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ABSTRACT

Motif overrepresentation analysis of proximal
promoters is a common approach to characterize
the regulatory properties of co-expressed sets of
genes. Here we show that these approaches
perform well on mammalian CpG-depleted promoter
sets that regulate expression in terminally dif-
ferentiated tissues such as liver and heart. In
contrast, CpG-rich promoters show very little over-
representation signal, even when associated with
genes that display highly constrained spatio-
temporal expression. For instance, while ~50% of
heart specific genes possess CpG-rich promoters
we find that the frequently observed enrichment of
MEF2-binding sites upstream of heart-specific
genes is solely due to contributions from CpG-
depleted promoters. Similar results are obtained
for all sets of tissue-specific genes indicating that
CpG-rich and CpG-depleted promoters differ funda-
mentally in their distribution of regulatory inputs
around the transcription start site. In order not to
dilute the respective transcription factor binding
signals, the two promoter types should thus be
treated as separate sets in any motif overrepre-
sentation analysis.

INTRODUCTION

How cells establish and maintain their transcriptome
remains one of the fundamental questions in cell biology.
Transcription factors together with DNA-methylation,
histone modifications and micro RNAs are the key
components of the regulatory repertoire of the cell.
Detection of transcription factor (TF)-binding site
motifs common to a set of co-expressed genes is a

central component of the in silico characterization of
transcriptional regulation and transcriptional regulatory
networks. In the absence of comprehensive genome-wide
experimental TF-binding data, the standard bioinfor-
matics procedure starts with the extraction of putative
promoter sequences for the co-expressed genes. The
sequences are sometimes further refined by phylogenetic
footprinting (1,2). Subsequently, algorithms are applied
that either try to find new DNA sequence motifs
overrepresented in the promoters (3,4), or that search
the sequence space for occurrences of known TF-binding
motifs (5). The latter approach relies on databases like
JASPAR (6) and Transfac (7) to provide motif
descriptions for the TFs involved in the regulation of the
genes of interest. With the ever growing number of
characterized binding motifs such approaches are
becoming increasingly popular. For a number of
applications, overrepresentation calculations based on
the annotation of discrete-binding sites (1) are being com-
plemented with affinity based approaches, which avoid the
artificial separation between binding sites and non-binding
sites in the prediction of TF target promoters but instead
assign continuous binding probabilities to all sites in the
sequence based on thermodynamic considerations (2,8,9).
Such affinity based methods were shown to emulate
the in vivo TF-binding behavior more quantitatively than
hit-based approaches (10,11). When applied to sets of
tissue-specific genes overrepresentation analyses and
affinity based approaches were able to identifying key
regulators for a limited number of gene sets derived
from e.g. muscle and liver while they largely fail to
produce meaningful results for many other tissues such
as lung and brain.

To understand the source of the underlying difficulties
for enrichment testing more deeply, we need to look at
what is known about promoters and their binding site
content. The classical textbook depiction of a eukaryotic
proximal promoter shows the core promoter flanked by
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tissue-specific regulatory inputs. The eukaryotic RNA
polymerase II core promoter thereby typically includes
several sequence elements such as an initiator signal
coinciding with the transcription start site (TSS), a
TATA box and two or three other motifs such as a
CAAT or GC-box [for a review of these elements, see
e.g. (12,13)]. Alternatively, the whole promoter can
either be partially or completely overlapped by a CpG
island. In line with this model, Saxonov (14) made the
striking observation that the CpG content of vertebrate
promoters shows a distinct bimodal distribution. Using
the central dip in this distribution as demarcation line
about half of the promoters can be classified as having
high CpG content (HCPs) while the others are considered
to have low CpG content (LCPs).

