at all others (Figure 1A,B). We call an arrange-
ment of exactly ‍K ‍ fields a ‘K-field arrangement.’.

In the following, we answer two distinct but related questions: (1) out of all potential field arrange-
ments over the entire set of unique grid inputs, how many are realizable, and how does the realizable 
fraction differ for grid-like inputs compared to inputs with matched dimension but different struc-
ture? This is akin to perceptron function counting (Cover, 1965) with structured rather than general-
position inputs and covers constraints within and across environments. We consider all arrangements 
regardless of sparsity, on one extreme, and ‍K ‍-field (highly sparse) arrangements on the other; these 
cases are analytically tractable. We expect the regime of sparse firing to interpolate between these 
two regimes. (2) Over what range of positions is any field arrangement realizable? This is analogous 
to computing the perceptron-separating capacity (Cover, 1965) for structured rather than general-
position inputs.

Although the structured rather than random nature of the grid code adds complexity to our 
problem, the symmetries present in the code also allow for the computation of some more detailed 
quantities than typically done for random inputs, including capacity computations for dichotomies 
with a prescribed number of positive labels (K-field arrangements).

Results
Our approach, summarized in Figure 3, is as follows: we define a mapping from space to grid-like 
input codes (Figure 3A,B), and a generalization to what we call modular-one-hot codes (Figure 3B). 
We explore the geometric structure and symmetries of these codes (Figure 3C). Next, we show how 
separating hyperplanes placed on these structured inputs by place-cell perceptrons permits the real-
ization of some dichotomies (Figure 3D) and thus some spatial field arrangements (Figure 3E), but 
not others, and obtains mathematical results on the number of realizable arrangements and the sepa-
rating capacity.

The structure of grid-like input patterns
Grid cells have spatially periodic responses (Figure 1A,B). Cells in one grid module exhibit a common 
spatial period but cover all possible spatial phases. The dynamics of each module are low-dimensional 
(Fyhn et al., 2007; Yoon et al., 2013), with the dynamics within a module supporting and stabilizing 

Figure 3. Our overall approach. (A, B) Locations (indexed by ‍j‍) map onto grid-like coding states (‍{xi}‍, defining the grid-like codebook) through the 
assignment of spatially periodic responses to grid cells, with different cells in a module having different phases and different modules having different 
periods. (This example: periods 2,3.) (C) The patterns in the grid-like codebook form some nonrandom, geometric structure. (D) The geometric structure 
defines which dichotomies are realizable by separating hyperplanes. (E) A realizable dichotomy in the abstract codebook pattern space, when mapped 
back to spatial locations, corresponds to a realizable field arrangement. Shown is a place field arrangement realized by the separating hyperplane from 
(D). Similarly, an unrealizable field arrangement can be constructed by examination of (D): it would consist of, for instance, fields at locations ‍j = 1, 2‍ 
only (or, e.g., at ‍j = 3, 4, 6‍ only): vertices that cannot be grouped together by a single hyperplane.

https://doi.org/10.7554/eLife.62702
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a periodic phase code for position. Thus, we use the following simple model to describe the spatial 
coding of grid cells and modules: a module with spatial period ‍λm‍ (in units of the spatial discretiza-
tion) consists of ‍λm‍ cells that tile all possible phases in the discretized space while maintaining their 
phase relationships with each other. Each grid cell’s response is a ‍{0, 1}‍-valued periodic function of 
a discretized 1D location variable (indexed by ‍j‍); cell ‍‍ in module ‍m‍ fires (has response 1) whenever 

‍(j − i) mod λm = 0‍, and is off (has response 0) otherwise (Figure 1B). The encoding of location ‍j‍ across 
all Mm modules is thus an ‍N ‍-dimensional vector ‍xj‍, where ‍N =

∑M
m=1 λm‍. Nonzero entries correspond 

to co-active grid cells at position ‍j‍. The total number of unique grid patterns is ‍L = LCM({λ1, . . . ,λM})‍, 
which grows exponentially with ‍M ‍ for generic choices of the periods ‍{λm}‍(Fiete et al., 2008). We 
refer to ‍L‍ as the ‘full range’ of the code. We call the full ordered set of unique coding states ‍{xj}‍ the 
grid-like ‘codebook’ ‍Xg‍.

Because ‍Xg‍ includes all unique grid-like coding states across modules, it includes all possible rela-
tive phase shifts or ‘remappings’ between grid modules (Fiete et al., 2008; Monaco et al., 2011). 
Thus, this full-range codebook may be viewed as the union of all grid-cell responses across all possible 
space and environments. We assume implicitly that 2D grid modules do not rotate relative to each 
other across space or environments. Permitting grid modules to differentially rotate would lead to 
more input pattern diversity, more realizable place patterns, and bigger separating capacity than in 
our present computations.

The grid-like code belongs to a more general class that we call ‘modular-one-hot’ codes. In a 
modular-one-hot code, cells are divided into modules; within each module only one cell is allowed 
to be active (the within-module code is one-hot), but there are no other constraints on the code. 
With ‍m = 1, ..., M ‍ modules of sizes ‍λm‍, the modular-one-hot codebook ‍Xmo‍ contains ‍P =

∏M
m=1 λm‍ unique 

patterns, with ‍P ≥ L‍ for a corresponding grid-like code. When ‍{λ1, · · · ,λM}‍ are pairwise coprime, 
‍P = L‍ and the grid-like and modular-one-hot codebooks contain identical patterns. However, even in 
this case, modular-one-hot codes may be viewed as a generalization of grid-like codes as there is no 
notion of a spatial ordering in the modular-one-hot codes, and they are defined without referring to 
a spatial variable.

Of our two primary questions introduced earlier, question (1) on counting the size of the place-
cell repertoire (the number of realizable field arrangements) depends only on the geometry of the 
grid coding states, and not on their detailed spatial embedding (i.e., it depends on the mappings in 
Figure 3B–D, but not on the mapping between Figure 3A,B,D,E). In other words, it does not depend 
on the spatial ordering of the grid-like coding states and can equivalently be studied with the corre-
sponding modular-one-hot code instead, which turns out to be easier. Question (2), on place-cell 
capacity (the spatial range ‍l ≤ L‍ over which any place field arrangement is realizable), depends on the 
spatial embedding of the grid and place codes (and on the full chain of Figure 3A-E). For ‍l < L‍, this 
would correspond to a particular rather than random subset of ‍Xmo‍, thus we cannot use the general 
properties of this generalized version of the grid-like code.

Alternative codes
In what follows, we will contrast place field arrangements that can be obtained with grid-like or 
modular-one-hot codes with arrangements driven by alternatively coded inputs. To this end, we briefly 
define some key alternative codes, commonly encountered in neuroscience, machine learning, or 
in the classical theory of perceptrons. For these alternative codes, we match the input dimension 
(number of cells) to the modular-one-hot inputs (unless stated otherwise).

Random codes ‍Xr‍, used in the standard perceptron results, consist of real-valued random vectors. 
These are quite different from the grid-like code and all the other codes we will consider, in that the 
entries are real-valued rather than ‍{0, 1}‍-valued like the rest. A set of up to ‍N ‍ random input patterns in 
‍N ‍ dimensions is linearly independent; thus, they have no structure up to this number.

Define the one-hot code ‍Xoh‍ as the set of vectors with a single nonzero element whose value is 1. 
It is a single-module version of the modular-one-hot code or may be viewed as a binarized version of 
the random patterns since ‍N ‍ patterns in ‍N ‍ dimensions are linearly independent. In the one-hot code, 
all neurons are equivalent, and there is no modularity or hierarchy.

Define the ‘binary’ code ‍Xb‍ as all possible binary activity patterns of ‍N ‍ neurons (Figure 4B, right). 
We distinguish ‍{0, 1}‍-valued codes from binary codes. In the binary code, each cell represents a 
specific position (register) according to the binary number system. Thus, each cell represents numbers 

https://doi.org/10.7554/eLife.62702
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at a different resolution, differing in powers of 2, and the code has no neuron permutation invariance 
since each cell is its own module; thus, it is both highly hierarchical and modular.

The grid-like and modular-one-hot codes exhibit an intermediate degree of modularity (multiple 
cells make up a module). If the modules are of a similar size, the code has little hierarchy.

Figure 4. The geometry of structured inputs. (A) Though the grid-like input patterns in the example Figure 1B are 5D, they have a simplified structure 
that can be embedded as a 3D triangular prism given by the product of a 2-graph (blue, middle) and 3-graph (red, right) because of the independently 
updating modular structure of the code. (B) Different codebooks and their geometries. At one end of the spectrum (left), one-hot codes consist of a 
single module; they are not hierarchical, and their geometry is always an elementary simplex (left). Grid cells and modular-one-hot codes (middle) have 
an intermediate level of hierarchy and consist of an orthogonal product of simplices. At the opposite end, the binary code (right) is the most hierarchical, 
consisting of as many modules as cells; the code has a hypercube geometry: vertices (codewords or patterns) on each face of the hypercube are far from 
being in general position.

https://doi.org/10.7554/eLife.62702
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The geometry of grid-like input patterns
We first explore question ‍(1)‍. The modular-one-hot codebook ‍Xmo‍ is invariant to permutations of 
neurons (input matrix rows) within modules, but rows cannot be swapped across modules as this would 
destroy the modular structure. It is also invariant to permutations of patterns (input matrix columns ‍xj‍). 
Further, the codebook includes all possible combinations of states across modules, so that modules 
function as independent encoders. These symmetries are sufficient to define the geometric arrange-
ment of patterns in ‍Xmo‍, and the geometry in turn will allow us to count the number of field arrange-
ments that are realizable by separating hyperplanes.

To make these ideas concrete, consider a simple example with module sizes ‍{2, 3}‍ (corresponding 
to the periods in the grid-like code), as in Figure 1B and Figure 3B. Independence across modules 
causes the code to have a product structure in the code: the codebook consists of six states that 
can be obtained as products of the within-module states: ‍{10100, 10010, 10001, 01100, 01010, 01001}‍ 
= ‍{10, 01} × {100, 010, 001}‍, where ‍{10, 01}‍ and ‍{100, 010, 001}‍ are the coding states within the size-2 
and size-3 modules, respectively. We represent the two states in the size-2 module by two vertices, 
connected by an edge, which shows allowed state transitions within the module (Figure 4A, right). 
Similarly, the three states in the size-3 module and transitions between them are represented by a 
triangular graph (Figure 4A, right). The product of this edge graph and the triangle graph yields the 
full codebook ‍Xmo‍. The resulting product graph (Figure 4A, left) is an orthogonal triangular prism with 
vertices representing the combined patterns.

This geometric construction generalizes to an arbitrary number of modules ‍M ‍ and to arbitrary 
module sizes (periods) ‍λm‍, ‍1 ≤ m ≤ M ‍: by permutation invariance of neurons within modules, and 
independence of modules, the patterns of the codebook ‍Xmo‍ and thus of the corresponding grid-like 
codebook ‍Xg‍ always lie on the vertices of some convex polytope (e.g., the triangular prism), given by 
an orthogonal product of ‍M ‍ simplicies (e.g., the line and triangle graphs). Each simplex represents 
one of the modules, with simplex dimension ‍λm − 1‍ for module size (period) ‍λm‍ (see Place-cell capacity 
and volatility with grid-like inputs).

This geometric construction provides some immediate results on counting: in a convex polytope, 
any vertex can be separated from all the rest by a hyperplane; thus, all one-field arrangements are 
realizable. Pairs of vertices can be separated from the rest by a hyperplane if and only if the pair is 
directly connected by an edge (Figure 3D). Thus, we can now count the set of all realizable two-field 
arrangements as the number of adjacent vertices in the polytope. Unrealizable two-field arrange-
ments, which consist geometrically of positive labels assigned to nonadjacent vertices, correspond 
algebraically to firing fields that are not separated by integer multiples of either of the grid periods 
(Figure 3D,E).

Moreover, note that the convex polytopes obtained for the grid-like code remain qualitatively 
unchanged in their geometry if the nonzero activations within each module are replaced by graded 
tuning curves as follows: convert all neural responses within a module into graded values by convo-
lution along the spatial dimension by a kernel that has no periodicity over distances smaller than the 
module period (thus, the kernel cannot, for instance, be flat or contain multiple bumps within one 
module period). This convolution can be written as a matrix product with a circulant matrix of full rank 
and dimension equal to the full range ‍L‍. Thus, the rank of the convolved matrix ‍̃Xg‍ remains equal to 
the rank of ‍Xg‍. Moreover, ‍̃Xg‍ maintains the modular structure of ‍Xg‍: it has the same within-module 
permutation invariance and across-module independence. Thus, the resulting geometry of the code 
– that it consists of convex polytopes constructed from orthogonal products of simplices – remains 
unchanged. As a result, all counting derivations, which are based on these geometric graphs, can be 
carried out for ‍{0, 1}‍-valued codes without any loss of generalization relative to graded tuning curves. 
(However, the conversion to graded tuning will modify the distances between vertices and thus affect 
the quantitative noise robustness of different field arrangements, as we will investigate later.) Later, we 
will also show that the counting results generalize to higher dimensions and higher-resolution phase 
representations within each module.

Given this geometric characterization of the grid-like and modular-one-hot codes, we can 
now compute the number of realizable field arrangements it is possible to obtain with separating 
hyperplanes.

https://doi.org/10.7554/eLife.62702
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Counting realizable place field arrangements
For modular-one-hot codes (but not for random codes), it is possible to specify any separating hyper-
plane using only non-negative weights and an appropriate threshold. This is an interesting property in 
the neurobiological context because it means that the finding that projections from entorhinal cortex 
to hippocampus are excitatory (Steward and Scoville, 1976; Witter et al., 2000; Shepard, 1998) 
does not further constrain realizable field arrangements.

It is also an interesting property mathematically, as we explore below: combined with the within-
module permutation invariance property of modular-one-hot codes, the non-negative weight obser-
vation allows us to map the problem onto Young diagrams (Figure 5), which enables two things: (1) to 
move from considering separating hyperplanes geometrically, where infinitesimal variations represent 
distinct hyperplanes even if they do not change any pattern classifications, to considering them topo-
logically, where hyperplane variations are considered as distinct only if they change the classification 
of any patterns, and (2) to use counting results previously established for Young diagrams.

Let us consider the field arrangements permitted by combining grid-like inputs from two modules, 
of periods ‍λ1‍ and ‍λ2‍, (Figure 5A). The total number of distinct grid-cell modules is estimated to be 
between 5 and 8 (Stensola et al., 2012). Further, there is a spatial topography in the projection of grid 
cells to the hippocampus, such that each local patch of the hippocampus likely receives inputs from 
2, and likely no more than 3, grid modules (Witter and Groenewegen, 1984; Amaral and Witter, 
1989; Witter and Amaral, 1991; Honda et al., 2012; Witter et al., 2000). We denote cells by their 
outgoing weights (‍wij‍ is the weight from cell ‍j‍ in module ‍‍) and arrange the weights along the axes of a 
coordinate space, one axis per module, in order of increasing size (Figure 5B). Since modular-one-hot 
codes are invariant to permutation of the cells within a module, we can assume a fixed ordering of 

Figure 5. Counting realizable place field arrangements. (A) Geometric structure of a modular-one-hot code with two modules of periods ‍λ1 = 5‍ and 

‍λ2 = 7‍. (B–D) Because cells within a module can be freely permuted, we can arrange the cells in order of increasing weights and keep this ordering fixed 
during counting, without loss of generality. We arrange the cells in modules 1 and 2 along the ordinate and abcissa in increasing weight order (solid blue 
and red lines, respectively). Because the weights can all be assumed to be non-negative for modular-one-hot codes, the threshold can be interpreted as 
setting a summed-weight budget: no cell (weight) combinations (purple regions with purple-white circles) below the threshold (diagonal purple line) can 
contribute to a place field arrangement, while all cell combinations with larger summed weights (unmarked regions) can. Increasing the threshold (from 
B to C) decreases the number of permitted combinations, as does decreasing the weights (B to D). Weight changes (B, from solid to dashed lines) and 
threshold changes (C, solid to dashed line), so long as they do not change which lines are to the bottom-left of the threshold, do not affect the number 
of permitted combinations, reflecting the topological structure of the counting problem. (E) With Young diagrams (each corresponding to B–D above), 
we extract the purely topological part of the problem, stripping away analog weights to simplify counting. A Young diagram consists of stacks of blocks 
in rows of nonincreasing width within a grid of a maximum width and height. The number of realizable field arrangements is simply the total number and 
multiplicity of distinct Young diagrams that can be built of the given height and width (see Appendix 3), which in our case is given by the periods of the 
two modules.

https://doi.org/10.7554/eLife.62702
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cells and weights in counting all realizable arrangements, without loss of generality. The threshold 
(dark purple line) sets which combination of summed weights can contribute to a place field arrange-
ment: no cell combinations below the boundary (purple region) have too small a summed weight 
and cannot contribute, while all cell combinations with larger summed weights (white region) can 
(Figure 5B). Decreasing the threshold (from Figure 5B to C) or increasing weights (from Figure 5B,C 
to D) a sufficient amount so some cells cross the threshold increases the number of combinations. 
But changes that do not cause cells to move past the threshold do not change the combinations 
(Figure 5B, solid versus dashed gray lines).

Young diagrams extract this topological information, stripping away geometric information about 
analog weights (Figure 5E). A Young diagram consists of stacks of blocks in rows of nonincreasing 
width, with maximum width and height given in this case by the two module periods, respectively. 
The number of realizable field arrangements turns out to be equivalent to the total number of Young 
diagrams that can be built of the given maximum height and width (see Appendix 3). With this 
mapping, we can leverage combinatorial results on Young diagrams (Fulton and Fulton, 1997; Post-
nikov, 2006) (commonly used to count the number of ways an integer can be written as a sum of 
non-negative integers).

As a result, the total number of separating hyperplanes (K-field arrangements for all ‍K ‍) across the 
full range ‍L‍ can be written exactly as (see Appendix 3).

	﻿‍
Nλ1,λ2 =

min(λ1,λ2)∑
k=0

(k!)2 S(λ1+1)
k+1 S(λ2+1)

k+1 = B(−λ1)
λ2

,
‍�

(2)

where ‍S
(n)
k ‍ are Stirling numbers of the second kind and ‍B

(n)
k ‍ are the poly-Bernoulli numbers (Post-

nikov, 2006; Kaneko, 1997). Assuming that the two periods have a similar size ‍(λ1 ≈ λ2 ≡ λ)‍, this 
number scales asymptotically as (de Andrade et al., 2015).

	﻿‍
Nλ,λ = B(−λ)

λ =
(

1
log 2

√
1 − log 2

+ o(1)
)

(2λ)!
(2 log 2)2λ ∼ λ2λ .

‍�
(3)

Thus, the number of realizable field arrangements with ‍∼ λ2‍ distinct modular-one-hot input patterns 
in a ‍2λ‍-dimensional space grows nearly as fast as ‍λ2λ‍, (Table 1, row 2, columns 1–3). The total number of 
dichotomies over these input patterns scales as ‍2λ

2
.‍ Thus, while the number of realizable arrangements over 

the full range is very large, it is a vanishing fraction of all potential arrangements (Table 1, row 2, column 4).
If ‍M ≥ 3‍ modules were to contribute to each place field’s response, then all realizable field arrange-

ments still would correspond to Young diagrams; however, not all diagrams would correspond to 
realizable arrangements. Thus, counting Young diagrams would yield an upper bound on the number 
of realizable field arrangements but not an exact count (see Appendix 3). The latter limitation is not a 
surprise: Due to the structure of the grid-like code (a product of simplices), the enumeration of realiz-
able dichotomies with arbitrarily many input modules is expected to be at least as challenging as that 
of Boolean functions. Counting the number of linearly separable Boolean functions of arbitrary (input) 
dimension (Peled and Simeone, 1985; Hegedüs and Megiddo, 1996) is hard.

Nevertheless, we can provide an exact count of the number of realizable ‍K ‍-dichotomies for arbi-
trarily many input modules ‍M ‍ if ‍K ‍ is small (‍K = 1, 2, 3‍ and 4). This may be biologically relevant since 

Table 1. Number and fraction of realizable dichotomies with binary, modular-one-hot (‍M = 2‍ 
modules) and one-hot input codes with the same input cell budget (‍N = 2λ‍).

# cells # input patts (L) # lin dichot Frac lin dichot

Binary

2λ 22λ 22λ2 ‍22λ2−22λ
‍

= << << >>

Modular-one-hot

2λ λ2 ‍

(
λ

e log(2)

)2λ

‍ ‍22λ log(λ)−λ2
‍

= << << >>

One-hot 2λ 2λ 22λ 1
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place fields tend to fire sparsely even on long tracks and across environments. In this case, the number 
‍NK‍ of realizable small-‍K ‍ field arrangements scales as (the exact expression is derived analytically in 
Appendix 3)

	﻿‍ NK ∼ MK−1λM+K−1.‍� (4)

The scaling approximation becomes more accurate for periods that are large relative to the spatial 
discretization (see Appendix 3). Since the total number of K-dichotomies scales as ‍λMK ‍, the fraction 
of realizable K-dichotomies scales as ‍(M/λ)K−1λ−(M−1)

‍, which for ‍λ ≫ 1,λ > M ‍ vanishes as a power 
law as soon as ‍M > 1‍.

We can compare this result with the number of K-field arrangements realizable by one-hot codes. 
Since any arrangement is realizable with one-hot codes, it suffices to simply count all K-field arrange-
ments. The full range of a one-hot code with ‍Mλ‍ cells is ‍Mλ‍, thus the number of realizable K-field 
arrangements is ‍NK =

(Mλ
K
)
∼ (Mλ)K

‍, where the last scaling holds for ‍K ≪ Mλ‍. In short, a one-hot code 
enables ‍∼ MKλK ‍ arrangements, while the corresponding modular-one-hot code with ‍Mλ‍ cells enables 
‍∼ MK−1λK+M−1‍ field arrangements, for a ratio ‍λM−1/M ≫ 1‍ of realizable fields with modular-one-hot 
versus one-hot codes. Once again, as in the case where we counted arrangements without regard to 
sparseness, the grid-like code enables far more realizable K-field arrangements than one-hot codes.

In summary, place cells driven by grid inputs can achieve a very large number of unique coding 
states that grows exponentially with the number of modules. We have derived this result for ‍M = 2‍ 
and all K-field arrangements, on one hand, and for arbitrary ‍M ‍ but ultra-sparse (small-‍K ‍) field arrange-
ments. It is difficult to obtain an exact result for sparse field arrangements for which ‍K ‍ is a small but 
finite fraction of ‍L‍; however, we expect that regime should interpolate between these other two; it will 
be interesting and important for future work to shed light on this intermediate regime. In all cases, the 
number of realizable arrangements is large but a vanishingly small fraction of all arrangements, and 
thus forms a highly structured subset. This suggests that place cells, when driven by grid-cell inputs, 
can form a very large number of field arrangements that seem essentially unrestricted, but individual 
cells actually have little freedom in where to place their fields.

Comparison with other input patterns
How does the number of realizable place field arrangements differ for input codes with different levels 
of modularity and hierarchy? We directly compare codes with the same neuron budget (input dimen-
sion ‍N ‍) by taking ‍N = Mλ‍, where for simplicity, we set ‍λi = λ‍ for all modules in the modular-one-hot 
codes. This is because the modular-one-hot codes include all permutations of states in each module, 
the number of unique input states with equal-sized modules still equals the product of periods 

‍L = (N/M)M = λM
‍, as when the periods are different and coprime. The one-hot code generates far 

fewer distinct input patterns (‍L = N = Mλ‍) than the modular-one-hot code, which in turn generates 
fewer input patterns than the binary code (‍L = 2N = 2Mλ‍) (Table 1, column 2). This is due to the greater 
expressive power afforded by modularity and hierarchy.

Next, we compare results across codes for ‍M = 2‍, the case for which we have an explicit formula 
counting the total number of realizable field arrangements for any ‍K ‍, and which is also best supported 
by the biology.

How many dichotomies are realizable with these inputs? As for the modular-one-hot codes, 
the patterns of ‍Xoh‍ and ﻿‍ Xb‍ fall on the vertices of a convex polytope. For ‍Xoh‍, that polytope is just 
a ‍(N−1)‍-dimensional simplex (Figure 4C, left), thus any subset of ‍K ‍ vertices (‍1 ≤ K ≤ N ‍) lies on a 

‍(K−1)‍-dimensional face of the simplex and is therefore a linearly separable dichotomy. Thus, all ‍2N ‍ 
dichotomies of ‍Xoh‍ are realizable and the fraction of realizable dichotomies is 1 (Table 1, columns 3 
and 4). For ‍Xb‍, the polytope is a hypercube; it therefore consists of square faces, a prototypical config-
uration of points not in general position (not linearly separable, Figure 2B and Figure 4, right) even 
when the number of patterns is small relative to the input dimension (number of cells). Counting the 
number of linearly separable dichotomies on vertices of a hypercube (also called linear Boolean func-
tions) has attracted much interest (Peled and Simeone, 1985; Hegedüs and Megiddo, 1996). It is an 
NP-hard combinatorial problem, so no exact solution exists. However, in the limit of large dimension 

(‍N → ∞‍), the number of linearly separable dichotomies scales as ‍2N2/2‍(Zuev, 1989), a much larger 

https://doi.org/10.7554/eLife.62702
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number than for one-hot inputs (Table 1, column 3). However, this number is a strongly vanishing 

fraction of all ‍22N
‍ hypercube dichotomies (Table 1, column 4).

For modular-one-hot codes with ‍M ‍ modules, the polytopes contain ‍M ‍-dimensional hypercubes 
and not all patterns are thus in general position. We determined earlier that the total number of real-
izable dichotomies with ‍M = 2‍ modules scales as ‍λ2λ‍, permitting a direct comparison with the one-hot 
and binary codes (Table 1, row 2).

Finally, we may compare grid-like codes with random (real-valued) codes, which are the standard 
inputs for the classical perceptron results. For a fixed input dimension, it is possible to generate 
infinitely many real-valued patterns, unlike the finite number achievable by ‍{0, 1}‍-valued codes. We 
thus construct a random codebook ‍Xr‍ with the same number, ‍P = λ2‍, of input patterns as the modular-
one-hot code. We then determine the input dimension ‍N ‍ required to obtain the same number of real-
izable field arrangements as the grid-like code. The number of realizable dichotomies of the random 
code with ‍P ≫ N ‍ patterns scales as ‍PN ∼ λ2N ‍ according to an asymptotic expansion of Cover’s func-
tion counting theorem (Cover, 1965). For this number to match ‍∼ λ2λ‍, the number of realizable field 
arrangements with a one-hot-modular code (of two modules of size ‍∼ λ‍ each requires) ‍N ∼ λ‍. This 
is a comparable number of input cells in both codes, which is an interesting result because unlike for 
random codes the grid-like input patterns are not in general position, the states are confined to be 

‍{0, 1}‍-valued, and the grid input weights can be confined to be non-negative.
In sum, the more modular a code, the larger the set of realizable field arrangements, but these 

are also increasingly special subsets of all possible arrangements and are strongly structured by the 
inputs, with far from random or arbitrary configurations. Modular-one-hot codes are intermediate 
in modularity. Therefore, grid-driven place-cell responses occupy a middle ground between pattern 
richness and constrained structure.

Place-cell-separating capacity
We now turn to question (2) from above: what is the maximal range of locations, ‍l∗‍, over which all 
field arrangements are realizable? Once we reference a spatial range, the mapping of coding states 
to spatial locations matters (specifically, the fact that locations in the range are spatially contiguous 
matters, but given the fact that the code is translationally invariant [Fiete et al., 2008], the origin of 
this range does not). We thus call ‍l∗‍ the ‘contiguous-separating capacity’ of a place cell (though we will 
refer to it as separating capacity, for short); it is the analogue of Cover’s separating capacity (Cover, 
1965), but for grid-like inputs with the addition of a spatial contiguity constraint.

We provide three primary results on this question. (1) We establish that for grid-structured inputs, 
the separating capacity ‍l∗‍ equals the rank ‍R‍ of the input matrix. (2) We establish analytically a formula 
for the rank ‍R‍ of grid-like input matrices with integer periods and generalize the result to real-valued 
periods. (3) We show that this rank, and thus the separating capacity for generic real-valued module 
periods, asymptotically approaches the sum ‍Σ ≡

∑M
m=1 λm‍. Our results are verified by numerical simu-

lation and counting (proofs provided in Supporting Information Appendix).
We begin with a numerical example, using periods {3,4} (Figure  6A): the full range is ‍L = 12‍, 

while we see numerically that the contiguous-separating capacity is ‍l∗ = 6‍. Although the separating 
capacity with grid-structured inputs is smaller than with random inputs, it is notably not much smaller 
(Figure 6B, black versus cyan curves), and it is actually larger than for random inputs if the read-out 
weights are constrained to be non-negative (Figure 6B, pink curves). Later, we will further show that 
the larger random-input capacity of place cells with unrestricted weights comes at the price of less 
robustness: the realizable fields have smaller margins. Next, we analytically characterize the sepa-
rating capacity of place cells with grid-like inputs.

Separating capacity equals rank of grid-like inputs
For inputs in general position, the separating capacity equals the rank of the input matrix (plus 1 when 
the threshold is allowed to be nonzero), and the rank equals the dimension (number of cells) of the 
input patterns – the input matrix is full rank. When inputs are in general position, all input subsets of 
size equaling the separating capacity have the same rank. But when input patterns are not in general 
position, some subsets can have smaller ranks than others even when they have the same size. Thus, 
when input patterns are not in general position the separating capacity is only upper bounded by the 
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Figure 6. Place-cell-separating capacity. (A) Fraction of K-field arrangements that are realizable with grid-like inputs as a function of range (‍L‍ indicates 
the full range; in this example, grid periods are ‍{3, 4}‍ and ‍L = 12‍). (B) Fraction of realizable field arrangements (summed over ‍K ‍) as a function of range 
for grid cells (black); for random inputs, range refers to number of input patterns (solid cyan: random with matching input dimension; open/dashed cyan: 
random with input dimension equal to rank of the grid-like input matrix; dark teal: same as open cyan, but with weights constrained to be non-negative, 
as for grid-like inputs). With the non-negative weight constraint for random inputs, different specific input configurations produce quite different results, 
introducing considerable variability in separating capacity (unlike the unconstrained random input case or the grid code case for which results are exact 
rather than statistical). (C) The grid code is generated by iterated application of a phase-shift operator as a function of one-step updates in position over 
a contiguous 1D range. This feature of the code leads to a separating capacity that achieves its optimal value, given by the rank of the input matrix. (D) 
Separating capacity as a function of the sum of module periods for real-valued periods (randomly drawn from ‍λi ∈ [3, 20]‍ with ‍M ∈ {2, 3, 4, 5, 6}‍, 100 
realizations), showing the quality of the integer approximation at different resolutions. Integer approximations to the real-value periods at successively 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.62702


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Yim et al. eLife 2021;10:e62702. DOI: https://doi.org/10.7554/eLife.62702 � 14 of 50

rank of the full input matrix. In turn, the rank is only upper bounded by the number of cells (the input 
matrix need not be full rank).

For the grid-like code, all codewords can be generated by the iterated application of a linear 
operator ‍J ‍ to a single codeword: a simultaneous one-unit phase shift by a cyclic permutation in each 
grid module is such an operator ‍J ‍, which can be represented by a block-form permutation matrix. 
The sequence ‍x, Jx, J2x, . . . Jmx‍ of patterns generated by applying ‍J ‍ to a grid-like codeword ‍x‍ with the 
same module structure represents ‍m‍ contiguous locations (Figure 6C).

The separating capacity for inputs generated by iterated application of the same linear operation 
saturates its bound by equaling the rank of the input pattern matrix. Since a code ‍x, Jx, J2x, J3x, . . .‍, 
generated by some linear operator ‍J ‍ with starting codeword ‍x‍ is translation invariant, the number of 
dimensions spanned by these patterns strictly increases until some value ‍l‍, after which the dimension 
remains constant. By definition, ‍l‍ is therefore the rank ‍R‍ of the input pattern matrix. It follows that any 
contiguous set of ‍l = R‍ patterns is linearly independent, and thus in general position, which means 
that the separating capacity of such a pattern matrix is ‍R‍.

For place cells, it follows that whenever ‍l ≤ R‍, with ‍R‍ the rank of the grid-like input matrix, all 
field arrangements are realizable, while for any ‍l > R‍, there will be nonrealizable field arrangements 
(Supporting Information Appendix). Therefore, the contiguous-separating capacity for place cells is 
‍l∗ = R‍. This is an interesting finding: the separating capacity of a place cell fed with structured grid-like 
inputs approaches the same capacity as if fed with general-position inputs of the same rank. Next, we 
compute the rank ‍R‍ for grid-like inputs under increasingly general assumptions.

Grid input rank converges to sum of grid module periods
Integer periods
For integer-valued periods ‍λm‍, the rank of the matrix consisting of the multi-periodic grid-like inputs 
can be determined through the inclusion-exclusion principle (see Section B.4):

	﻿‍
Rint(λ1, · · · ,λM) =

M∑
i=1

λi +
M∑
k=2

(−1)k−1

(M
k
)

∑
i=1

GCD(Si
k),

‍�
(5)

where ‍Si
k‍ is the ith of the k-element subsets of ‍{λ1, . . . ,λM}‍. To gain some intuition for this expres-

sion, note that if the periods were pairwise coprime, all the GCDs would be 1 and this formula would 
quite simply produce ‍Rcopr(λ1, . . . ,λM) = Σ− M + 1‍, where ‍Σ‍ is defined as the sum of the module 
periods. If the periods are not pairwise coprime, the rank is reduced based on the set of common 
factors, as in (5), which satisfies the following inequality: ‍Σ−

∑
i<j GCD(λi,λj) ≤ Rint(λ1, · · · ,λM) ≤ Σ‍. 

When the periods are large (‍λ ≫ 1‍), the rank approaches ‍Σ‍. Large integers (‍λ ≫ 1‍) evenly spaced 
or uniformly randomly distributed over some range tend not to have large common factors (Cesaro, 
1881). As a result, even for non-coprime periods, the rank scales like and approaches ‍Σ‍ (see below 
for more elaboration).

Real-valued periods
Actual grid periods are real- rather than integer-valued, but with some finite resolution. To obtain an 
expression for this case, consider the sequence of ranks ‍Rq

re‍ defined as

	﻿‍ Rq
re(λ1, · · · ,λM) = Rint

(
⌊qλ1⌋, · · · , ⌊qλM⌋

)
,‍� (6)

where ‍⌊·⌋‍ denotes the floor operation, ‍q‍ is an effective resolution parameter that takes integer 
values (the larger ‍q‍, the finer the resolution of the approximation to a real-valued period), and the 
periods ‍0 < λ1 < . . . < λM‍ are real numbers. The rank of the grid-like input matrix with real-valued 

finer resolutions quickly converge, with results from ‍q = 2‍ and ‍q = 4‍ nearly indistinguishable from each other. Inset: ratio of separating capacity to sum 
of periods (‍Rq

re/Σ‍ as a function of resolution ‍q‍ quickly approaches 1 from below as ‍q‍ increases). (E, F) Capacity results generalize to multidimensional 
spatial settings: (E) in 2D, grid-cell-activity patterns lie on a hexagonal lattice (all circles of one color mark the activity locations of one grid cell). For grid 
periods ‍{2, 3}‍, this code utilizes 4 two-periodic cells and 9 three-periodic cells, respectively. (F) Full range of the 2D grid-like code from (E). The set of 
contiguous locations over which any place field arrangement is realizable (the 2D separating capacity) is shown in gray.

Figure 6 continued
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periods is given by ‍limq→∞ Rq
re(λ1, · · · ,λM)/q‍, if this limit exists. A finer resolution (higher ‍q‍) corresponds 

to representing phases with higher resolution within each module, and thus intuitively to scaling the 
number of grid cells in each module by ‍q‍.

Suppose that the periods are drawn uniformly from an interval of the reals, which we take without 
loss of generality to be ‍(0, 1)‍. Then the values ‍⌊qλ1⌋, · · · , ⌊qλM⌋‍ are integers in ‍{1, . . . , q}‍ and as above 
we have that ‍0 ≤ qΣ− Rq

re(λ1, · · · ,λM) ≤
∑

i<j GCD(⌊λiq⌋, ⌊λjq⌋)‍. In the infinite resolution limit (‍q → ∞‍), 
the probability ‍GCD(⌊λiq⌋, ⌊λjq⌋) = g‍ scales asymptotically as ‍1/g2

‍, independent of ‍q‍ (Cesaro, 1881), 
which means that large randomly chosen large integers tend not to have large common factors. This 
implies that with probability 1, the limit ‍limq→∞ Rq

re(λ1, · · · ,λM)/q‍ is well-defined and equals ‍Σ‍, the sum 
of the input grid module periods.

When assessed numerically at different resolutions (‍q‍), the approach of the finite-resolution rank 
to the real-valued grid period rank is quite rapid (Figure 6D). Thus, the separating capacity does not 
depend sensitively on the precision of the grid periods. It is also invariant to the resolution with which 
phases are represented within each module.

In summary, the place-cell-separating capacity with real-valued grid periods and high-resolution 
phase representations within each module equals the rank of the grid-like input matrix, which itself 
approaches ‍Σ‍, the sum of the module periods. Thus, a place cell can realize any arrangement of fields 
over a spatial range given by the sum of module periods of its grid inputs.

It is interesting that the contiguous-separating capacity of a place cell fed with grid-like inputs not 
in general position approaches the same capacity as if fed with general-position inputs of the same 
rank. On the other hand, the contiguous-separating capacity is very small compared to the total 
range over which the input grid patterns are unique: since each local region of hippocampus receives 
input from 2 to 3 modules (Witter and Groenewegen, 1984; Amaral and Witter, 1989; Witter and 
Amaral, 1991; Witter et al., 2000; Honda et al., 2012), the range over which any field arrangement 
is realizable is at most 2–3 times the typical grid period. By contrast, the total range ‍L‍ of locations over 
which the grid inputs provide unique codes scales as the product of the periods. The result implies 
that once field arrangements are freely chosen in a small region, they impose strong constraints on a 
much larger overall region and across environments. We explore this implication in more detail below.

Generalization to higher dimensions
We have already argued that our counting arguments hold for realistic tuning curve shapes with 
graded activity profiles. This follows from the fact that convolution of the grid-like codes with appro-
priate smoothing kernels does not change the general geometric arrangement of codewords rela-
tive to each other as these convolution operations preserve within-module permutation symmetries 
and across-module independence in the code. We have also shown that the contiguous-separating 
capacity results apply to real-valued grid periods with dense phase encodings within each module.

Here, we describe the generalization to different spatial dimensions. Consider a ‍d‍-dimensional 
grid-like code consisting of ‍(λm)d

‍ cells in the mth module to produce a one-hot phase code for ‍λm‍ 
(discrete) positions along each dimension (Figure 6E). Since the counting results rely only on the exis-
tence of a modular-one-hot code and not any mapping from real spaces to coding states, this code 
across multiple modules ‍m = 1, . . . , M ‍ is equivalent to a modular-one-hot coding for ‍

∏M
m=1(λm)d

‍ states, 
with modules of size ‍(λm)d

‍ each. All the counting results from before therefore hold, with the simple 
substitution ‍λm → (λm)d

‍ in the various formulae.
The contiguous-separating capacity in ‍d‍-dimensions is defined as the maximum volume over which 

all field arrangements are realizable. Like the 1D separating capacity results, this volume depends 
upon the mapping of physical space to grid-like codes. We are able to show that for grid modules 
with periods ‍λ1, . . . ,λM‍ the generalized separating capacity is ‍l

⋆
d = Σd =

∑M
m=1 λ

d
m‍ (see Section B.4; 

Figure 6F). This result follows from essentially the same reasoning as for 1D environments, but with 
the use of ‍d‍-dimensional phase-shift operators.

Robustness of field arrangements to noise and nongrid inputs
An important quality of field arrangements that is neglected when merely counting the number of 
realizable arrangements or determining the separating capacity is robustness: these computations 
consider all realizable field arrangements, but field arrangements are practically useful only if they are 
robust so that small amounts of perturbation or noise in the inputs or weights do not render them 
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unrealizable. Above, we showed that grid-like codes enable many dichotomies despite being structur-
ally constrained, but that random analog-valued codes as well as more hierarchical codes permit even 
more dichotomies. Here, we show that the dichotomies realized by grid codes are substantially more 
robust to noise and thus more stable.