Many pioneering vertebrate enrichment analyses used
promoters of genes expressed at a high level in a termi-
nally differentiated tissue. Those promoters were typically
of the LCP class and had a landmark TATA box about
30-bp upstream of TSSs (15). On the other hand,
ubiquitously expressed (‘housekeeping’) genes and develop-
mental regulators, typically lack a TATA box but overlap
with a CpG island thus falling in the HCP class. This
broad dichotomy is statistically very convincing, but by
no means perfect. More recent genome-wide studies
revealed that a TATA box is present in only a minority
of tissue-specific promoters (16,17) and together with
other elements can occur also in CpG-rich promoters
(18). In accordance with this, many tissue-specific genes
from brain (19) and testis (20) do not have TATA-box
containing promoters characteristic of genes expressed
specifically in liver or muscle.

In this article we show that, while most sets of tissue-
specific genes contain a considerable percentage of CpG-
rich promoters, the observable tissue-specific motif
overrepresentation information within proximal pro-
moters is coming almost exclusively from CpG-depleted
promoters. In contrast, CpG-rich promoters turn out to
be of little or no utility for this type of analysis, even when
the genes driven by them have clear tissue preference. We
show that an a priori separation of the two promoter
classes (LCP and HCP) gives a stronger, more robust,
and spatially constrained binding affinity signal in the
CpG-depleted promoters, and therefore recommend this
as a general approach for the analysis of motif enrichment
in co-regulated gene sets.

MATERIALS AND METHODS
Expression data and tissue-specificity

The expression of a given gene in one of the 15 mouse
tissues (Figure 1) is determined by analyzing correspond-
ing EST clusters from the GeneNest database (21), which
includes the annotation of the originating tissue for each
EST. To detect EST clusters whose distribution of ESTs
derived from various tissues differ significantly from the
expected distribution we applied a x>-test. All clusters
with a P-value <10~ were subjected to a binomial test
such that we obtain a P-value describing the likelihood of
observing a given number of ESTs from a given tissue in

an EST cluster of given size. These EST cluster P-values
reflect the degree of over-expression of a given gene in a
given tissue and were successfully used previously to
predict tissue-specific expression of genes (9,21). Here we
use the P-values to rank all genes with respect to a given
tissue.

For the analysis of microarray data we refer to the GNF
data set from Su et al. (22). After taking the mean expres-
sion intensity across replicate microarrays we compute a
Z-score for each gene across all tissues. These Z-scores are
subsequently used to rank all genes for a given tissue.

Sequence data and promoter CpG content

All mouse promoter sequences as well as the annotation of
the corresponding TSSs for 28 205 mouse genes are taken
from the Ensembl database version 46 (23). The nor-
malized CpG content of a given promoter measures the
ratio of observed over expected CpGs in the promoter and
is computed using the following equation:

Observed CpGs
((Observed Gs + Cs)/2)

Normalized CpG =

where all Gs and Cs in the region ranging from —500 to
+ 500 bp around the TSS are being considered. In general,
a normalized CpG content <1 indicates that the promoter
has less CpGs than expected based on its overall GC
content. Here, based on the bimodality of the normalized
CpG content in vertebrates, promoters with normalized
CpG content <0.5 are classified as CpG-depleted (LCP)
while promoters with CpG > 0.5 are considered CpG-
rich (HCP). To avoid a strong influence of only predicted
Ensembl genes with potentially random promoter com-
position we restrict the enrichment analysis to those 18
938 mouse genes for which unigene EST clusters have
been identified.

Affinity predictions and hit based-binding site annotation

We rely on the collection of 588 vertebrate position
frequency matrices (PFM) provided by JASPAR (6) and
the Transfac database version 11.1 (7) to describe the
binding motif of a given TF. PFMs report the frequency
with which a certain base occurs at a given position in
alignments of known binding sites of a given TF. To
predict the binding strength of a given TF to a promoter
sequences we utilize the TRAP method (11). In contrast to
motif matching algorithms which make a binary distinc-
tion between binding sites and non-binding sites, TRAP
avoids this artificial separation by instead computing the
occupancy of a TF to each site in the sequence using
equation:

R()eAE'()")

=TT Ryeh D 2

Pi
where AE;()) is the energy difference or mismatch
energy—scaled by the parameter A—between the binding
energy of the factor to site i and the lowest binding energy
possible with the factor bound to its consensus site. The
second matrix dependent parameter R, sets the binding
energy of the factor to the consensus site as well as the



TF concentration. The nucleotide dependent mismatch
energies for each site in the promoter sequence are
computed as follows:

AE,()»):—% 3 1n<”m> 3
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where v; .. 18 the frequency of the consensus base at
position 7 in the PFM and v;, is the frequency of the
observed base at position i/ in the matrix. Eventually,
TRAP obtains the expected number (N) of TFs bound
to the sequence window by summing over the individual
probabilities from all sites in the window with length L:

L
(N) =Y pi. 4
i=0

Importantly, aside from avoiding an artificial discreti-
zation between bound and unbound states (N) also
allows for a more natural ranking of target promoter
sequences with respect to a given TF then do discrete hit
counts. As input TRAP requires for each TF a PFM
suitable for computing the mismatch energies AE, a
DNA sequence of interest and the sectting of the two
parameters A and R,. As was derived previously, A is set
to a value of 0.7 for all matrices and R, is derived for each
matrix individually using the formula:

Ry = exp(0.6 - W — 6.0) 5

where W is the number of informative positions in the TF
matrix, which are defined as every column in the PFM
with information content exceeding 0.1 bits. The informa-
tion content of position 7 in the matrix is computed as the
Kullback—Leibler entropy given by:

Li=2+ Z Vi 10gs vig 6
w=A.C.G.T

where v;, i1s the frequency of base o at position i.
Matrix positions which fall below the entropy cutoff do
not contribute to the mismatch energy in equation
[Equation (3)].

Discrete binding sites for a given TF are being
annotated using a standard approach of shifting a
position specific score matrix derived from the PFMs
over a promoter sequence. Sites exceeding a score thresh-
old that balances the expected number of false positive
hits with the expected number of false negatives are
annotated (24).

Enrichment testing using PASTAA and Z-scores

For the enrichment analysis based on continuous
TF-binding affinities returned by TRAP we utilize the
recently published PASTAA method (9). PASTAA starts
by ranking all mouse genes promoters according to their
predicted affinity for a given TF. At the same time the
genes are also ranked according to their association with
a given tissue measured by the EST enrichment P-values.
After applying a cutoff to the ranked affinity and tissue
lists a hypergeometric test is used to determine the
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significance of the overlap between the top target genes
of the TF and the top ranking genes of the tissue.
Cutoffs on the two lists are thereby chosen iteratively in
such a way that the obtained hypergeometric P-values are
minimized (see Supplementary Figure S1 for details). The
negative logarithms of these optimal P-values are
subsequently used as affinity enrichment scores.

To test for an enrichment of discrete TF-binding sites
obtained from the balanced cutoff method (24) within
promoters of tissue-specific genes we utilize a test statistic
published previously by Sui et al. (1). Hereby, for each
factor and tissue the following Z-score is computed:

X —
o

Z = 7

where x is the number of binding sites residing in the
promoters of the genes assigned to a given tissue, [ is
the average number of binding sites residing in the
promoters of the background set (here all genes not
assigned to the tissue) and o is the variance of the
number annotated hits over all promoters in the back-
ground set. For a given tissue the five PFMs with largest
Z-score are reported.