The robustness of a realizable dichotomy in a perceptron is given by its margin: for a given linear 
decision boundary, the margin is the smallest datapoint-boundary distance for each class, summed 
for the two classes. The maximum margin is the largest achievable margin for that dataset. The larger 
the maximum margin, the more robust the classification. We thus compare maximum margins (herein 
simply referred to as margins) across place field arrangements, when the inputs are grid-like or not.

Perceptron margins can be computed using quadratic programming on linear support vector 
machines (Platt, 1998). We numerically solve this problem for three types of input codes (permitting 
a nonzero threshold and imposing no weight constraints): the grid-like code ‍Xg‍; the shuffled grid-like 
code ‍Xgs‍ – a row- and column-shuffled version of the grid-like code that breaks its modular struc-
ture; and the random code ‍Xr‍ of uniformly distributed random inputs (Figure 7). To make distance 
comparisons meaningful across codes, ‍(1)‍ all patterns (columns) involve the same number of neurons 
(dimension), ‍(2)‍ have the same total activity level (unity L1 norm), and ‍(3)‍ the number of input patterns 
is the same across codes, and chosen to equal ‍L‍, the full range of the corresponding grid-like code. 
To compute margins, we consider only the realizable dichotomies on these patterns.

The margins of all realizable place field arrangements with grid-like inputs are shown in Figure 7A 
(black); the margin values for all arrangements are discretized because of the geometric arrangements 
of the inputs, and each black bar has a very high multiplicity. The grid-like code produces much larger-
margin field arrangements than shuffled versions of the same code and random codes (Figure 7A, 
pink and blue). The higher margins of the grid-like compared to the shuffled grid-like code show that 
it is the structured geometry and modular nature of the code that produce well-separated patterns 
in the input space (Figure  4B) and create wide margins and field stability. In other words, place 
field arrangements formed by grid inputs, though smaller in number than arrangements with differ-
ently coded inputs, should be more robust and stable against potential noise in neural activations or 
weights.

Next, we directly consider how different kinds of nongrid inputs, driving place cells in conjunction 
with grid-like inputs, affect our results on place field robustness. We examine two distinct types of 

Figure 7. Robustness of place field arrangements to noise and nongrid inputs. In (A–C), grid periods are ‍{31, 43}‍; the number of input patterns is 
set to ‍1333 = LCM(31, 43)‍ for all input codes. Input patterns are normalized to have unity L1 norm in all cases. Maximum margins are determined by 
using SVC in scikit-learn (Pedregosa et al., 2011) (with thresholds and no weight constraints). (A) Black bars: the maximum margins of all realizable 
arrangements with grid-like inputs (bars have high multiplicity: across the very large number of realizable field arrangements, the set of distinct 
maximum margins is small and discrete because of the regular geometric structure of the grid-like code). Pink: margins for shuffled grid inputs that 
break the code’s modularity (shuffling neurons across modules for each pattern; 10 shuffles per ‍K ‍ and sampling 1000 realizable field arrangements per 
shuffle). Blue: margins for random inputs in general position (inputs sampled i.i.d. uniformly from ‍[0, 1]‍; 10 realizations of a random matrix per ‍K ‍, 1000 
realizable field arrangements sampled per realization). (B) Effect of noise on margins. We added dense noise inputs (100 non-negative i.i.d. random 
inputs at each location) to the place cell, in addition to the 74 grid-like inputs. (The expected value of each random input was 20% of the population 
mean of the grid inputs; thus, the summed random input was on average ‍(0.2 × 100/74)‍ the size of the summed grid input.) Black: noise-free margins 
as in (A). Empty green violins: margins of existing field arrangements modestly shrink in size. Solid green violins: margins of some newly created field 
arrangements: these are small and thus unstable. (C) Effect of sparse spatial inputs (plots as in C). (We added 100 sparse ‍{0, 1}‍ inputs per location; each 
sparse input had ‍0.2 × 2L/74‍ fields placed randomly across the full range ‍L‍, so that the summed sparse input was on average ‍(0.2 × 100/74)‍ the size 
of the summed grid input. The combined grid and nongrid input at each location was normalized to 1.)
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added nongrid input: (1) spatially dense noise that is meant to model sources of uncontrolled variation 
in inputs to the cell and (2) spatially sparse and reliable cues meant to model spatial information from 
external landmarks.

After the addition of dense noise, previously realizable grid-driven place field arrangements remain 
realizable and their margins, though somewhat lowered, remain relatively large (Figure 7B, empty 
green violins). In other words, grid-driven place field arrangements are robust to small, dense, and 
spatially unreliable inputs, as expected given their large margins. Note that because the addition 
of dense i.i.d. noise to grid-like input patterns pushes them toward general position, and general-
position inputs enable more realizable arrangements, the noise-added versions of grid-like inputs also 
give rise to some newly realizable field arrangements (Figure 7B, full green violins). However, as with 
arrangements driven purely by random inputs, these new arrangements have small margins and are 
relatively not robust. Moreover, since by definition noise inputs are assumed to be spatially unreliable, 
the newly realizable arrangements will not persist across trials.

Next, the addition of sparse spatial inputs (similar to the one-hot codes of Table 1, though the 
sparse inputs here are nearly but not strictly orthogonal) leaves previous field arrangements largely 
unchanged and their margins substantially unmodified (Figure 7C, empty green violins). In addition, a 
few more field arrangements become realizable and these new arrangements also have large margins 
(Figure 7C, full green violins). Thus, sufficiently sparse spatial cues can drive additional stable place 
fields that augment the grid-driven scaffold without substantially modifying its structure. Plasticity in 
weights from these sparse cue inputs can drive the learning of new fields without destabilizing existing 
field arrangements.

In sum, grid-driven place arrangements are highly robust to noise. Combining grid-cell drive with 
cue-driven inputs can produce robust maps that combine internal scaffolds with external cues.

High volatility of field arrangements with grid input plasticity
Our results on the fraction of realizable place field arrangements and on place-cell-separating capacity 
with grid-like inputs imply that place cells have highly restricted flexibility in laying down place fields 
(without direct drive from external spatially informative cues) over distances greater than ‍Σ‍, the sum of 
the input grid module periods. Selecting an arrangement of fields over this range then constrains the 
choices that can be made over all remaining space in the same environment and across environments. 
Conversely, changing the field arrangement in any space by altering the grid-place weights should 
affect field arrangements everywhere.

We examine this question quantitatively by constructing realizable K-field arrangements (with grid-
like responses generated as 1D slices through 2D grids [Yoon et al., 2016]), then attempting to insert 
one or a few new fields (Figure 8A,B). Inserting even a single field at a randomly chosen location 
through Hebbian plasticity in the grid-place weights tends to produce new additional fields at uncon-
trolled locations, and also leads to the disappearance of existing fields (Figure 8A,B).

Interestingly, though field insertion affects existing arrangements through the uncontrolled appear-
ance or disappearance of other fields, it does not tend to produce local horizontal displacements of 
existing fields (Figure 8C): fields that persist retain their firing locations or they disappear entirely, 
consistent with the surprising finding of a similar effect in experiments (Ziv et al., 2013).

The locations of fields, including of uncontrolled field additions, are well-predicted by the structure 
(autocorrelation) of that cell’s grid inputs (Figure  8D). This multi-peaked autocorrelation function, 
with large separations between the tallest peaks, reflects the multi-periodic nature of the grid code 
and explains why fields tend to appear or disappear at remote locations rather than shifting locally: 
modest weight changes in the grid-like inputs modestly alter the heights of the peaks, so that some of 
the well-separated tall peaks fall below threshold for activation while others rise above.

Quantitatively, insertion of a single field at an arbitrary location in a 20 m span grid-place weight 
plasticity results in the insertion or deletion, on average, of ‍∼ 0.2‍ uncontrolled fields per meter. The 
insertion of four fields anywhere over 20 m results in an average of one uncontrolled field per meter 
(Figure 8E).

Thus, if a place cell were to add a field in a new environment or within a large single environment by 
modifying the grid-place weights, our results imply that it is extremely likely that this learning will alter 
the original grid-cell-driven field arrangements (scaffold). By contrast, adding fields that are driven by 
spatially specific external cues, though plasticity in the cue input-to-place cell synapses, may not affect 
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field arrangements elsewhere if the cues are sufficiently sparse (unique); in this case, the added field 
would be a ‘sensory’ field rather than an internally generated or ‘mnemonic’ one.

In sum, the small separating capacity of place cells according to our model may provide one expla-
nation for the high volatility of the place code across tens of days (Ziv et  al., 2013) if grid-place 
weights are subject to any plasticity over this timescale. Alternatively, to account for the stability of 
spatial representations over shorter timescales, our results suggest that external cue-driven inputs to 
place cells can be plastic but the grid-place weights, and correspondingly, the internal scaffold, may 
be fixed rather than plastic (Figure 8F). In experiments that induce the formation of a new place field 
through intracellular current injection (Bittner et al., 2015), it is notable that the precise location of 

Figure 8. Predicted volatility of place field arrangements. (A) Top: original field arrangement over a 20 m space (gray line: summed inputs to place cell; 
purple stars: original field locations; green arrow: location where new field will be induced by Hebbian plasticity in grid-place weights). Bottom: after 
induction of the new field (green star), two new uncontrolled fields appear (red stars). (B) Similar to (A): the insertion of a new field at a random location 
(green star) leads to one uncontrolled new field (red star) and the loss of two original fields (empty red stars). (C) Histogram of changes, after single-field 
insertion, in pairwise inter-field intervals (spacings): the primary off-target effect of field insertion is for other fields to appear or disappear, but existing 
fields do not tend to move. (D) A spatially extended version of (C) (purple), together with the (vertically rescaled) autocorrelation of the grid inputs to the 
cell (gray): new fields tend to appear at spacings corresponding to peaks in the input autocorrelation function. (E) Sum of uncontrolled field insertions 
or deletions per meter, in response to inserted fields when starting with a K-field arrangement over 20 m. (F) High place field volatility resulting from 
plasticity in the grid-to-place synapses suggests the possibility that grid-place weights might be relatively rigid (nonplastic).
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the new field was not under experimental control: potentially, an induced field might only be able to 
form where an underlying (near-threshold) grid scaffold peak already exists to help support it, and the 
observed long plasticity window could enable place cells to associate a plasticity-inducing cue with a 
nearby scaffold peak.

This alternative is consistent with the finding that entorhinal-hippocamapal connections stabilize 
long-term spatial and temporal memory (Brun et al., 2008; Brun et al., 2002; Suh et al., 2011).

Finally, we note that the robustness of place field arrangements obtained with grid-like inputs is not 
inconsistent with the volatility of field arrangements to the addition or deletion of new fields through 
grid-place weight plasticity. Grid-driven place field arrangements are robust to random i.i.d. noise in 
the inputs and weights, as well as the addition of nongrid sparse inputs. On the other hand, the vola-
tility results involve associative plasticity that induces highly nonrandom weight changes that are large 
enough to drive constructive interference in the inputs to add a new field at a specific location. This 
nonrandom perturbation, applied to the distributed and globally active grid inputs, results in global 
output changes.

Discussion
Grid-driven hippocampal scaffolds provide a large representational 
space for spatial mapping
We showed that when driven by grid-like inputs, place cells can generate a spatial response scaffold 
that is influenced by the structural constraints of the grid-like inputs. Because of the richness of their 
grid-like inputs, individual place cells can generate a large library of spatial responses; however, these 
responses are also strongly structured so that the realizable spatial responses are a vanishingly small 
fraction of all spatial responses over the range where the grid inputs are unique. However, realizable 
spatial field arrangements are robust, and place cells can then ‘hang’ external sensory cues onto the 
spatial scaffold by associative learning to form distinct maps spatial maps for multiple environments. 
Note that our results apply equally well to the situation where grid states are incremented based on 
motion through arbitrary Euclidean spaces, not just spatial ones (Killian et al., 2012; Constantinescu 
et al., 2016; Aronov et al., 2017; Klukas et al., 2020).

Summary of mathematical results
Mathematically, formulating the problem of place field arrangements as a perceptron problem led us 
to examine the realizable (linearly separable) dichotomies of patterns that lie not in general position 
but on the vertices of convex regular polytopes, thus extending Cover’s results to define capacity for 
a case with geometrically structured inputs (Cover, 1965). Input configurations not in general posi-
tion complicate the counting of linearly separable dichotomies. For instance, counting the number of 
linearly separable Boolean functions, which is precisely the problem of counting the linearly separable 
dichotomies on the hypercube, is NP-hard (Peled and Simeone, 1985; Hegedüs and Megiddo, 
1996).

We showed that the geometry of grid-cell inputs is a convex polytope, given by the orthogonal 
product of simplices whose dimensions are set by the period of each grid module divided by the reso-
lution. Grid-like codes are a special case of modular-one-hot codes, consisting of a population divided 
into modules with only one active cell (group) at a time per module.

Exploiting the symmetries of modular-one-hot codes allowed us to characterize and enumerate the 
realizable K-field arrangements for small fixed ‍K ‍. Our analyses relied on combinatorial objects called 
Young diagrams (Fulton and Fulton, 1997). For the special case of ‍M = 2‍ modules, we expressed the 
number of realizable field arrangements exactly as a poly-Bernoulli number (Kaneko, 1997). Note that 
with random inputs, by contrast, it is not well-posed to count the number of realizable K-field arrange-
ments when ‍K ‍ is fixed since the solution will depend on the specific configuration of input patterns. 
While we have considered two extreme cases analytically, one with no constraints on place field spar-
sity and the other with very few fields, it remains an outstanding question of interest to examine the 
case of sparse but not ultra-sparse field arrangements in which the number of fields is proportional 
to the full range, with a constant small prefactor (Itskov and Abbott, 2008). Finding results in this 
regime would involve restricting our count of all possible Young diagrams to a subset with a fixed 
filled-in area (purple area in Figure 5). This constraint makes the counting problem significantly harder.
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We showed using analytical arguments that our results generalize to analog or graded tuning 
curves, real-valued periods, and dense phase representations per module. We also showed numeri-
cally that our qualitative results hold when considering deviations from the ideal, like the addition of 
noise in inputs and weights. The relatively large margins of the place field arrangements obtained with 
grid-like inputs make the code resistant to noise. In future work, it will be interesting to further explore 
the dependence of margins, and thus the robustness of the place field arrangements, on graded 
tuning curve shapes and the phase resolution per module.

Robustness, plasticity, and volatility
As described in the section on separating capacity, once grid-place weights are set over a relatively 
small space (about the size of the sum of the grid module periods), they set up a scaffold also outside 
of that space (within and across environments). Associating an external cue with this scaffold would 
involve updating the weights from the external sensory inputs to place cells that are close to or above 
threshold based on the existing scaffold. This does not require relearning grid-place weights and does 
not cause interference with previously learned maps.

By contrast, relearning the grid-place weights for insertion of another grid-driven field rearranges 
the overall scaffold, degrading previously learned maps (volatility: Ziv et al., 2013). If we consider a 
realizable field arrangement in a small local region of space then impose some desired field arrange-
ment in a different local region of space through Hebbian learning, we might ask what the effect 
would be in the first region. Our results on field volatility provide an answer: if the first local region 
is of a size comparable to the sum of the place cell’s input grid periods, then any attempt to choose 
field locations in a different local region of space (e.g., a different environment) will almost surely have 
a global effect that will likely affect the arrangement of fields in the first region. A similar result might 
hold true if the first region is actually a disjoint set of local regions whose individual side lengths add 
up to the sum of input grid periods. This prediction might be consistent with the observed volatility of 
place fields over time even in familiar environments (Ziv et al., 2013).

Our volatility results alternatively raise the intriguing possibility that grid-place weights, and thus 
the scaffold, might be largely fixed and not especially plastic, with plasticity confined to the nongrid 
sensory cue-driven inputs and in the return projections from place to grid cells. The experiments of 
Rich et al., 2014 – in which place cells are recorded on a long track, the animal is then exposed to 
an extended version of the track, but the original fields do not shift – might be consistent with this 
alternative possibility. These are two rather strong and competing predictions that emerge from our 
model, each consistent with different pieces of data. It will be very interesting to characterize the 
nature of plasticity in the grid-to-place weights in the future.

Alternative models of spatial tuning in hippocampus
This work models place cells as feedforward-driven conjunctions between (sparse) external sensory 
cues and (dense) motion-based internal position estimates computed in grid cells and represented 
by multi-periodic spatial tuning curves. In considering place-cell responses as thresholded versions 
of their feedforward inputs including from grid cells, our model follows others in the literature that 
make similar assumptions (Hartley et al., 2000; Solstad et al., 2006; Sreenivasan and Fiete, 2011; 
Monaco et  al., 2011; Cheng and Frank, 2011; Whittington et  al., 2020). These models do not 
preclude the possibility that place cells feed back to correct grid-cell states, and some indeed incor-
porate such return projections (Sreenivasan and Fiete, 2011; Whittington et al., 2020; Agmon and 
Burak, 2020). It will be interesting in future work to analyze how such return projections affect the 
capacity of the combined system.

Our assumptions and model architecture are quite different from those of a complementary set 
of models, which take the view that grid-cell activity is derived from place cells (Kropff and Treves, 
2008; Dordek et al., 2016; Stachenfeld et al., 2017). Our assumptions also contrast with a third 
set of models in which place-cell responses are assumed to emerge largely from locally recurrent 
weights within hippocampus (Tsodyks et al., 1996; Samsonovich and McNaughton, 1997; Battista 
and Monasson, 2020; Battaglia and Treves, 1998). One challenge for those models is in explaining 
how to generate stable place fields through velocity integration across multiple large environments: 
the capacity (number of fixed points) of many fully connected neural integrator models in the style 
of Hopfield networks tends to be small – scaling as ‍∼ N ‍ states with ‍N ‍ neurons (Amit et al., 1985; 
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Gardner, 1988; Abu-Mostafa and Jacques, 1985; Sompolinsky and Kanter, 1986; Samsonovich 
and McNaughton, 1997; Battaglia and Treves, 1998; Battista and Monasson, 2020; Monasson 
and Rosay, 2013) because of the absence of modular structures (Fiete et al., 2014; Sreenivasan 
and Fiete, 2011; Chaudhuri and Fiete, 2019; Mosheiff and Burak, 2019). There are at least two 
reasons why a capacity roughly equal to the number of place cells might be too small, even though 
the number of hippocampal cells is large: (1) a capacity equal to the number of place cells would be 
quickly saturated if used to tile 2D spaces: 106 states from 106 cells supply 103 states per dimension. 
Assuming conservatively a spatial resolution of 10 cm per state, this means no more than 100 m of 
coding capacity per linear dimension, with no excess coding states for error correction (Fiete et al., 
2008; Sreenivasan and Fiete, 2011). (2) The hippocampus sits atop all sensory processing cortical 
hierarchies and is believed to play a key role in episodic memory in addition to spatial representa-
tion and memory. The number of potential cortical coding states is vastly larger than the number of 
place cells, suggesting that the number of hippocampal coding states should grow more rapidly than 
linearly in the number of neurons, which is possible with our grid-driven model but not with nonmod-
ular Hopfield-like network models with pairwise weights between neurons.

Even if our assumption that place cells primarily derive their responses from grid-like inputs 
combined with external cue-derived nongrid inputs is correct, place cells may nevertheless deviate 
from our simple perceptron model if the place response involves additional layers of nonlinear 
processing. There are many ways in which this can happen: place cells are likely not entirely indepen-
dent of each other, interacting through population-level competition and other recurrent interactions. 
Dendritic nonlinearities in place cells act as a hidden layer between grid-cell input and place cell 
firing (Poirazi and Mel, 2001; Polsky et al., 2004; Larkum et al., 2007; Spruston, 2008; Larkum 
et al., 2009; Harnett et al., 2012; Harnett et al., 2013; Stuart et al., 2016). Or, if we identify our 
model place cells as residing in CA1, then CA3 would serve as an intermediate and locally recurrent 
processing layer. In principle, hidden layers that generated a one-hot encoding for space from the 
grid-like inputs and then drove place cells as perceptrons would make all place field arrangements 
realizable. However, such an encoding would require a very large number of hidden units (equal to 
the full range of the grid code, while the grid code itself requires only the logarithm of this number). 
Additionally, place cells may exhibit richer input-output transformations than a simple pointwise 
nonlinearity, for instance, through cellular temporal dynamics including adaptation or persistent firing. 
Finding ways to include these effects in the analysis of place field arrangements is a promising and 
important direction for future study.

In sum, combining modular grid-like inputs produces a rich spatial scaffold of place fields, on which 
to associate external cues, much larger than possible with nonmodular recurrent dynamics within 
hippocampus. Nevertheless, the allowed states are strongly constrained by the geometry of the grid-
cell drive. Further, our results suggest either high volatility in the place scaffold if grid-to-place-cell 
weights exhibit synaptic plasticity, or suggest the possibility that grid-to-place-cell weights might be 
random and fixed.

Numerical methods
Random, weight-constrained random, and shuffled inputs
Entries of the random input matrix are uniformly distributed variables in ‍[0, 1]‍. To compare separating 
capacity (Figure 4) of random codes with the grid-like code, we consider matrices of the same input 
dimension (number of neurons) as the grid-cell matrix, or alternatively of the same rank as the grid-
cell matrix, then use Cover’s theorem to count the realizable dichotomies (Cover, 1965). Weight-
constrained random inputs (Figure  4B–D) are random inputs with non-negative weights imposed 
during training.

To compare margins (Figure 7), we use matrices with the same input dimension and number of 
patterns. As margins scale linearly with the norm of the patterns, to keep comparisons fair the input 
columns (patterns) are normalized to have unity L1 norm.

Nongrid inputs
To test how nongrid inputs affect our results (Figure  7C,D), the ‍λ1 + λ2‍ grid-like inputs from two 
modules with periods ‍λ1 = 31‍ and ‍λ2 = 43‍ are augmented by 100 additional inputs. In Figure 7C, each 
nongrid dense noisy input is a random variable selected uniformly and identically at each location from 
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the uniform interval ‍[0, 2µ]‍, where ‍µ = 0.2µg‍, and ‍µg = 2/(λ1 + λ2)‍ is the population mean of the grid 
inputs. In Figure 7D, each nongrid sparse input is a ‍{0, 1}‍ random variable with ‍Q‍ nonzero responses 
across the full range ‍L = λ1λ2‍. We set ‍Q = 0.2Lµg‍. In all cases, input columns (patterns with grid and 
nongrid inputs combined) are finally normalized to have unity L1 norm. Results are based on 1000 
realizations (samples) of the nongrid inputs.

Grid-like inputs with graded tuning curves
We generate periodic grid-like activity with graded tuning curves as a function of 1D space ‍x‍ in cell ‍‍ 
of module ‍m‍ with period ‍λm‍ as follows Sreenivasan and Fiete, 2011:

	﻿‍ g(ϕm(x),φi) = e
− ∥ϕm−φi∥

2

2σ2
g , ∥α∥ = min(|α|, 1 − |α|)‍�

(7)

where the phase of module ‍m‍ is ‍ϕm(x) = (x/λm mod 1)‍. The ith cell in a module has a preferred 
activity phase ‍φi‍ drawn randomly and uniformly from (0,1). The tuning width ‍σg‍ is defined in terms of 
phase, thus in real space the width of the activity bump grows linearly with the module period. We set 

‍σg = 0.16‍ (thus the full-width at half-max of the phase tuning curve equals 3/8 of the period, similar to 
grid cells).

Finally, to simulate quasi-periodic grid responses in 1D, we first generate 2D responses with 
Gaussian tuning on a hexagonal lattice, with the same field width as above. 1D responses of grid cells 
from the same module are then generated as parallel 1D slices of this lattice as in Yoon et al., 2016, 
with phases uniformly drawn at random.
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Appendix 1
The geometry of the grid code
In this Appendix, we introduce the geometrical framework for the study of place cells modeled 
as perceptrons reading out the activity of grid cells. First, we define the space of grid-like inputs 
via symmetry considerations and without considering explicitly their relation to spatial locations. 
Second, we discuss linearly separable dichotomies in the space of grid-like inputs, whose geometric 
arrangements are not in general position. Third, we show that the geometry of grid-like inputs is that 
of a polytope that can be decomposed as an orthogonal product of simplices.

The space of grid-like inputs
We model grid-cell activity via ‍{0, 1}‍ spatial patterns ‍r‍ that take value 1 whenever the cell is active 
and take value 0 otherwise (Fyhn et al., 2004; Fiete et al., 2008). To model the periodic spatial 
response of grid cells, we assume that the activity pattern of a grid cell defines a periodic lattice with 
integer period ‍λ‍. For simplicity, we consider 1D model for which the spatial patterns ‍r‍ are ‍λ‍-periodic 
vectors and for which the set of activity patterns is given by the lattices ‍i + λZ‍, ‍1 ≤ i ≤ L‍. We refer 
to the index ‍‍ as the phase index of the grid-cell spatial pattern. Our key results will generalize to 
lattices of arbitrary dimension ‍n‍, for which the set of spatial patterns is given by the hypercube 
lattices ‍i +

(
λZ

)n
‍, with phase indices ‍i‍ in ‍{1, . . . ,λ}n

‍.
Within a population, grid cells can have distinct periods and arbitrary phases. To model this 

heterogeneity, we consider a population of grid cells with ‍M ‍ possible integer spatial periods 

‍λ = (λ1, . . . ,λM)‍, thereby defining ‍M ‍ modules of grid cells. We assume that each module comprises 
all possible grid-cell-activity patterns, that is, ‍λm‍ grid cells labeled by the phase indices ‍‍, ‍1 ≤ i ≤ λm‍. 
For convenience, we index each cell by its module index ‍m‍ and its phase index ‍‍, ‍1 ≤ i ≤ λm‍, so that 
the actual component index of cell ‍(m, i)‍, ‍1 ≤ i ≤ λm‍, is ‍

∑
n<m λm + i‍. By construction of our model, at 

every spatial position, each module has a single active cell. Thus, at each spatial position, the grid-
like input is specified by ‍{0, 1}‍ column vectors ‍cλ‍ of dimension ‍N =

∑M
m=1 λm‍, the total number of grid 

cells.
In principle, the inputs to place cells are defined as spatial locations. Here, by contrast, we consider 

grid-like inputs as the inputs to place cells, without requiring these patterns to be spatial encodings. 
This approach is mathematically convenient as it allows us to exploit the many symmetries of the set 
of grid-like inputs denoted by ‍Cλ‍. The set ‍Cλ‍ contains as many grid-like inputs ‍c‍ as there are choices 
of phase indices in each module, that is, ‍Λ =

∏M
m=1 λm‍:

	﻿‍

Cλ =


c =

(
c1, . . . , cM

)
∈ {0, 1}λ1 × . . .× {0, 1}λM

����
λm∑
i=1

cm,i = 1, 1 ≤ m ≤ M


 .

‍�
(8)

Here follow two examples of grid-like inputs ‍Cλ‍ enumerated in lexicographical order for ‍λ = (2, 3)‍ 
and ‍λ = (2, 2, 2)‍.

	﻿‍

C(2,3) =





1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1





, C(2,2,2) =





1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1





.

‍�

(9)

Observe that, albeit inspired by the spatial activity of grid cells, the set of patterns ‍Cλ‍ has broader 
relevance than suggested by its use for modeling grid-like inputs. In fact, the set of patterns ‍Cλ‍ 
describes any modular winner-take-all activity, whereby cells are pooled in modules with only one 
cell active at a time – the winner of the module.

In the following, we consider that linear read-outs of grid-like inputs determine the activity of 
downstream cells, called place cells (O’Keefe and Dostrovsky, 1971). The set of these linear read-
outs is the vector space ‍Vλ‍ spanned by the grid-like inputs ‍Cλ‍. The dimension of the vector space ‍Vλ‍ 

https://doi.org/10.7554/eLife.62702
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specifies the dimensionality of the grid code. The following proposition characterizes ‍Vλ‍ and shows 
that its dimension is simply related to the periods ‍λ‍.

Proposition 1
The set of grid-like inputs ‍Cλ‍ specified by ‍M ‍ grid modules with integer periods ‍λ = (λ1, . . . ,λM)‍ span 
the vector space

	﻿‍

Vλ = span Cλ =


y =

(
y1, . . . , yM

)
∈ Rλ1 × . . .× RλM

����
λ1∑
i=1

y1,i = . . . =
λM∑
i=1

yM,i


 ,

‍�
(10)

In particular, the embedding dimension of the grid code is ‍dim Vλ =
∑M

m=1 λm − M + 1‍.
Proof. Let us denote by ‍Aλ‍ a matrix formed by collecting all the column vectors from ‍Cλ‍. The 

vector space ‍Vλ‍ is the range of the matrix ‍Aλ‍, which is also the orthogonal complement of ‍ker AT
λ‍. 

A vector ‍x = (x1,1, . . . , x1,λ1 | . . . . . . |xM,1, . . . , xM,λM )‍ in ‍Rλ1 × . . .× RλM‍ belongs to ‍ker AT
λ‍ if and only if 

‍xTAλ = 0‍. By construction of the matrix ‍Aλ‍:

	﻿‍
xTAλ = 0 ⇐⇒

M∑
m=1

xm,im = 0 , for all 1 ≤ im ≤ λm ,
‍�

(11)

where im refers to the index of the active cell in module ‍m‍. The latter characterization implies that

	﻿‍
ker AT

λ =

{
x = (a1, . . . , a1| . . . . . . |aM, . . . , aM) ∈ Rλ1 × . . .× RλM

����
M∑

m=1

am = 0

}
.
‍�

(12)

In turn, a vector ‍y = (y1,1, . . . , y1,λ1 | . . . . . . |yM,1, . . . , yM,λM )‍ of the orthogonal complement of ‍ker AT
λ‍, 

that is, in the range of ‍Aλ‍, is determined by ‍xTy = 0‍ for all ‍x‍ in ‍ker AT
λ‍. From the above characterization 

of ‍ker AT
λ‍, this means that ‍y‍ is in the range of ‍Aλ‍, that is, in ‍Vλ‍, if and only if for all ‍a1, . . . , aM‍ such that 

‍
∑M

m=1 am = 0‍, we have

	﻿‍

M∑
m=1

am

λm−1∑
i=0

ym,i = 0 .
‍�

(13)

Substituting ‍aM = −
∑M−1

m=0 am‍ in the above relation, we have that for all ‍a1, . . . , aM−1‍ in ‍RM−1‍,

	﻿‍

M−1∑
m=1

am




λm−1∑
i=0

ym,i −
λM∑
i=0

yM,i


 = 0 ,

‍�
(14)

which is equivalent to ‍
∑λm−1

i=0 ym,i =
∑λM−1

i=0 yM,i‍ for all ‍m‍, ‍1 ≤ m < M ‍. The above relation entirely 
specifies the range of the activity matrix ‍Aλ‍, that is, ‍Vλ‍, as a vector space of dimension ‍

∑M
m=1 λm − M + 1‍.

Linear read-outs of grid-like inputs
We model the response of a place cell as that of a perceptron, which takes grid-like inputs ‍c‍ in ‍Cλ‍ 
as inputs (Rosenblatt, 1958). Such a perceptron is parametrized by a decision threshold ‍θ‍ and by 
a vector of read-out weights ‍w = (w1,1, . . . , w1,λ1 | . . . . . . |wM,1, . . . , wM,λM)‍, where the vertical separators 
delineate the grid-cell modules with periods ‍λm‍, ‍1 ≤ m ≤ M ‍. By convention, we consider that a place 
cell is active for grid-like inputs ‍c‍ such that ‍wTc > θ‍ and inactive otherwise. Thus, in the perceptron 
framework, a place cell has a multi-field structure if it is active on a set of several grid-like inputs 
‍S ⊂ Cλ‍, with ‍|S | > 1‍ (Rich et al., 2014). Considering grid-like inputs as inputs allows one to restrict 
the class of perceptrons under consideration.

Proposition 2
Every realizable multi-field structure can be implemented by a perceptron with ‍(i)‍ non-negative 
weights, or ‍(ii)‍ with zero threshold.

https://doi.org/10.7554/eLife.62702


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Yim et al. eLife 2021;10:e62702. DOI: https://doi.org/10.7554/eLife.62702 � 29 of 50

Proof. ‍(i)‍ If ‍M ‍ is the total number of modules and 1 is the ‍N ‍-dimensional column vectors of 1, for 
all grid-like inputs ‍c‍ in ‍Cλ‍ we have ‍1Tc = (1, . . . , 1)c = M ‍. Thus, for all perceptron ‍(w, θ)‍ and for all real 
µ, we have

	﻿‍ (w + µ1)Tc = wTc + µ1Tc = p + µM ,‍� (15)

where ‍p‍ is the place-cell-activity level for grid-cell pattern ‍c‍ in ‍Cλ‍. Consequently, setting 

‍µ ≥ max1≤i≤N |wi|‍, ‍w
′ = w + µ1‍ and ‍θ

′ = θ + µM ‍ defines a new perceptron ‍(w′, θ′)‍ with non-negative 
weights, which operates the same classification as the perceptron ‍(w, θ)‍ is equivalent to ‍p > θ‍ The 
result directly follows from a similar argument by observing that for all grid-populations pattern ‍c‍ 
in‍Cλ‍

	﻿‍ wTc − θ =
(
w − θ1

)T c ,‍� (16)

which implies that if the perceptron models ‍(w, θ)‍ and ‍(w − θ1, 0)‍ achieve the same linear 
classification.

Our goal is to study the multi-field structure of place-cell perceptrons, which amounts to 
characterize the two-class linear classifications of grid-like inputs ‍Cλ‍. The study of linear binary 
classifications has a long history in machine learning. Given a collection of ‍Λ‍ input patterns, there 
are ‍2Λ‍ possible assignments of binary labels to these patterns, also referred to as dichotomies. 
In general, not all dichotomies can be linearly classified by a perceptron. Those dichotomies that 
can be classified are called linearly separable. An important question is to compute the number 
of linearly separable dichotomies, which depends on the geometrical arrangement of the inputs 
presented to the perceptron. Remarkably, Cover’s function counting theorem specifies the exact 
number of linearly separable dichotomies for ‍P‍ inputs represented as points in a ‍N ‍-dimensional 
space (Cover, 1965). For inputs in general position, the number of dichotomies realizable by a zero-
threshold perceptron is given by

	﻿‍
NP,N = 2

N−1∑
k=0

(
P − 1

k

)
,
‍�

(17)

which shows that all dichotomies are possible as long as ‍P ≤ N ‍. A collection of points ‍{x1, . . . , xP}‍ in 
an ‍N ‍-dimensional space is in general position if no subset of ‍n + 1‍ points lies on a ‍(n − 1)‍-dimensional 
plane for all ‍n ≤ N ‍. In our modeling framework, the inputs are collections of points representing 
grid-like inputs ‍Cλ‍. As opposed to Cover’s theorem assumptions, these grid-like inputs are not in 
general position as soon as we consider grid code with more than one module. For instance, it is 
not hard to see that for ‍λ = (2, 3)‍, the patterns ‍(1, 0|1, 0, 0)‍, ‍(1, 0|0, 1, 0)‍, ‍(0, 1|1, 0, 0)‍ and ‍(0, 1|0, 1, 0)‍ are 
not in general position for being the vertices of a square, therefore lying in a 2D plane. Nongeneric 
arrangements of grid-like inputs are due to symmetries that are inherent to the modular structure of 
the grid code. We expect such symmetries to heavily restrict the set of linearly separable dichotomies, 
therefore constraining the multi-field structure of a place cell perceptron.

We justify the above expectation by discussing the problem of linear separability for two codes 
that are related to the grid code. These two codes are the ‘one-hot’ code, whereby a single cell is 
active for all input pattern, and the ‘binary’ code, whereby the set of input patterns enumerate all 
possible binary vectors of activity. Exemplars of grid-like inputs for the one-hot code and the binary 
code are given for ‍N = 3‍ input cells by

	﻿‍

Coh =





1 0 0

0 1 0

0 0 1




and Cb =





0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1




.

‍�

(18)

From a geometrical point of view, a set of points representing the grid-like inputs ‍SJ ⊂ C‍ is 
linearly separable if there is a hyperplane separating the points ‍S‍ from the other points ‍C \ S‍. The 
existence of a hyperplane separating a single point from all other points is straightforward when the 
set of patterns correspond to the vertices of a convex polytope. Then, every vertex can be linearly 
separated from the other points for being an extreme point. It turns out that both the population 
patterns of the one-hot code and of the binary code represent the vertices of a convex polytope: 

https://doi.org/10.7554/eLife.62702
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a simplex for the single-cell code and a hypercube for the binary code. However, because these 
vertices are in general position for the single-cell code but not for the binary code, the fraction of 
linearly separable dichotomies drastically differs for the two codes.

Let us first consider the ‍N ‍ points whose coordinates are given by ‍Coh‍. The convex hull of ‍Coh‍ 
is the canonical ‍(N−1)‍-dimensional simplex. Thus, any sets of ‍k‍ vertices, ‍1 ≤ k ≤ N ‍, specifies 
a ‍(k−1)‍-dimensional face of the simplex, and as such, is a linearly separable ‍k‍-dichotomy. This 
immediately shows that all dichotomies are linearly separable. This result follows from the fact that 
the ‍N ‍ points in ‍Coh‍ are in general position. Let us then consider the ‍2N ‍ points whose coordinates are 
given by ‍Cb‍. The convex hull of ‍Cb‍ is the canonical ‍N ‍-dimensional hypercube. Thus, by contrast with 
‍Coh‍, the points in ‍Cb‍ are not in general position. As a result, there are dichotomies that are not linearly 
separable as shown by considering. For instance, the pair ‍{(1, 0, 0)‍, ‍(0, 1, 0)}‍ and the pair ‍{(0, 0, 0)‍, 
‍(1, 1, 1)}‍ can be linearly separated from the other points of the hypercube. Determining the number 
of linearly separable sets of hypercube vertices is a hard combinatorial problem that has attracted 
a lot of interest (Peled and Simeone, 1985; Hegedüs and Megiddo, 1996). Unfortunately, there is 
no efficient characterization of that number as a function of the dimension ‍N ‍. However, it is known 
that out of the ‍22N

‍ possible dichotomies, the total number of linearly separable dichotomies scales 

as ‍2N2
‍ in the limit of large dimension ‍N → ∞‍ (Irmatov, 1993). This shows that only a vanishingly small 

fraction of hypercube dichotomies are also linearly separable.

Grid code convex polytope
It is beneficial to gain geometric intuition about grid-like inputs to characterize their linearly separable 
dichotomies. As binary vectors of length ‍N ‍, grid-like inputs form a subset of the ‍2N ‍ vertices of the 
‍N ‍-dimensional hypercube. Just as for the one-hot and binary codes, linear separability of sets of 
grid-like inputs can be seen as a geometric problem about polytopes. To clarify this point, let us 
denote by ‍Hλ‍ the convex hull of grid-like inputs ‍Cλ‍. By definition, we have

	﻿‍
Hλ =

{ L∑
i=1

αici

����αi ≥ 0 , gt
∑

i=1

αi = 1

}
,
‍�

(19)

where ‍ci‍ in ‍Cλ‍ denotes the ith column of ‍Aλ‍. The convex hull ‍Hλ‍ turns out to have a simple 
geometric structure.

Proposition 3
For integer periods ‍λ = (λ1, . . . ,λM)‍, the convex hull generated by ‍Cλ‍, the set of grid-cell-
population patterns, determines a ‍d‍-dimensional polytope ‍Hλ‍, with ‍d =

∑M
m=1 λm − M ‍, defined as 

‍Hλ = ∆λ1 × . . .×∆λM‍ where ‍∆λm‍, ‍1 ≤ m ≤ M ‍, denotes the ‍(λm−1)‍-simplex specified by the ‍λm‍ 
points: ‍(1, 0, . . . , 0) , (0, 1, 0 . . . , 0) , . . . , (0, . . . , 0, 1)‍.

Before proving the product decomposition of ‍Hλ‍, let us make a couple of observations. First, 
observe that all the vectors ‍c‍ in ‍Cλ‍ satisfies ‍1Tc = M ‍, so that all edges ‍c − c′‍, with ‍c‍, ‍c′‍ in ‍Cλ‍, lie in the 
same hyperplane of the vector space ‍Vλ‍. By Proposition 1, ‍Vλ‍ has dimension ‍N =

∑
m λm − M + 1‍, this 

implies that the dimension of the polytope ‍Hλ‍ is at most ‍d = N − 1‍. Second, observe that the set ‍Cλ‍ 
is left unchanged by the symmetry operators ‍Jλm‍, ‍1 ≤ m ≤ M ‍, where ‍Jλm‍ cyclically shifts downward 
the mth module coordinates of the vectors in ‍Cλ‍. The operators ‍Jλm‍ admit the matrix representation

	﻿‍

Jλm =




Iλ1+...+λm−1

Jλm

Iλm+1+...+λM


 with Jn =




0 1 0 0 . . .

0 0 1 0 . . .

...
. . .

. . .
. . .

1 0 . . .

,




∈ Rn × Rn ,

‍
� (20)

where ‍In‍ denotes the identity matrix in ‍Rn × Rn‍. Notice that the matrices ‍Jλm‍ satisfy ‍J
T
λm Jλm = Iλ1+...+λM‍ 

showing that the operators ‍Jλm‍ are isometries in ‍Vλ‍. Moreover, observe that for all ‍c‍, ‍c′‍ in ‍Cλ‍, there 
are integers of ‍k1, . . . , kM‍ such that ‍J

k1
λ1

. . . JkM
λ1

c = c′‍. This shows that each vector in ‍Cλ‍ plays the same 
role in defining the geometry of ‍Hλ‍, and thus ‍Hλ‍ is vertex-transitive. In particular, every vector in ‍Cλ‍ 
represents an extreme point of the convex hull ‍Hλ‍. As a result, ‍Hλ‍ is a polytope with as many vertices 
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as the cardinality of ‍Cλ‍, that is, ‍Λ =
∏M

m=1 λm‍. The product decomposition of the polytope ‍Hλ‍ then 
follows from a simple recurrence argument over the number of modules ‍M ‍.

Appendix 1—figure 1. Simplicial decomposition. The convex hull generated by the grid code activity patterns is 
a product of simplices.

Proof. In order to relate the geometrical structure of ‍Hλ‍ to that of simplices, let us introduce ‍ei‍, 

‍1 ≤ i ≤ λM‍, the elementary unit vector corresponding to the ‍‍-th coordinate of ‍RλM‍. The set ‍Cλ‍ has 
the following product structure

	﻿‍
Cλ =

{
c = (c′, ei)

��� c′ ∈ Cλ′ , 0 < λM

}
,
‍� (21)

where ‍Cλ′‍ is the set of vectors for ‍M − 1‍ modules with periods ‍λ
′ = {λ1, . . . ,λM−1}‍. The product 

structure of the set ‍Cλ‍ transfers to the convex hull ‍Hλ‍ it generates. Specifically, we have

	﻿‍

Hλ =





λM∑
i=1

L/λM∑
j=1

αij(cj, ei)
����

λM∑
i=1

L/λM∑
j=1

αij = 1



 ,

‍�
(22)

	﻿‍

=







L/λM∑
j=1




λM∑
i=1

αij


 cj,

λM∑
i=1




L/λM∑
j=1

αij


 ei




����
λM∑
i=1

L/λM∑
j=1

αij = 1


 ,

‍�
(23)

	﻿‍

=







L/λM∑
j=1

βjcj,
λM∑
i=1

γiei




����
L/λM∑

j=1

βj = 1 ,
λM∑
i=1

γi = 1


 ,

‍� (24)

https://doi.org/10.7554/eLife.62702


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Yim et al. eLife 2021;10:e62702. DOI: https://doi.org/10.7554/eLife.62702 � 32 of 50

	﻿‍
=
{(

c′, δ
) ���� c′ ∈ Hλ′ , δ ∈ ∆λM

}
,
‍�

(25)

where we have recognized that the convex hull of the set of elementary basis vectors ‍ei‍, ‍1 ≤ i ≤ λM‍, 
is precisely the canonical ‍(λM−1)‍-simplex. Thus, we have shown that ‍Hλ = Hλ′ ×∆λM‍. Proceeding by 
recurrence on the number of modules, one obtains the announced decomposition of the convex hull 
as a product ‍H = ∆λ1 × . . .×∆λM‍, where ‍∆λM‍, ‍1 ≤ m ≤ M ‍, is the canonical ‍(λm−1)‍-simplex.

The above orthogonal decomposition suggests that the problem of determining the linearly 
separable dichotomies of grid-like inputs is related to that of determining the linearly separable 
Boolean functions. Indeed, the polytope defined by grid-like inputs with ‍M ‍ modules contains 
‍M ‍-dimensional hypercubes, for which many dichotomies are not linearly separable. As counting 
the linearly separable Boolean functions is a notoriously hard combinatorial problem, it is unlikely 
that one can find a general characterization of the linearly separable dichotomies of grid-like inputs. 
However, it is possible to give some explicit results for the case of two modules ‍M ‍ or for the case of 
‍k‍-dichotomies for small cardinality ‍k‍.

https://doi.org/10.7554/eLife.62702
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Appendix 2
Combinatorics of linearly separable dichotomies
In this Appendix, we establish combinatorial results about the properties and the cardinality of 
linearly separable dichotomies of grid-like inputs. First, we show that linearly separable dichotomies 
can be partitioned in classes, each indexed by a combinatorial object called Young diagram. Second, 
we exploit related combinatorial objects, called Young tableaux, to show that not all Young diagrams 
correspond to linearly separable dichotomies. Third, we utilize Young diagrams to characterize 
dichotomies for which one class of labeled patterns has small cardinality ‍k = 1, . . . , 4‍. Fourth, we 
count the exact number of linearly separable dichotomies for grid-like inputs with two modules.

Relation to Young diagrams
To count linearly separable dichotomies, we first show that these dichotomies can be partitioned in 
classes that are indexed by Young diagrams. Young diagrams are useful combinatorial objects that 
have been used to study, e.g., the properties of the group representations of the symmetric group 
and of the general linear group. Young diagrams are formally defined as follows:

Definition 1
A d-dimensional Young diagram is a subset D of lattice points in the positiveorthant of a d-dimensional 
integral lattice, which satisfies the following:

i.	 If ‍(n1, . . . , ni, . . . , nd) ∈ D‍ and ‍ni > 0‍, then ‍(n1, . . . , ni − 1, . . . , nd) ∈ D‍.
ii.	 For any positive integer i ≤ d, and any non negative integers, m, p, with m > p, the restriction 

of D to the hyperplane ni = m is a (d−1)-dimensional Young diagram that covers the (d − 
1)-dimensional Young diagram formed by the restriction of S to the hyperplane ni = p.

Moreover, the size of the diagram D, denoted by |D|, is defined as the number of lattice points in D.
Young diagrams have been primarily studied for d = 2 because their use allows oneto conveniently 

enumerate the partitions of the integers. For d = 2, there are differentconventions for representing 
Young diagrams pictorially. Hereafter, we follow the Frenchnotations, where Young diagrams are 
left justified lattice rows, whose length decreaseswith height. For the sake of clarity, Fig. 1a depicts 
the 5 Young diagrams associated to thepartitions of 4: 4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1: 
Young diagrams have been less studiedfor dimensions d ≥ 3 and only a few of their combinatorial 
properties are known. Fig. 1brepresents a 3-dimensional diagram, together with two 2-dimensional 
restrictions (red edgesfor n3 = 1 and yellow edges for n3 = 3). Observe that these restrictions are 
2-dimensionalYoung diagrams, and that the restriction corresponding to n3 = 1 covers the restriction 
corresponding to n3 = 3. Young diagrams can equivalently be viewed as arrays of boxesrather than 
lattice points in the positive orthant. This corresponds to identifying each latticepoint ‍(n1, . . . , nd) ∈ D‍ 
with the unit cube ‍(n1 − 1, n1) × . . .× (nd − 1, nd)‍.

Before motivating the use of Young diagrams, let us make a few remarks about the set 
ofdichotomies that can be realized by a perceptron with fixed weight vector (ω, θ). First, recallthat 
with no loss of generality we can restrict the weight vectors ω to be nonnegative byProposition 2. 
Second, by permutation invariance, there is no loss of generality in consideringa perceptron (ω, θ) 
for which the weight vector.

	﻿‍ w = (w1,1, ..., w1,λ1|... ...|wM,1, ..., wM,λM)‍� (26)

is such that the weights are ordered within each module: ‍wm,1 < . . . < wm,⋋m‍, for all ‍m, 1 ≤ m ≤ M ‍. 
We refer to weight vectors having this module-specific, increasing order propertyas being a modularly 
ordered weight vector. Bearing these observations in mind, the following proposition establishes the 
link between Young diagrams and perceptrons.

Proposition 4
Given integer periods ‍λ = (λ1, . . . ,λM)‍, for all modularly ordered, non-negative, weight vectors ‍w‍ and 
for all thresholds ‍θ‍, the lattice set

	﻿‍
D(w, θ) =

{
(i1, . . . , iM) ∈ {1, . . . λ1} × . . .× {1, . . . λM}

����
M∑

m=1

wm,im ≤ θ

}

‍� (27)
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is a ‍M ‍-dimensional Young diagram in ‍{1, . . . λ1} × . . .× {1, . . . λM}‍.
In other words, under assumption of modularly ordered, non-negative weights, the phase indices 

of inactive grid cells form a Young diagram.
Proof. The Young diagram properties directly follow from the ordering of weights within modules. 

For instance, it is easy to see that if ‍(i1, . . . , iM) ≤ (j1, . . . , jM)‍ for the component-wise partial order 
in ‍{1, . . . λ1} × . . .× {1, . . . λM}‍, then ‍(j1, . . . , jM) ∈ D(w, θ)‍ implies ‍(i1, . . . , iM) ∈ D(w, θ)‍. Indeed, we 
necessarily have

	﻿‍

M∑
m=1

wm,im ≤
M∑

m=1

wm,jm < θ .
‍�

(28)

By the above proposition, given a grid code with ‍M ‍ modules, every perceptron ‍(w, θ)‍ acting on 
that grid code can be associated to a unique ‍M ‍-dimensional Young diagram ‍D(w, θ)‍ after ordering 
the components of ‍w‍ within each module. Conversely, if a ‍M ‍-dimensional Young diagram ‍D′‍ can 
be associated to a perceptron ‍(w, θ)‍ with modularly ordered, non-negative weights, we say that 

‍D′ = D(w, θ)‍ is realizable. Then a natural question to ask is: are all ‍M ‍-dimensional Young diagrams 
realizable by perceptrons? It turns out that perceptrons exhaustively enumerate all ‍M ‍-dimensional 
Young diagrams if ‍M ≤ 2‍, but there are unrealizable Young diagrams as soon as ‍M > 2‍.

Relation to Young tableaux
Understanding why there are unrealizable Young diagrams as soon as ‍M > 2‍ involves using 
combinatorial objects that are closely related to Young diagrams, called Young tableaux.

Definition 2
Given a Young diagram ‍D‍, a Young tableau ‍T ‍ is obtained by labeling the lattice points – or filling in 
the boxes – of ‍D‍ with the integers ‍1, 2, . . . , |D|,‍ such that each number occurs exactly once and such 
that the entries are increasing across each row (to the right) and across each column (to the top).

Here are two examples of Young tableaux that are distinct labeling of the same Young diagram:

Appendix 2—scheme 1. Examples of Young tableaux.

Just as Young diagrams, Young tableaux are naturally associated to perceptrons. The following 
arguments specify the correspondence between perceptrons and Young tableaux. Given a perceptron 

‍(w, θ)‍ with modularly ordered, non-negative weights, let us order all patterns in ‍Cλ‍ by increasing level 
of perceptron activity. Specifically, set ‍J0 = Cλ‍ and define iteratively for ‍k‍, ‍0 ≤ k < Λ‍,

	﻿‍
c⋆k+1(w) = arg min

c∈Jk (w)
wTc , Jk+1(w) = Jk(w) \ {c⋆k+1(w)} .

‍� (29)

With no loss of generality, we can assume that all patterns achieve distinct levels of activity, so 
that there is a unique minimizer for all ‍k‍, ‍0 ≤ k < Λ‍. With that assumption, the sequence ‍c⋆k (w)‍, 
‍1 ≤ k ≤ Λ‍, enumerates unambiguously all patterns in ‍Cλ‍ by increasing level of activity. The Young 
tableau associated to the perceptron ‍(w, θ)‍, denoted by ‍T (w, θ)‍, is then obtained by labeling 
lattice points of the Young diagram ‍D(w, θ)‍ by increasing level of activity as in the sequence ‍c⋆k (w)‍, 
‍1 ≤ k ≤ |D(w, θ)|‍. One can check that such labeling yields a tableau as the resulting labels increase 
along each rows (to the right) and columns (to the top). Within this framework, we say that a Young 
tableau ‍T ′‍ is realizable if there is a perceptron ‍(w, θ)‍ such that ‍T ′ = T (w, θ)‍. Finally, let us define the 
sequence of thresholds ‍θk(w)‍, ‍0 ≤ k ≤ Λ + 1‍, such that ‍θ0 = −∞‍, ‍θΛ+1(w) = ∞‍, and for‍0 < k ≤ Λ‍

	﻿‍
θk(w) = min

c∈Jk−1(w)
wTc = wTc⋆k (w) .

‍� (30)

Then, observe that for all ‍k‍, ‍0 ≤ k ≤ Λ‍, the set of active patterns ‍Jk(w)‍ is linearly separable 
for threshold ‍θ‍ satisfying ‍θk(w) ≤ θ < θk+1(w)‍. In fact, the sequence ‍{Jk(w)}0≤k≤Λ‍ represents all the 
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linearly separable dichotomies realizable by changing the threshold of a perceptron with weight 
vector ‍w‍. This fact will be useful to prove the following proposition, which justifies considering 
Young tableaux.

Proposition 5
All ‍M ‍-dimensional Young diagrams are realizable if and only if all ‍(M−1)‍-dimensional Young tableaux 
are realizable.

Observe that the above proposition does not mention the periods ‍λ1, . . . ,λM‍. This is because 
the proposition deals with the correspondence between ‍m‍-dimensional Young diagrams and 

‍(M−1)‍-dimensional Young tableaux for all possible assignments of periods.
Proof. In this proof, we use prime notations for quantities relating to ‍M − 1‍ modules and regular 

notations for quantities relating to ‍m‍ modules. For instance, ‍λ‍ denotes an arbitrary assignment of ‍m‍ 
periods ‍{λ1, . . . ,λM}‍ and ‍λ′‍ denotes its ‍m − 1‍ first components ‍{λ1, . . . ,λM−1}‍. With this preamble, we 
give the ‘if’ part of proof in ‍(i)‍ and the ‘only if’ part in ‍(ii)‍.

(i) Given a ‍(M−1)‍-dimensional Young tableau ‍T ′‍ with diagram ‍D′‍, let us consider the smallest 
periods ‍λ′‍ such that ‍D′ ⊂ {1, . . . ,λ1} × . . .× {1, . . . ,λM−1}‍. The ‘if’ part of the proof will follow 
from showing that if all ‍(M − 1)‍-dimensional tableaux ‍T ′‍ with Young diagram ‍D′‍ are realizable, 
than all ‍M ‍-dimensional Young diagrams whose restriction to ‍{1, . . . λ1} × . . .× {1, . . . λM−1} × {1}‍ 
is ‍D′‍ are realizable. To prove this property, observe that all the ‍M ‍-dimensional Young diagrams 
with restriction ‍D′‍ are obtained as finite sequences of ‍(M−1)‍-dimensional Young diagrams 

‍D
′ = D′

1 ⊃ D′
2 ⊃ . . . ⊃ D′

λM‍, for some ‍λM‍ specifying the minimum period in the mth dimension. For 
all such sequences, consider a tableau ‍T ′‍ labeling ‍D′‍ such that for all ‍‍, ‍1 ≤ i ≤ λM−1‍, the labels of 

‍D′
i+1‍ are smaller than the labels ‍D′

i \ D′
i+1‍. Such a tableau is always possible because of the nested 

property of the sequence of diagrams ‍D′
i ‍, ‍1 ≤ i ≤ λM‍. Now, suppose that the Young tableau ‍T ′‍ is 

realizable. This means that there is a perceptron ‍(w′, θ′)‍ acting on the grid-like inputs in ‍Cλ′‍ such 
that ‍T ′ = T (w′, θ′)‍. With no loss of generality, the weight vector ‍w′‍ specifies a sequence of patterns 

‍c⋆k (w′)‍, ‍1 ≤ k ≤ Λ′‍, and a sequence of thresholds ‍θk(w′)‍, ‍1 ≤ k ≤ Λ′‍, such that ‍(1)‍ enumerates the 
elements of ‍Cλ′‍ by increasing level of activity and ‍(2)‍ for all ‍0 ≤ k ≤ |D′|‍, the set of active patterns 

‍Jk(w)‍ defined in (29) is linearly separable if and only if ‍θk(w′) ≤ θ < θk+1(w′)‍. Then by construction, 
the diagrams ‍D′

i ‍, ‍1 ≤ i ≤ λM‍, are realized by a perceptron ‍(w′, θ′i )‍, where every ‍θ
′
i ≥ θ′‍ is such that 

‍θΛ−|D′
i |(w′) < θ′i < θΛ−|D′

i |+1(w′)‍. We are now in a position to construct a ‍M ‍-module perceptron ‍(w, θ′)‍ 
realizing the sequence ‍D

′ = D′
1 ⊃ D′

2 ⊃ . . . ⊃ D′
λM‍. To do so, it is enough to specify the components 

‍wM,1, . . . , wM,λM‍ of the Mth module of a weight vector ‍w‍ since the other components will coincide with 
‍w′‍. One can check that choosing ‍wM,i = θ′i − θ′‍ defines an admissible increasing sequence of non-
negative weights.

(ii) For the ‘only if’ part, let us consider an arbitrary ‍(M−1)‍-dimensional Young tableau ‍T ′‍, with 
diagram ‍D′‍ such that ‍|D′| = p‍. Then let us consider the ‍m‍-dimensional Young diagram ‍D‍ obtained 
via the sequence of ‍(M−1)‍-dimensional diagrams ‍D

′ = D′
1 ⊃ D′

2 ⊃ . . . ⊃ D′
p‍, where for all ‍q‍, 

‍1 ≤ q < p‍, ‍D
′
q \ D′

q+1‍ is a singleton containing the lattice point labeled by ‍p − q + 1‍. Moreover, let us 
consider the smallest periods ‍λ‍ such that ‍D ⊂ {1, . . . ,λ1} × . . .× {1, . . . ,λM}‍. Now, suppose that all 
‍m‍-dimensional Young diagrams are realizable. Then, there is a perceptron ‍(w, θ)‍ acting on ‍Cλ‍ with 
modularly ordered, non-negative weights such that ‍D = D(w, θ)‍. This means that for all ‍‍, ‍1 ≤ q ≤ p‍, 
the diagram ‍D

′
q‍ is realized by the perceptron ‍(w′, θ − wM,q)‍, where ‍w′‍ collect the components of ‍w‍ 

that correspond to ‍m − 1‍ first modules. Then, let us consider the pattern ‍cq‍ represented by the lattice 
point in the singleton ‍D

′
q \ D′

q+1‍. Remember that a pattern ‍c‍ is identified to the lattice point ‍(i1, . . . , iM)‍, 
whose coordinates are given by the phase of the active neuron within each module. Then, by the 
increasing property of the weights, we necessarily have ‍θ − wM,q+1 ≤ w′Tcq < θ − wM,q‍, which implies 
that the Young tableaux ‍D′‍ is realized by the perceptron ‍(w′, θ − wM,1)‍.

It is straightforward to check that all 1D Young tableaux are realizable, so that all 2D Young 
diagrams are realizable. However, the following counterexample shows that not all 2D Young 
tableaux are realizable, so that ‍M ‍-dimensional Young diagrams with ‍M > 2‍ are not all realizable. 
 

Counterexample 1. The 2D Young tableaux defined as
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	﻿‍

T=

4 8 9

3 5 7

1 2 6 ‍�

is not realizable.
Proof. Suppose there is a perceptron with modularly ordered, non-negative, weight vector 

‍w = (w1,1, w1,2, w1,3, w2,1, w2,2, w2,3)‍ realizing ‍D‍. By convention, we consider that the first module 
corresponds to the horizontal axis and the second module corresponds to the vertical axis. The 
labeling of ‍T ‍ implies order relations among read-out activities via ‍w‍. Specifically, the activities can 
be listed by increasing order as ‍w1,1 + w2,1 < w1,2 + w2,1 < w1,1 + w2,2 < w1,1 + w2,3 < . . .‍. We are going 
to show that such an order is impossible by contradiction. To do so, let us introduce the weight 
differences ‍u1 = w1,2 − w1,1‍, ‍u2 = w1,3 − w1,2‍ associated to the first module and the weight differences 

‍v1 = w2,2 − w2,1‍, ‍v2 = w2,3 − w2,2‍ associated to the second module. These differences satisfy incompatible 
order relations. Specifically: ‍(1)‍ the sequence ‍2 → 3‍ in ‍T ‍ implies that the cost to go right, that is, 

‍u1 = w1,2 − w1,1‍, is less than the cost to go up, that is, ‍v1 = w2,2 − w2,1‍. Otherwise, the label 2 would be 
on top the label 1. Thus, we necessarily have ‍u1 < v1‍. The same reasoning for the sequence ‍4 → 5‍ 
implies ‍v2 < u1‍, so that we have ‍v2 < v1‍ The sequence ‍5 → 6‍ implies ‍v1 < u2‍, and the sequence ‍7 → 8‍ 
implies ‍u2 < v2‍, so that we have ‍v1 < v2‍. Thus, assuming that ‍T ‍ is realizable leads to considering 
weights for which ‍v2 < v1‍ and ‍v1 < v2‍—a contradiction.

Linearly separable dichotomies for realizable Young diagrams
Consider a Young ‍M ‍-dimensional diagram ‍D ∈ {1, . . . λ1} × . . .× {1, . . . λM}‍ that can be realized by a 
perceptron with modularly ordered, non-negative weights. Such a Young diagram ‍D‍ is the lattice set 
whose points represent the phase indices of inactive grid-like inputs. Indeed, if ‍(i1, . . . , iM) ∈ D‍, we 
have ‍

∑M
m=1 wm,im ≤ θ‍, which means that the perceptron is inactive for the grid-like input ‍c‍ in ‍Cλ‍ obtained 

by setting ‍cm,im = 1‍ for all ‍1 ≤ m ≤ M ‍. Thus, the perceptron implements the dichotomy for which the 
inactive grid-like inputs are exactly represented by ‍D‍. Are there more dichotomies associated to ‍D‍? 
Answering this question requires revisiting the correspondence between perceptrons and Young 
diagrams. The key property in establishing this correspondence is the assumption of modularly 
ordered weights. In Section B.1, we justified that such an assumption incurs no loss of generality by 
permutation invariance of the grid cells within each modules. Thus, each Young diagram ‍D‍ is in fact 
associated to the class of perceptrons

	﻿‍ {(Pw, θ) |D = D(w, θ) P ∈ Πλ} ,‍� (31)

where ‍Πλ‍ denotes the set of permutation matrix stabilizing the modules of periods ‍λ‍. Clearly, for 

‍P ̸= P′
‍, the perceptron ‍(Pw, θ)‍ generally implements a distinct dichotomy than that of ‍(P′w, θ)‍. As a 

result, there is a class of dichotomies indexed by the Young diagram ‍D‍, which we denote by ‍C(D)‍.
Evaluating the cardinality of ‍C(D)‍ via simple combinatorial arguments first requires a crude 

description of the geometry of ‍D‍, and specifically of its degenerate symmetries. For all ‍1 ≤ m ≤ M ‍, 

‍1 ≤ i ≤ λm‍, let us denote the restriction of ‍D‍ to the hyperplane ‍im = i‍ by

	﻿‍ Rm,i
(
D
)

= {(i1, . . . , iM) ∈ D | im = i} .‍� (32)

By definition of the Young diagrams, we have ‍Rm,i
(
D
)
⊃ Rm,i+1

(
D
)
‍ for all ‍1 ≤ i < λm‍. We say 

that a Young diagram exhibits a degenerate symmetry along the mth dimension whenever two 
consecutive restrictions coincide: ‍Rm,i

(
D
)

= Rm,i+1
(
D
)
‍. To make the notion of degeneracy more 

precise, let us consider the equivalence relation on ‍{1, . . . ,λm}‍ defined by ‍i ∼ j ⇔ Rm,i
(
D
)

= Rm,j
(
D
)
‍. 

Given ‍‍ in ‍{1, . . . ,λm}‍, the equivalence class of ‍‍ is then ‍{j ∈ {1, . . . ,λm} | Rm,i
(
D
)

= Rm,j
(
D
)
}‍. Let us 

denote the total number of such equivalence classes by km, ‍1 ≤ km ≤ λm‍. Then, the set ‍{1, . . . ,λm}‍ 
can be partitioned in km classes, ‍Cm,1, . . . , Cm,km‍, where the classes are listed by decreasing order of 
Young diagrams. For instance C1 comprises all the indices for which the restriction along the mth 
dimension yields the same Young diagram as ‍Rm,1

(
D
)
‍. We denote the cardinality of the thus-ordered 

equivalence classes by ‍σm,k = |Cm,k|‍, ‍1 ≤ k ≤ km‍, so that we have ‍λm = σm,1 + . . . + σm,km‍. We refer to the 
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‍σm,k‍ as the degeneracy indices. Degenerate symmetries correspond to degeneracy indices ‍σm,k > 1‍. 
We are now in a position to determine the cardinality of ‍C(D)‍:

Proposition 6
For integer periods ‍λ1, . . . ,λM‍, let us consider a realizable Young diagram ‍D‍ in 
‍{1, . . . ,λ1} × . . .× {1, . . . ,λM}‍. Then, the class of linearly separable dichotomies with Young diagram 
‍D‍, denoted by ‍C(D)‍, has cardinality

	﻿‍
|C(D)| =

M∏
m=1

λm!
σm,k1 ! . . . σm,km !

.
‍�

(33)

where ‍σm,k‍, ‍1 ≤ k ≤ m‍ are the degeneracy indices of the Young diagram along the mth dimension.
Proof. A dichotomy is specified by enumerating the set of inactive grid-like inputs ‍c‍ in ‍Cλ‍. Each 

pattern ‍c‍ can be conveniently represented as a lattice point in ‍{1, . . . ,λ1} × . . .× {1, . . . ,λM}‍ by 
considering the phase indices of the active cell in the ‍M ‍ modules of pattern ‍c‍. Thus, a generic 
dichotomy is just a configuration of lattice points in ‍{1, . . . ,λ1} × . . .× {1, . . . ,λM}‍. The class of 
dichotomies ‍C(D)‍ comprises all lattice-point configurations in ‍{1, . . . ,λ1} × . . .× {1, . . . ,λM}‍ obtained 
by permutations of the indices along the ‍c‍ dimensions:

	﻿‍ C(D) =
{
π1 . . . πMD |π1 ∈ Sλ1 , . . . ,πM ∈ SλM

}
,‍� (34)

where we define

	﻿‍ π1 . . . πMD =
{(

π1(i1), . . . ,πM(iM)
)

| (i1, . . . , iM) ∈ D
}

,‍� (35)

and where ‍Sλm‍ denotes the set of permutation of ‍{1, . . . ,λm}‍. Let us denote a generic lattice-
point configuration in ‍{1, . . . ,λ1} × . . .× {1, . . . ,λM}‍ by ‍S‍. By permuting the indices of the 
points in ‍S‍, each transformation ‍πm‍ is actually permuting ‍Rm,i(S)‍, ‍1 ≤ i ≤ m‍, the restrictions 
of the lattice-point configuration along the mth dimension. The partial order defined by 
inclusion is preserved by permutations in the sense that given ‍πm‍ in ‍Sλm‍, ‍1 ≤ m ≤ M ‍, we have 

‍Rm,πm (i)(π1 . . . πMS) ⊂ Rm,πm (j)(π1 . . . πMS)‍ if and only if ‍Rm,i(S) ⊂ Rm,j(S)‍. In particular, km, the number of 
restriction classes induced by the relation ‍i ∼ j ⇔ Rm,i

(
S
)

= Rm,j
(
S
)
‍, is invariant to permutations, 

and so are their cardinalities. These cardinalities specify the degeneracy indices ‍σm,1, . . . ,σm,km‍ of ‍S‍ 
along the mth dimension. Thus, all configurations ‍S‍ obtained via permutation of ‍D‍ have the same 
degeneracy indices as ‍D‍. Moreover, for a Young diagram ‍D‍, these degeneracy indices simply count 
the equivalence classes formed by restrictions of identical size along the same dimension. Thus, the 
number of dichotomies in ‍|C(D)|‍ is determined as the number of ways to independently assign the 
indices ‍{1, . . . ,λm}‍ to km restriction classes of size ‍σm,1, . . . ,σm,km‍ for all ‍m‍, ‍1 ≤ m ≤ M ‍. For each ‍m‍, this 
number is given by the multinomial coefficient: ‍λm!/(σm,k1 ! . . . σm,km !)‍.

As opposed to the case of random configurations in general position, the many symmetries of 
the grid-like inputs in ‍Cλ‍ allow one to enumerate dichotomies of specific cardinalities. We define the 
cardinality of a dichotomy by the size of the set of active pattern it separates. Thus, a perceptron ‍(w, θ)‍ 
realizing a ‍k‍-dichotomy is one for which exactly ‍k‍ patterns ‍c‍ in ‍Cλ‍ are such that ‍wTc > θ‍. Proposition 
7 reduces the problem of counting realizable ‍k‍-dichotomies to that of enumerating realizable Young 
diagrams ‍D‍ of size ‍|D| = k‍. Such an enumeration depends on the number of modules ‍M ‍, which sets 
the dimensionality of the Young diagrams, as well as the periods ‍λm‍, ‍1 ≤ m ≤ M ‍. Unfortunately, even 
without considering the constraint of being a realizable Young diagram, there is no convenient way 
to enumerate Young diagrams of fixed size for general dimension ‍M ‍. However, for low cardinality, 
for example, ‍k ≤ 5‍, there are only a few Young diagrams such that ‍|D| = k‍, and it turns out that all of 
them are realizable. In the following, and without aiming at exhaustivity, we exploit the latter fact to 
characterize the sets of ‍k‍-dichotomies for ‍k ≤ 5‍ and to compute their cardinalities.

There are ‍M ‍ possible ‍M ‍-dimensional Young diagram of size 2, according to the dimension along 
which the two lattice points are positioned. The Young diagram extending along the mth dimension, 

‍1 ≤ m ≤ M ‍, has degeneracy indices ‍σm,1 = 2‍ and ‍σm,2 = λm − 2‍ or ‍σn,1 = 1‍ and ‍σn,2 = λn − 1‍ for ‍n ̸= m‍. 
As a result, the number of 2-dichotomies of grid-like inputs is given by
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	﻿‍
N2 =

M∑
m=1

(∏
n̸=m

λn!
1!(λn − 1)!

)
λm!

2!(λm − 2)!
= 1

2

M∑
m=1

λm(λm − 1)

(∏
n̸=m

λn

)
.
‍�

(36)

There are two types of Young diagram of size 3, type ‍(3a)‍ for which the three lattice points span 
one dimension and type ‍(3b)‍ for which the lattice points span two dimensions. There are ‍M ‍ possible 
M-dimensional Young diagram of type ‍(3a)‍. The degeneracy indices for the Young diagram extending 
along the mth dimension, ‍1 ≤ m ≤ M ‍, are ‍σm,1 = 3‍ and ‍σm,3 = λm − 3‍, and ‍σn,1 = 1‍ and ‍σn,2 = λn − 1‍ for 

‍n ̸= m‍, yielding

	﻿‍
N3a =

M∑
m=1

(∏
n̸=m

λn!
1!(λn − 1)!

)
λm!

3!(λm − 3)!
= 1

6
∑

m

(∏
n̸=m

λn

)
λm(λm − 1)(λm − 2) .

‍�
(37)

There are ‍M(M − 1)/2‍ possible ‍M ‍-dimensional Young diagram of type ‍(3b)‍, as many as choices of 
two dimensions among ‍M ‍. The degeneracy indices of the Young diagram extending along dimensions 
‍m‍ and ‍n‍, ‍1 ≤ m < n ≤ M ‍, are ‍σm,1 = σm,2 = 1‍ and ‍σm,3 = λm − 2‍, ‍σn,1 = σn,2 = 1‍ and ‍σn,3 = λn − 2‍, and 

‍σk,1 = 1‍ and ‍σk,2 = λk − 1‍ for ‍k ̸= m, n‍, yielding

	﻿‍
N3b =

∑
1≤m<n≤M

(∏
k̸=m,n

λk!
1!(λk − 1)!

)
λm!

1!1!(λm − 2)!
λn!

1!1!(λn − 2)!
‍�

(38)

	﻿‍
= 1

2
∑
n̸=m

(∏
k̸=m,n

λk

)
λm(λm − 1)λn(λn − 1) .

‍�
(39)

As a result, the number of 3-dichotomies of grid-like inputs is given by

	﻿‍
N3 = N a

3 + N b
3 = 1

2
∏

m

λm

(∑
n

(λn − 1)

(
λn − 2

3
+
∑

k̸=n

λk − n + 1

))
.
‍�

(40)
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Appendix 2—figure 1. Multidimensional Young diagrams. a. Lattice representations of the 2-dimensional Young 
diagrams of size 4, depicting the integer partitions of 4. b. Lattice representation of a 3-dimensional Young 
diagram with two 2-dimensional Young diagrams defined as horizontal restrictions.
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Appendix 2—figure 2. Linearly separable 4-dichotomies. Top: there are four possible Young diagrams a, b, c, 
and d, of size 4, spanning at most three dimensions. Lattice points lying along the mth dimension represent grid-
like inputs in ‍Cλ‍ whose coordinates only differ in the mth module. Bottom: Graphical edge structure arising from 
embedding a Young diagram within ‍H(Cλ)‍, the convex polytope defined by grid-like inputs.

A similar analysis reveals that there are four types of Young diagrams of size 4, which span up 
to three dimensions if ‍M ≤ 3‍. These Young diagrams, denoted by ‍(4a)‍, ‍(4b)‍, ‍(4c)‍, and ‍(4d)‍, are 
represented in Figure 6, where degeneracy indices can be read graphically. As a result, the number 
of 4-dichotomies of grid-like inputs is given by ‍N4 = N a

4 + N b
4 + N c

4 + N d
4 ‍ where the number of type-

specific dichotomies is given by

	﻿‍
N4a = 1

24

M∑
m=1

(∏
n̸=m

λn

)
λm(λm − 1)(λm − 2)(λm − 3) ,

‍�
(41)

	﻿‍
N4b = 1

2
∑

1≤m≤M

(∏
k̸=m,n

λk

)
λm(λm − 1)(λm − 2)λn(λn − 1) ,

‍�
(42)

	﻿‍
N4c = 1

4
∑

1≤m≤M

(∏
k̸=m,n

λk

)
λm(λm − 1)λn(λn − 1) ,

‍�
(43)

	﻿‍
N4d =

∑
1≤m≤M

(∏
l̸=m,n,k

λl

)
λm(λm − 1)λn(λn − 1)λk(λk − 1) .

‍�
(44)

The classification of dichotomies via Young diagrams also illuminates the geometrical structure of 
linearly separable ‍k‍-dichotomies, at least for small ‍k‍. In particular, 2-dichotomies are linearly separable 
if they involve two lattice points forming an edge of the convex polytope, that is, if these points 
correspond to patterns in ‍Cλ‍ whose coordinates only differ in one module. Similarly, 3-dichotomies 
are linearly separable if and only if ‍(3a)‍ they involve three lattice points representing patterns in 
‍Cλ‍ whose coordinates only differ in one module or ‍(3b)‍ they involve two pairs of lattice points 
representing patterns in ‍Cλ‍ whose coordinates only differ in one module. Thus, ‍(3a)‍ corresponds to 
the case of three lattice points specifying a clique of convex-polytope edges, while ‍(3b)‍ corresponds 
to the case of three lattice points specifying two convex-polytope edges. We illustrate the four 
geometrical structures of the linearly separable 4-dichotomies in Figure 6.

Numbers of dichotomies for two modules
For two modules of period ‍λ1‍ and ‍λ2‍, recall that each grid pattern in ‍Cλ‍ is a ‍(λ1 + λ2)‍-dimensional 
vector, which is entirely specified by the indices of its two active neurons: ‍(i, j)‍, ‍1 ≤ i ≤ λ1‍, ‍1 ≤ j ≤ λ2‍. 
Thus, it is convenient to consider a set of grid patterns as a collection of points in the discrete lattice 
‍{1, . . . ,λ1} × {1, . . . ,λ2}‍. From Proposition 4, we know that linearly separable dichotomies are made 
of those sets of grid patterns ‍Cλ‍ for which a Young diagram can be formed via permutations of 
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rows and columns in the lattice (see Figure 7). By convention, we consider that the marked lattice 
points forming a Young diagram define the set of active grid patterns. The remaining unmarked 
lattice points define the set of inactive grid patterns. To each 2D Young diagrams in the lattice 
‍{1, . . . ,λ1} × {1, . . . ,λ2}‍ corresponds a class of linearly separable dichotomies. Counting the total 
number of linearly separable dichotomies when ‍M = 2‍ will proceed in two steps: (i) we first give 
a slightly stronger result than Proposition about the cardinality of the classes of dichotomies 
associated to a Young diagram, and (ii) we evaluate the total number of dichotomies by summing 
class cardinalities over the set of Young diagrams.

Proposition 7
For two integer periods ‍λ1‍ and ‍λ2‍, let us consider a Young diagram ‍D‍ in the lattice 
‍{1, . . . ,λ1} × {1, . . . ,λ2}‍. Without loss of generality, ‍D‍ can be specified via the degeneracy indices 
‍σ1,1, . . . σ1,k‍, and ‍σ2,1, . . . σ2,k‍, chosen such that

	﻿‍ D has σ1,i rows of length
∑k+1−i

j=1 σ2,j ⇐⇒ D has σ2,j columns of length
∑k+1−i

i=1 σ1,i.‍� (45)

Then, the class of linearly separable dichotomies with Young diagram ‍D‍, denoted by ‍C(D)‍, has 
cardinality

	﻿‍
|C(D)| = λ1!

σ1,1! . . . σ1,k+1!
λ2!

σ2,1! . . . σ2,k+1!
,
‍�

(46)

where we have ‍σ1,1 + . . . + σ1,k+1 = λ1‍ and ‍σ2,1 + . . . + σ2,k+1 = λ2‍.

Appendix 2—figure 3. Counting 2-module Young diagram. Linearly separable dichotomies (left panel) can be 
associated to a unique Young diagram (middle panel). These Young diagrams are entirely specified by their frontier 
path, separating active positions from inactive ones. Enumerating all possible frontier paths allows one to count all 
the linearly separable dichotomies for two modules.

Proof. Consider a Young diagram ‍D‍ in ‍{1, . . . ,λ1} × {1, . . . ,λ2}‍ with ‍p‍ inactive patterns. The 
diagram ‍D‍ is uniquely defined by the row partition ‍p = r1 + . . . + rλ1‍, ‍r1 ≥ . . . ≥ rλ1‍, where ri denotes 
the occupancy of row ‍‍, or equivalently by the column partition ‍p = s1 + . . . + sλ2‍, ‍s1 ≥ . . . ≥ sλ2‍, 
where sj denotes the occupancy of column ‍j‍. The occupancies ‍{r1, . . . , rλ1 }‍ and ‍{s1, . . . , sλ2 }‍ entirely 
define restrictions along each dimension and each set of occupancies along a dimension is invariant 
to row and column permutations. The corresponding degeneracy indices can be determined 
straightforwardly by counting the number of rows or columns with a given occupancy, that is, within 
a given equivalence class. Denoting the necessarily identical number of rows classes and columns 
classes by ‍k ≤ min(λ1,λ2)‍, Proposition yields directly the announced result.

Proposition 8
For two integer periods ‍λ1‍ and ‍λ2‍, the number of linearly separable dichotomies in ‍C(λ1,λ2)‍ is

	﻿‍
Nλ1,λ2 =

min(λ1,λ2)∑
k=0

(k!)2S(λ1 + 1, k + 1)S(λ2 + 1, k + 1) = B(−λ1)
λ2

,
‍�

(47)

where ‍S(n, k)‍ denotes the Stirling numbers of the second kind and where ‍B
(n)
k ‍ denotes the poly-

Bernoulli numbers.
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Proof. Our goal is to evaluate the total number of dichotomies ‍Nλ1,λ2‍. To achieve this goal, we will 
exploit the combinatorics of 2D Young diagrams to specify ‍Nλ1,λ2‍ as

	﻿‍
Nλ1,λ2 =

∑
D⊂{1,...,λ1}×{1,...,λ2}

|C(D)| ,
‍�

(48)

where ‍D‍ runs over all possible Young diagrams. Because of the multinomial nature of the 
cardinalities ‍|C(D)|‍, it is advantageous to adopt an alternative representation for Young diagrams. 
This alternative representation will require utilizing the frontier of a Young diagram. Given a 
Young diagram ‍D‍ with ‍k‍ distinct nonempty rows and ‍k‍ distinct nonempty columns, we define its 
frontier as the path joining the lattice points ‍(0,λ2)‍ and ‍(λ1, 0)‍, via lattice positions in ‍D‍ separating 
the active region from the inactive region (see Figure 7). Such a path is uniquely defined via ‍k + 1‍ 
downward steps of size ‍σ1,k+1, . . . ,σ1,1‍ and ‍k + 1‍ rightward steps of sizes ‍σ2,1, . . . ,σ2,k+1‍, which satisfy 

‍σ1,1 + . . . + σ1,k+1 = λ1‍ and ‍σ2,1 + . . . + σ2,k+1 = λ2‍. Clearly, the frontier of ‍D‍ determines the cardinality 
of ‍C(D)‍ via (46). To evaluate ‍Nλ1,λ2‍ in (48), we partition Young diagrams based on ‍k‍, the number of 
distinct row and column sizes. For ‍k = 0‍, we have ‍σ1,1 = λ1‍ and ‍σ2,1 = λ2‍, corresponding to ‍Nλ1,λ2 (0) = 1‍ 
Young diagram, the empty diagram, where all patterns are inactive. For ‍k = 1‍, there is a single row 
and column size, corresponding to Young diagrams where the active patterns are arranged in a 
rectangle, with edge lengths ‍σ1,1‍ and ‍σ2,1‍. Nonempty rectangular diagrams correspond to ‍σ1,1 > 0‍ and 

‍σ2,1 > 0‍, and thus contribute

	﻿‍
Nλ1,λ2 (1) =

λ1∑
ρ1=1

λ2∑
σ1=1

λ1!
σ1,1!(λ1 − σ1,1)!

λ2!
σ2,1!(λ2 − σ2,1)!‍�

(49)

	﻿‍

=




λ1∑
ρ1=0

λ1!
σ1,1!(λ1 − σ1,1)!

− 1







λ2∑
σ1=0

λ2!
σ2,1!(λ2 − σ2,1)!

− 1


 = (2λ1 − 1)(2λ2 − 1) ,

‍�
(50)

to the sum (48). The contribution of diagrams with general ‍k‍-frontier, denoted by ‍Nλ1,λ2 (k)‍, follows 
from the multinomial theorem, where one ensures that frontiers with less than ‍k + 1‍ downward 
and rightward steps do not get repeated. These ‍k‍-frontiers correspond to ‍k + 1‍ sequences of 
downward and rightward steps for which no step has zero size, except possibly for the first 
downward step emanating from ‍(0,λ2)‍ and the last rightward step arriving at ‍(λ1, 0)‍. Under these 
conditions, the downward and rightward steps can be chosen independently, so that we can write 

‍Nλ1,λ2 (k) = fk(λ1)fk(λ2)‍, where the factors ‍fk(λ1)‍ and ‍fk(λ2)‍ only depend on the downward steps 
and rightward steps, respectively. Let us focus on the downward steps alone, that is, on the term 

‍fk(λ1)‍. The admissible sequences of steps satisfy ‍σ1,1 + . . . + σ1,k+1 = λ1‍, with ‍σ1,1, . . . ,σ1,k ̸= 0‍. From the 
multinomial theorem, we have

	﻿‍

(k + 1)λ1 =
∑

σ1,1+...+σ1,k+1=λ1
σ1,1...σ1,k ̸=0

λ1!
σ1,1! . . . σ1,k+1!

+
∑

σ1,1+...+σ1,k+1=λ1
σ1,1...σ1,k=0

λ1!
σ1,1! . . . σ1,k+1!

,

‍�
(51)

where the first term of the right-hand side is ‍fk(λ1)‍ and the second term of the right-hand side 
collects the contribution of sequences that are not ‍k‍-frontiers. The latter term can be evaluated 
explicitly via the exclusion-inclusion principle yielding

	﻿‍

∑
σ1,1+...+σ1,k+1=λ1

σ1,1...σ1,k=0

λ1!
σ1,1! . . . σ1,k+1!

=
k∑

i=1

(−1)i−1
(

k
i

) ∑
σ1,1+...+σ1,k+1=λ1
σ1,1=0,...,σ1,i=0

λ1!
σ1,1! . . . σ1,k+1!

,

‍�

(52)

	﻿‍
=

k∑
i=1

(−1)i−1
(

k
i

) ∑
σ1,i+1+...+σ1,k+1=λ1

λ1!
σ1,i+1! . . . σ1,k+1!

‍�
(53)
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	﻿‍
=

k∑
i=1

(−1)i−1
(

k
i

)
(k + 1 − i)λ1 ,

‍�
(54)

where we have used the multinomial theorem for the last equality. Together with (51), the above 
equation allows one to specify ‍fk(λ)‍ in terms of the Sterling numbers of the second kind, denoted 
by ‍S(n, k)‍, as

	﻿‍
fk(λ) =

k∑
i=0

(−1)i
(

k
i

)
(k + 1 − i)λ ,

‍�
(55)

	﻿‍
=

k∑
i=0

(−1)i
(

k
i

)
λ∑

j=0

(
λ

j

)
(k − i)j ,

‍�
(56)

	﻿‍
=

λ∑
j=0

(
λ

j

) k∑
i=0

(−1)i
(

k
i

)
(k − i)j ,

‍�
(57)

	﻿‍
= k!

λ∑
j=0

(
λ

j

)
S(j, k) ,

‍�
(58)

	﻿‍ = k!S(λ + 1, k + 1) ,‍� (59)

where the last equality follows from a well-known identity about Stirling numbers of the second 
kind. Then, the overall number of dichotomies follows from the fact that the frontier has at most 

‍min(λ1,λ2)‍ distinct values of row/column sizes, which implies

	﻿‍
Nλ1,λ2 =

min(λ1,λ2)∑
k=0

Nλ1,λ2 (k) =
min(λ1,λ2)∑

k=0

(k!)2S(λ1 + 1, k + 1)S(λ2 + 1, k + 1) = B(−λ1)
λ2

.
‍�

(60)

where we have recognized the definition of the poly-Bernoulli numbers ‍B
(n)
k ‍. These numbers are 

defined via the generating function

	﻿‍

Lik

(
1 − e−x)

1 − e−x =
∞∑
n=0

B(n)
k

xn

n!
,
‍�

(61)

where ‍Lik‍ denotes the poly-logarithm.
Poly-Bernoulli numbers were originally introduced by Kaneko to enumerate the set of binary 

‍k‍-by-‍n‍ matrices that are uniquely reconstructible from their row and column sums (Kaneko, 1997). 
The use of poly-Bernoulli numbers to enumerate permutations of Young tableaux was pioneered 
by Postnikov while investigating totally Grassmannian cells (Postnikov, 2006). While studying 
the asymptotics of the extremal excedance set statistic, de Andrade et  al., 2015 obtained the 
asymptotics of the poly-Bernoulli numbers along the diagonal:

	﻿‍
Nλ,λ = B(−λ)

λ =
(

1
log 2

√
1 − log 2

+ o(1)
)

(2λ)!
(2 log 2)2λ .

‍� (62)
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Appendix 3

Spatial embedding of the grid code
In this Appendix, we address the limitations entailed by spatially embedding grid-like inputs. First, 
we define the grid-cell-activity matrix that specifies the spatial assignment of grid-like inputs for 1D 
space. Second, we show that the contiguous-separating capacity, defined as the maximum spatial 
extent over which all possible dichotomies are linearly separable, is determined by the rank of the 
grid-cell-activity matrix. Third, we generalize our results about the separating capacity to spaces of 
arbitrary dimensions.

Grid-cell-activity matrix for 1D space
The fundamental object of our combinatorial analysis is the polytope whose vertices have all 
possible grid-cell patterns as coordinates. Thanks to the many symmetries of this polytope, we 
can enumerate linearly separable dichotomies of grid-like inputs. However, such an approach 
makes no explicit reference the actual physical space that these grid-like inputs encode. Making 
these reference consists in specifying a mapping between spatial positions and grid-like inputs. 
Unfortunately, this generally involves breaking many of the polytope symmetries, precluding any 
combinatorial analysis. It is especially true if one considers spaces encoded by a subset of grid-
cell patterns, as opposed to the full set ‍Cλ‍, a situation that leads to considering nonsymmetrical 
polytopes.

Let us explain this point by considering the case of a discrete 1D space where each position is 
marked by an integer in ‍Z‍. In this setting, positional information about ‍Z‍ is encoded by ‍M ‍ modules 
of grid cells with integer periods ‍λ = (λ1, . . . ,λM)‍. Recall that each module comprises ‍λm‍ cells, each 
active at a distinct phase within the period ‍λm‍, and that the corresponding repertoire of grid-like 
inputs ‍Cλ‍ has cardinality ‍Λ =

∏M
m=1 λm‍. Because the spatial activity of grid cells is periodic and because 

we consider a finite number of grid cells, the mappings between spatial positions and grid-like 
inputs are necessarily periodic functions ‍Aλ : Z → Cλ‍. Let us denote by ‍L‍ the period of ‍Aλ‍. It is then 
convenient to consider the functions ‍Aλ : Z/LZ → Cλ‍ as matrices, called grid-cell-activity matrices, 
whose jth column is the pattern in ‍Cλ‍ that encodes the jth spatial position in ‍{1, . . . , L}‍, seen as the 
element ‍j‍ in ‍Z/LZ‍. In particular, the matrices ‍Aλ‍ have ‍N =

∑M
m=1 λm‍ rows, each row corresponding to 

the periodic activity of a grid cell. Moreover, at every position ‍j‍, ‍1 ≤ j ≤ L‍, each module has a single 
active cell. For the sake of clarity, here follows a concrete example of grid-cell-activity matrix for 

‍λ = (2, 3, 5)‍:

	﻿‍

A(2,3,5) =




1 0 1 0 1 0 1 0 1 0 . . . . . . 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 . . . . . . 1 0 1 0 1

1 0 0 1 0 0 1 0 0 1 . . . . . . 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 . . . . . . 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 . . . . . . 0 1 0 0 1

1 0 0 0 0 1 0 0 0 0 . . . . . . 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0 . . . . . . 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0 . . . . . . 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 . . . . . . 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 . . . . . . 0 0 0 0 1




‍�

(63)

As the labelling of grid cells is arbitrary within a module, grid-population activity is actually 
represented by a class of matrices, which is invariant to permutation of the grid cells ‍(m, i)‍, ‍1 ≤ i ≤ λm‍, 
within a module ‍m‍. Here, with no loss of generality, we consider the class representatives obtained 
by ordering the grid cells by increasing phase within each module. This convention allows us to 
simply define the activity matrix ‍Aλ‍ via the introduction of a spatial shift operator ‍Jλ‍. We define the 
shift operator ‍Jλ‍ as the linear operator that cyclically increments the phases by one unit within each 
module, that is,

https://doi.org/10.7554/eLife.62702
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	﻿‍

Jλ =




Jλ1

Jλ2

. . .

JλM




with Jλm =




0 1 0 0 . . .

0 0 1 0 . . .

...
. . .

. . .
. . .

1 0 . . .




,

‍�

(64)

where ‍Jλm‍ is the canonical circulant permutation matrix of order ‍λm‍. We refer to ‍Jλ‍ as a shift 
operator because its action on any vector of ‍Aλ‍ corresponds to a positional shift by one unit of 
space: if ‍cj‍, ‍1 ≤ j ≤ L‍, denotes the jth column of ‍Aλ‍, then ‍Jλcj = cj+1‍ if ‍j < L‍, and ‍JλcL = c1‍. Thus, we 
can define the grid-cell-activity matrix as the matrix obtained by enumerating in order the grid-cell 
patterns ‍Jk

λc1‍, ‍k ∈ N‍, up to redundancies. Such a definition of the grid-cell-activity matrix prominently 
features the relation between the symmetries of the grid code and those of the actual physical 
space. In particular, it clearly shows that the formulation of our problem is invariant to rotation of the 
discretized space ‍1, 2, . . . , L‍, that is, by shift in ‍Z/LZ‍. We show that grid-cell-activity matrix can be 
similarly defined for lattice space of higher dimensions in Section C.3, including the relevant case of 
the 2D hexagonal lattice.

A key observation is that the periodicity ‍L‍, that is, the number of positions univocally tagged by 
grid-like inputs, is directly related to the periods ‍λ‍ via the Chinese remainder theorem. Indeed, by 
the Chinese remainder theorem, the first redundant grid-like input occurs for ‍L = lcm

(
λ1, . . . ,λM

)
‍, 

therefore specifying the number of columns of the activity matrix. Thus, for pairwise coprime periods 
‍λm‍, ‍1 ≤ m ≤ M ‍, we have ‍L = Λ‍ and the columns of the activity matrix ‍Aλ‍ exhaustively enumerate all 
grid-like inputs in ‍Cλ‍. As a result, all the combinatorial results obtained for the full set of patterns 
‍Cλ‍ directly apply over the full linear space ‍{1, . . . , L}‍ for pairwise coprime periods. In particular, for 
pairwise coprime periods, we have ‍rank Aλ =

∑M
i=1 λi − M + 1‍ by Proposition 1.

Unfortunately, our combinatorial results do not directly extend to a spatial context for integer 
periods that are not pairwise coprime or for incomplete spaces ‍{1, . . . , L′}‍, ‍L′ < L‍. For non-coprime 
periods, we have ‍L < Λ‍, as exemplified by the grid-cell-activity matrix for ‍λ = (2, 8)‍ given by

	﻿‍

A(2,8) =




1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




‍�

(65)

which comprises only four of the eight patterns of ‍C2,4‍. Independent of the coprimality of the 
periods, the grid-cell-activity matrix over incomplete spaces is simply obtained by deleting the 
columns corresponding to the missing positions. In particular, we clearly have ‍L′ < L ≤ Λ‍. Excluding 
some grid-like inputs has two opposite implications: (i) the total number of dichotomies is reduced 
in keeping with considering a smaller space but (ii) some dichotomies that were previously not 
linearly separable can become realizable. Disentangling these opposite implications is obscured by 
the many broken symmetries of the polytope formed by the subset patterns under consideration. 
For this reason, we essentially resort to studying spatial embedding of the grid code numerically. 
Such numerical analysis reveals, perhaps not surprisingly, that a key role is played by the embedding 
dimension of the grid code, especially in relation to the concept of contiguous-separating capacity.

Contiguous-separating capacity
We define the contiguous-separating capacity of a grid code as the maximum physical extent over 
which all possible dichotomies are linearly separable. Classically, for ‍N ‍-dimensional inputs in general 
position, the separating capacity is defined as the maximum number of patterns for which all possible 
dichotomies are linearly separable, without any reference to contiguity. Within this context, Cover’s 
counting function theorem implies that the separating capacity equals the dimension of the input 
space. Should the grid-like inputs be in general position in the input space, the separating capacity 
would thus be equal to ‍rank Aλ‍. However, being in general position requires that any submatrix 
formed by ‍r‍ columns of ‍Aλ‍ be of rank ‍r‍ for ‍r ≤ rank Aλ‍. This property does not hold for grid-cell-
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activity matrices. Moreover, we are interested in a stronger notion of separating capacity as we 
require that the grid-like inputs achieving separating capacity represent contiguous spatial position. 
Thankfully, the spatial symmetry of the grid-cell-activity matrices allows us to show that even under 
these restrictions the separating capacity is indeed ‍rank Aλ‍.

Proposition 9
The contiguous-separating capacity of the generic grid-cell-activity matrix ‍Aλ‍ is equal to ‍rank Aλ‍.

Proof.
The proof proceeds in two steps. With no loss of generality, we only consider linear classification 

via perceptron with zero threshold.
(i) By permutation and shift invariance, it is enough to consider contiguous columns of ‍Aλ‍ starting 

from the first column ‍c1‍. From the definition of ‍Aλ‍, the ‍k‍ contiguous columns can be generated 
in terms of the shift operator ‍Jλ‍ as the sequence: ‍c1, Jλc1, . . . , Jk

λc1‍. Let us consider the sequence 

‍{dk}k∈N‍ defined by ‍dk = dim{c1, Jλc1, . . . , Jk
λc1}‍. Posit ‍r = rank Aλ‍. If there is an integer ‍n‍ such that 

‍dn = dn+1‍, then necessarily dk is constant for ‍k ≥ n‍, and is equal to ‍limk→∞ dk = dL = r‍. As ‍d1 = 1‍ and 

‍dk+1 − dk ∈ {0, 1}‍, the preceding observation implies that ‍dk+1 − dk = 1‍ for ‍1 ≤ k < rank Aλ‍. This shows 
that the contiguous columns ‍ci‍, ‍1 ≤ i ≤ r‍, are linearly independent, and thus are in general position 
in the input space. By Cover’s counting function theorem, all dichotomies obtained by labeling the 
positions ‍1 ≤ i ≤ r‍ with ‍r = rank Aλ‍ are linearly separable.

(ii) Considering an extra position, that is, including the column ‍cr+1‍, produces at least a dichotomy 
that is not linearly separable. We proceed by contradiction. Assume that all dichotomies of the ‍r + 1‍ 
positions, that is, of the columns ‍ci‍ with ‍1 ≤ i ≤ r + 1‍, are linearly separable. By Cover’s counting 
function theorem, this is equivalent to assuming that all dichotomies of the first ‍r‍ positions, that is, of 
the columns ‍ci‍ with ‍1 ≤ i ≤ r‍, can be achieved by an ‍(r−1)‍-dimensional hyperplane passing through 
‍cr+1‍. In other words, for all ‍r‍-dichotomies ‍y‍ in ‍{0, 1}r

‍, there is a weight vector ‍w‍ such that ‍yi(wTci) > 0‍ 
for ‍1 ≤ i ≤ r‍ and such that ‍wTcr+1 = 0‍. However, by linear dependence, there are nonzero coefficients 
ai such that ‍cr+1 =

∑r
i=1 aici‍, so that for any ‍r‍-dichotomy, we can find ‍w‍ achieving that dichotomy and 

such that

	﻿‍

r∑
i=1

ai(wTci) = 0 .
‍�

(66)

Considering a dichotomy for which ‍yi = ai/|ai|‍ for nonzero coefficients yields

	﻿‍

r∑
i=1

ai(wTci) =
r∑

i=1

|ai||wTci| > 0 .
‍�

(67)

which is a contradiction with (66).
The above proposition specifies ‍rank Aλ‍ as the contiguous-separating capacity for 1D spatial 

model. This rank also specifies the dimension of the space containing the subset of grid-like inputs 
to be linearly classified. For pairwise coprime periods ‍λ‍, Proposition 1 shows that ‍rank Aλ =

∑M
m=1 λm‍. 

The following proposition generalizes this result to generic integer periods.

Proposition 10
Let ‍Aλ‍ denote the grid-cell-activity matrix specified by M grid modules with integer periods 
‍λ = (λ1, . . . ,λM)‍. The rank of the activity matrix Aλ is given by

	﻿‍

rank Aλ =
M∑
i=1

λi −
∑

1≤i<j≤M

gcd(λi,λj) +
∑

1≤i<j<k≤M

gcd(λi,λj,λk) − · · · + (−1)M−1 gcd(λ1, . . . ,λM) =

M∑
k=1

(−1)k−1 ∑
S⊂λ,|S|=k

gcd(S)
‍

� (68)

where ‍S‍ is a subset of integer periods and ‍|S|‍ denotes the cardinality of the set ‍S‍. If the periods 
are pairwise coprime, the above formula yields ‍rank Aλ =

∑M
i=1 λi − M + 1‍.

Proof. The proof will proceed in three steps.
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(i) The first step is to realize that ‍rank Aλ = rank AT
λ = dim

(
V1 + . . . + VM

)
‍, where the vector spaces 

‍Vm‍, ‍1 ≤ m ≤ M ‍, are generated by the rows of the mth module of the activity matrix. Then, the 
exclusion-inclusion principle applied to the sum of ‍V1 + . . . + VM‍ yields an expression for  Aλ as the 
alternated sum:

	﻿‍ rank Aλ = dim
(
V1 + . . . + VM

)
‍� (69)

	﻿‍
=

M∑
i=1

dim Vi −
∑

1≤i<j≤M

dim Vi ∩ Vj +
∑

1≤i<j<k≤M

dim Vi ∩ Vj ∩ Vk − . . . .
‍�

(70)

By definition of the activity matrix, the space ‍Vm‍ is generated by ‍λm‍ row vectors, which are cyclically 
permuted versions of the ‍λm‍-periodic vector ‍rλm = (1, 0, . . . , 0|1, 0, . . . , 0|1, 0, . . .)‍. In particular, these 
‍λm‍ row vectors can be enumerated by iterated application of ‍J ‍, the canonical ‍L‍-dimensional circulant 
permutation operator. The resulting sequence ‍rλm , Jr, . . . , Jλm−1rλm‍ actually forms a basis of ‍Vm‍, 
identified to the space of ‍λm‍-periodic vectors of length ‍L‍, and thus ‍dim Vm = λm‍. The announced 
formula will follow from evaluation of the dimension of the intersection of the vector spaces ‍Vm‍.

(ii) The second step is to observe that one can specify the set of spaces ‍Vm‍, ‍1 ≤ m ≤ M ‍, as the 
span of vectors chosen from a common basis of ‍RL‍, where we recall that ‍L = lcm

(
λ1, . . . ,λM

)
‍. We 

identify such a common basis by considering the action of the operator ‍J ‍ on ‍L‍-dimensional periodic 
vectors. As a circulant permutation operator, ‍J ‍ admits a diagonal matrix representation in the basis 
of eigenvectors ‍{ei}‍, ‍1 ≤ i ≤ L‍,

	﻿‍ ej = (1,ωj,ω2
j , . . . ,ωL−1

j ) ,‍� (71)

associated to the eigenvalue ‍ωj = ei 2πj
L ‍, where ‍i2 = −1‍. Moreover, ‍J ‍ clearly preserves periodicity 

when acting on row vectors in ‍RL‍, so that the spaces ‍Vm‍, ‍1 ≤ m ≤ M ‍, are stable by ‍J ‍. As a consequence, 
each space ‍Vm‍ can be represented as the span of a subset of the eigenvectors of ‍J ‍. In principle, the 
existence of a basis spanning the spaces ‍Vm‍, ‍1 ≤ m ≤ M ‍, allows one to compute the dimension of 
the intersections of these spaces by counting the number of common basis elements in their span.

(iii)The last step is to show that counting the number of common basis elements ‍ei‍ in the subsets 
of ‍{Vm}1≤m≤M‍ yields the announced formula. Proving this point relies on elementary results from 
the theory of cyclic groups. Let us first consider the basis elements generating ‍Vm‍, which are the 
elements ‍ej‍ that are ‍λm‍-periodic. These basis elements are precisely those for which ‍ω

λm
j = 1‍, that is, 

‍λmj = 0‍ in the cyclic group ‍Z/LZ‍. Considering the integers ‍j‍ as elements of ‍Z/LZ‍, we can then specify 
the basis vectors generating ‍Vm‍ by invoking the subgroup structure of the cyclic groups. Specifically, 
the basis elements generating ‍Vm‍ are indexed by the elements of the unique subgroup of order ‍λm‍ in 
‍Z/LZ‍. Thus, as expected, the number of basis elements equates the otherwise known dimension of 
‍Vm‍. Let us then consider the basis elements generating the intersection space ‍Vm ∩ Vn‍, ‍m ̸= n‍, which 
are the elements ‍ej‍ that are both ‍λm‍-periodic and ‍λn‍-periodic. These basis elements correspond 
to those indices ‍j‍ for which we have ‍λmj = 0‍ and ‍λnj = 0‍ in the cyclic group ‍Z/LZ‍, that is, for which 

‍gcd(λm,λn)j = 0‍ in ‍Z/LZ‍. By the subgroup structure of cyclic groups, the basis elements generating 
‍Vm ∩ Vn‍ are thus indexed by the elements of the unique subgroup of order ‍gcd(λn,λm)‍ in ‍Z/LZ‍. Thus, 
we have ‍dim Vm ∩ Vn = gcd(λm,λn)‍. The above reasoning generalizes straightforwardly to any set of 
indices ‍1 ≤ m1 < . . . < mk ≤ M ‍, ‍1 ≤ k ≤ m‍, leading to

	﻿‍ dim Vm1 ∩ . . . ∩ Vmk = gcd(λm1 , . . . ,λmk )‍� (72)

Specifying the dimension of the intersection spaces in (69) derived from the exclusion-inclusion 
principle yields the rank formula given in (68).

Generalization to higher dimensional lattices
Our two results about (i) the number of dichotomies for grid code with two modules and about 
(ii) the separating capacity for an arbitrary number of modules generalize to an arbitrary number 
of dimensions. The generalization of (i) is straightforward as our results bear on the set of grid-
like inputs with no reference to physical space. The only caveat has to do with the fact that for 
‍d‍-dimensional lattice, each module ‍m‍, ‍1 ≤ m ≤ M ‍, contains ‍λ

d
m‍ cells so that ‍λ

d
m‍ has to be substituted 

for ‍λm‍ in formula (47). It turns out that the generalization of (ii) proceeds in the exact same way, albeit 
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in a less direct fashion. In the following, we prove that the separating capacity for a ‍d‍-dimensional 
lattice model, including the 2D hexagonal lattice, is still given by the rank of the corresponding 
activity matrix.

A couple of remarks are in order before justifying the generalization of (ii):
First, let us specify how to construct activity matrices in d-dimensional space by considering a 

simple example. Consider the hexagonal-lattice model for two modules with ‍λ = (2, 3)‍. As illustrated 
in Figure 1, there are four possible 2-periodic lattices and nine possible 3-periodic lattices, each 
lattice representing the spatial activity pattern of a grid cell. Combining the encoding of the two 
modules yield a periodic lattice, with lattice mesh comprising ‍lcm

(
λ1,λ2

)2 = 36‍ positions. Every 
position within the mesh size is uniquely labeled by the grid-like input, and any subset of positions 
with larger cardinality has redundancy. Observe moreover that the lattice mesh is equivalent to that 
of a (2, 3)-square lattice, and in fact, the activity matrix for an (2, 3)-hexagonal lattice model is the 
same as that for a (2, 3)-square lattice. As a result, the spatial dependence of the grid-cell population 
is described by a matrix in ‍R13×36‍ with the following block structure:

	﻿‍

A(2)
(2,3) =




B(2) 0 B(2) 0 B(2) 0

0 B(2) 0 B(2) 0 B(2)

B(3) 0 0 B(3) 0 0

0 B(3) 0 0 B(3) 0

0 0 B(3) 0 0 B(3)




with

B(2) =


 1 0 1 0 1 0

0 1 0 1 0 1


 ,

B(3) =




1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1


 .

‍�

(73)

In the above matrix ‍A
(2)
(2,3)‍, the top-two block rows represent the activity of 2-periodic cells, while 

the bottom-three block rows represent the activity of 3-periodic cells. By convention, we consider 
blocks ‍B(2)‍ and ‍B(3)‍, comprising respectively two and three cells, represent the activity of grid 
cells along the horizontal ‍x‍-axis. There are two rows of blocks ‍B(2)‍ and three rows of blocks ‍B(3)‍ to 
encode 2-periodicity and 3-periodicity, respectively, along the vertical ‍y‍-axis. It is straightforward to 
generalize this hierarchical block structure to construct an activity matrix ‍A

(d)
λ ‍ for arbitrary periods 

‍λm‍ and arbitrary square-lattice dimension ‍d‍. In particular, the matrix ‍A
(d)
λ ‍ has ‍

∑M
m=1 λ

d
m‍ rows and 

‍L = lcm
(
λ1, . . . ,λM

)d
‍ columns.

Appendix 3—figure 1. Hexagonal and square lattice in two dimensions. (a) In two dimensions, 2-periodic and 
3-periodic modules comprise respectively four and nine possible grid-cell-activity pattern. For instance, red, 
green, blue, and yellow patterns in the leftmost lattice correspond to the four possible patterns of activity that 
a 2-periodic cell can exhibit on an hexagonal lattice. (b) The maximum lattice mesh over which each position is 
uniquely encoded by the grid-like code is given as ‍6 × 6 = 22 × 32‍. Moreover, the hexagonal symmetry plays no 
role in our capacity calculations and one can consider a square lattice of positions instead.

Second, let us define the notion of contiguous-separating capacity for ‍d‍-dimensional lattice 
with ‍d > 1‍. In one dimension, we define the contiguous-separating capacity as the maximum spatial 
extent for which all dichotomies involving its discrete set of positions are linearly separable. We 
generalize this notion for arbitrary dimensions ‍d‍ by defining the contiguous-separating capacity 
as the maximum connected component of ‍d‍-dimensional positions for which all dichotomies are 
possible. Observe that thus-defined, we are rather oblivious about the geometric arrangement 
of this connected components. This is due to the fact that in dimension ‍d > 1‍, the contiguous-
separating capacity can be achieved by many distinct arrangements.
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After these preliminary remarks, we can now prove the following proposition.

Proposition 11
The contiguous-separating capacity of the generic grid-cell-activity matrix ‍Aλ‍ is equal to ‍rank A(d)

λ ‍, 
where we have

	﻿‍
rank A(d)

λ =
M∑
k=1

(−1)k−1 ∑
S⊂λ,|S|=k

gcd(S)d

‍�
(74)

Proof. We only justify the formula for the case ‍d = 2‍ as similar arguments apply for all integers 
‍d > 1‍ (see Remark after this proof). The proof will proceed in two steps: (i) we justify the formula for 

‍rank A(d)
λ ‍ and (ii) we justify that the contiguous-separating capacity equals ‍rank A(d)

λ ‍.
(i) We follow the same strategy as for dimension 1 to establish the rank formula for ‍d = 2‍ via 

exclusion-inclusion principle. The key point is to exhibit a basis of vectors ‍(e1, . . . , eL)‍ in ‍RL×L‍, with 

‍L = lcm
(
λ1, . . . ,λM

)
‍, which spans all the vector spaces ‍Vm‍, ‍1 ≤ m ≤ M ‍, where ‍Vm‍ denotes the space 

of ‍λm‍ periodic functions on the ‍(L×L)‍-lattice mesh. To specify such a basis, we consider the two 
operators ‍Jx‍ and ‍Jy‍ acting on the grid-like inputs and representing the one-unit shift along horizontal 
‍x‍-axis and along the vertical ‍y‍-axis, respectively. A basis of the space of ‍λm‍ periodic functions on the 

‍(L×L)‍-lattice mesh is generated by iterated action of ‍Jx‍ and ‍Jy‍ on the activity lattice of a ‍λm‍-periodic 
cell, that is, on a ‍{0, 1}‍-row vector ‍rλm‍ of the mth module of ‍rank A(d)

λ ‍. Specifically, a basis of ‍Vm‍ is given 
by the ‍λ

2
m‍ vectors ‍J

k
x Jl

yrλm‍, with ‍0 ≤ k < λm‍ and ‍0 ≤ l < λm‍. Moreover, the operators ‍Jx‍ and ‍Jy‍ commute 
on ‍RL×L‍, as by construction, shifting lattices by ‍JxJy‍ yields the same lattice as the one obtained by 
shifting the original lattice by ‍JyJx‍. Thus, if ‍Jx‍ and ‍Jy‍ are diagonalizable, they can be diagonalized in 
the same basis ‍ϵij‍, ‍1 ≤ i, j ≤ L‍. Close inspection of the operators ‍Jx‍ and ‍Jy‍ reveals that they admit 
matrix representations that are closely related to the canonical ‍L‍-dimensional circulant matrix ‍JL‍:

	﻿‍

Jx =




JL

. . .

JL


 , Jy =




0 IL

. . . IL

IL 0


 and JxJy = JyJx =




0 JL

. . . JL

JL 0


 .

‍�

(75)

Concretely, the operator ‍Jx‍ cyclically shifts columns within each blocks ‍rank Bλ‍, whereas the operator 

‍Jy‍ cyclically shifts the blocks within ‍A
(d)
λ ‍. Considering the basis of eigenvector ‍ei‍, ‍1 ≤ i ≤ L‍, of ‍JL‍, we 

define the basis ‍ϵij‍, ‍1 ≤ i, j ≤ L‍, as 
‍
ϵij =

(
ej|wiej| . . . |wL−1

i ej

)
‍
, where wi is the eigenvalue associated to 

‍ei‍. We have

	﻿‍
Jxϵij =

(
JLej|wiJLej| . . . |wL−1

i JLej

)
= ωj

(
ej|wiej| . . . |wL−1

i ej

)
= ωjϵij ,

‍� (76)

	﻿‍
Jyϵij =

(
wiej| . . . |wL−1

i ej|ej

)
= ωi

(
ej|wiej| . . . |wL−1

i ej

)
= ωiϵij ,

‍� (77)

which shows that ‍ϵij‍ is indeed a basis diagonalizing ‍Jx‍ and ‍Jy‍. Moreover, as ‍Jx‍ and ‍Jy‍ stabilize 
the space ‍Vm‍, the basis ‍ϵij‍ spans the space ‍Vm‍, as well as all the spaces defined as intersections of 
subsets of ‍{Vm}1≤m≤M‍. Consider the set of indices ‍1 ≤ m1 < . . . < mk < M ‍, ‍1 ≤ k ≤ M ‍, specifying the 
intersection ‍Vm1 ∩ . . . ∩ Vmk‍. By the same reasoning as for dimension 1, the basis elements spanning 

‍Vm1 ∩ . . . ∩ Vmk‍ are those eigenvectors ‍ϵij‍ that are ‍gcd(λm1 , . . . ,λmk )‍-periodic in both ‍x‍-direction 
and ‍y‍-direction. As ‍Jxϵij = ωjϵij‍ and ‍Jyϵij = ωiϵij‍, posing ‍g = gcd(λm1 , . . . ,λmk )‍, this is equivalent 
to ‍(gi, gj) = (0, 0)‍ in ‍Z/gZ × Z/gZ‍. By the subgroup structure of cyclic group, the basis elements 

‍ϵij‍ generating ‍Vm1 ∩ . . . ∩ Vmk‍ are thus indexed by ‍(i, j)‍ where ‍‍ and ‍j‍ are elements of the unique 
subgroup of order ‍g‍ in ‍Z/LZ‍. There are ‍g2

‍ such basis elements, showing that

	﻿‍ dim Vm1 ∩ . . . ∩ Vmk = g2 = gcd(λm1 , . . . ,λmk )2 .‍� (78)

The rank formula follows immediately from expressing ‍rank A(d)
λ = dim

(
V1 + . . . + VM

)
‍ via the 

exclusion-inclusion principle.
(ii) Just as for ‍(i)‍, we follow the same strategy as for dimension 1 to show that the contiguous-

separating capacity equals ‍rank A(d)
λ ‍. The only caveat to address is that the grid-like inputs, that is, 
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the columns of ‍A
(d)
λ ‍, are generated by the action of two shift operators instead of one. Specifically, 

starting from the first column ‍c1‍ of ‍A
(d)
λ ‍, we can generate all subsequent columns by action of the 

operators ‍Jλ,x‍ and ‍Jλ,y‍, whose matrix representations are given by

	﻿‍

Jλ,x =




Jλ1×λ1

Jλ2×λ2

. . .

JλM×λM




, with Jλm×λm =




Jλm

Jλm

. . .

Jλm




,

‍�

(79)

	﻿‍

Jλ,y =




J′λ1×λ1

J′λ2×λ2

. . .

J′λM×λM




, with J′λm×λm =




0 Iλm

. . .
. . .
. . . Iλm

Iλm 0




.

‍�

(80)

Notice that ‍Jλ,x‍ and ‍Jλ,y‍ commute. By the same reasoning as for dimension 1, we know that the 
separating capacity cannot exceed ‍rank A(d)

λ ‍. Then, to prove that the separating capacity equals 

‍rank A(d)
λ ‍, it is enough to exhibit a linearly independent set of contiguous positions with cardinality 

‍rank A(d)
λ ‍. Let us exhibit such positions. Mirroring the 1D case, let us consider the sequence ‍d

(1)
l ‍ 

defined by

	﻿‍
d(1)

l = dim span
{

Ji
λ,yc1 | 1 ≤ i ≤ l

}
.
‍� (81)

The above sequence is strictly increasing by unit step until some l1, after which it remains constant 
at value

	﻿‍
d(1)

l1
= dim V1 , with V1 = span

{
Ji
λ,yc1 | 1 ≤ i ≤ L

}
.
‍� (82)

Let us then consider the sequence

	﻿‍
dim VL = dim

(
V1, Jλ,xV1, . . . , JL

λ,xV1

)
= dim span

{
Ji
λ,yJ

j
λ,xc1 | 1 ≤ i, j ≤ L

}
= rank A(d)

λ .
‍� (83)

The above sequence is also strictly increasing by unit step until some l2, after which it remains 
constant at value

	﻿‍ d(2)
l2

= dim V2 , with V2 = V1 + Jλ,xV1 .‍� (84)

Moreover, V2 admits for basis the vectors ‍J
i
λ,yc1‍, and ‍J

i
λ,yc1, 1 ≤ i ≤ l1‍, ‍J

i
λ,yJλ,yc1, 1 ≤ i ≤ l2‍. We can 

iterate this construction by repeated action of the operator ‍Jλ,x‍, yielding a sequence of number lk 
and a sequence of space ‍Vk = Vk−1 + Jλ,xVk‍. Necessarily, the sequence lk becomes eventually zero as

	﻿‍
dim VL = dim

(
V1, Jλ,xV1, . . . , JL

λ,xV1

)
= dim span

{
Ji
λ,yJ

j
λ,xc1 | 1 ≤ i, j ≤ L

}
= rank A(d)

λ ‍� (85)

Let us consider the smallest ‍k > 1‍ for which ‍lk = 0‍, than the set of vectors

	﻿‍ { Ji
λ,yJ

j
λ,xc1| 1 ≤ j < k , 0 ≤ i ≤ lk}‍� (86)

is linearly independent by construction and generates the range of ‍A
(d)
λ ‍. In particular, we necessarily 

have ‍l1 + . . . + lk−1 = rank A(d)
λ ‍. Observing that these vectors correspond to a connected component 

of positions concludes the proof.
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Remark
Although we do not give the proof for arbitrary spatial dimension ‍d > 2‍, let us briefly comment on 
extending the above arguments to higher dimension. Such a generalization is straightforward but 
requires the utilization of tensor calculus. For integer periods ‍λ‍ and generic dimension ‍d‍, the activity 
tensor can be defined as

	﻿‍

A(d)
λ =

∑

i1,...,id∈Ld

M∑
m=1

(
ym

i1 ⊗ . . .⊗ ym
id

)
⊗

(
x⋆i1 ⊗ . . .⊗ x⋆id

)

‍�
(87)

where ‍y
m
i1 ⊗ . . .⊗ ym

id ‍ is the canonical basis vector associated to the ‍(i1, . . . , id)‍ coordinate in 

‍Rλd
m‍, with ‍(i1, . . . , id)‍ considered as an element of ‍

(
Z/λmZ

)d
‍, and where ‍x

⋆
i1 ⊗ . . .⊗ x⋆id‍ is the linear 

form associated to the ‍(i1, . . . , id)‍ coordinate in ‍RLd
‍. In tensorial form, the operators ‍Jk‍, ‍1 ≤ k ≤ d‍, 

representing unit shift along the kth dimension, have the simple form ‍Jk = IL ⊗ . . .⊗ JL ⊗ . . .⊗ IL‍ 
such that

	﻿‍ Jk

(
xi1 ⊗ . . .⊗ xik ⊗ . . .⊗ xiL

)
=
(
IL ⊗ . . .⊗ JL ⊗ . . .⊗ IL

) (
xi1 ⊗ . . .⊗ xik+1 ⊗ . . .⊗ xiL

)
‍� (88)

where ‍ik + 1‍ is considered as an element of ‍Z/LZ‍. The generalization to arbitrary ‍d‍-dimension 
follows from realizing that ‍ϵi1,...,iL = ei1 ⊗ . . .⊗ eiL‍, ‍i1, . . . , id ∈ Ld‍, where ‍ei‍ is the eigenvector of ‍JL‍ 
associated to ‍ωi‍, form a basis diagonalizing all the operators ‍Jk‍, ‍1 ≤ k ≤ d‍ with ‍Jkϵi1,...,iL = ωikϵi1,...,iL‍.
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