Shifting window approach to detect promoter regions
with highest TF-binding affinity

For a given TF to assess a preference in the location of
maximal affinity with respect to the TSS we shift 200-bp
windows in consecutive steps of 100 bp across the promoter
regions ranging from —1-kb upstream to + 1-kb down-
stream of the TSSs. For each window start position we
compute the binding affinity for the TF to the 200-bp
sequence in the window. To detect a preference in the
binding location among promoters of tissue-specific
genes we retain for each gene the location of the window
with  highest affinity (Supplementary Figure S2).
Subsequently we rank these windows based on their
affinity and report the location of the top 50 windows
among the 500 genes assigned to a given tissue.
Similarly, to find the location of strongest TF-binding
affinity enrichment among tissue-specific genes we shift
200-bp windows across the promoters of all 18938
genes. PASTAA is then applied to evaluate the signifi-
cance of the overlap between 500 tissue-specific genes
and the target genes predicted based on the affinities
from the 200-bp windows starting at a given position.

Matching LCP and HCP genes

In order to avoid a systematic bias in the enrichment
analysis towards genes with CpG-depleted promoters,
which on average tend to have more significant tissue
enrichment, we first select for each tissue the set of 500
CpG-rich genes with highest specificity for the tissue. We
then construct a set of 500 genes with CpG-depleted
promoters by selecting for each gene in the HCP set the
LCP gene with the most closely matching but not more
significant tissue P-value (Supplementary Figure S3). The
PASTAA enrichment analysis is then performed on both
the HCP and matched LCP set separately with back-
ground sets consisting of all the other HCP genes
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(10996) or LCP genes (~6942) with less significant tissue
enrichment, respectively. It has to be noted that the above
procedure of constraining the LCP gene sets causes a con-
siderable reduction in observed enrichment scores when
compared to LCP sets constructed by simply taking the
500 most specific LCP genes for each tissue. Alternatively,
we therefore also performed enrichment testing on either
the top 500 genes for each tissue irrespective of CpG
content or the 500 most tissue-specific LCP genes. In the
former case, all other mouse genes (18438) are used as
background set, in the latter case all other 6942 LCP
genes.

Lastly, tissue gene sets may also be defined using a
cutoff on the tissue specificity P-values or Z-scores. This
procedure offers the advantage that tissue sets do not
contain genes with limited or no real specificity for the
respective tissue. Enrichment scores can thus be expected
to be overall stronger. On the other hand, this procedure
results in LCP and HCP sets of sometimes very different
size thereby making the subsequently obtained TF enrich-
ment scores less well comparable. To ensure that the inclu-
sion of less tissue specific genes into the gene sets does not
result in enrichment artifacts we performed enrichment
testing also on tissue specific LCP and HCP gene sets
defined by a cutoff of 107> on the EST P-values. Results
of this analysis closely resemble those obtained from the
tissue gene sets of static size 500 and are shown in the
Supplementary Data.

An overview of the different ways to define tissue sets
and the corresponding enrichment analyses is shown in
Supplementary Figure S4.

RESULTS

Typical sets of tissue-specific genes contain a considerable
fraction of genes with CpG-rich promoters

The construction of a set of co-expressed genes with
tissue-specific expression pattern is a prerequisite for any
motif overrepresentation analysis aimed at finding TFs
involved in the regulation of the genes. It has become
textbook knowledge that promoters of tissue-specific
genes tend to be CpG-depleted while housekeeping genes
with broad expression patterns have CpG-rich promoters
(25). However, when background gene sets are not chosen
carefully and controlled for GC content, TFs with
GC-rich binding motifs such as SP1 (consensus sequence
GGGGCGGGGT) tend to be found as the most
overrepresented TF-binding motifs (9) indicating a consid-
erable contributions from genes with CpG-rich promoters
to sets of tissue-specific genes. We therefore first analyze to
what extent the assumption of tissue-specific genes having
only CpG-depleted promoters holds true for comprehen-
sive sets of tissue-specific genes derived from either EST
or microarray data. Such gene sets, often containing
hundreds of genes, are frequently used in overrepre-
sentation analysis aimed at identifying common regulating
TFs (26-31).

To this end we compute for each promoter the CpG
content given by the ratio between the numbers of
observed versus expected CpG dinucleotides around the

TSS (see ‘Materials and Methods’ section). In mouse, the
resulting bimodal CpG distribution across all promoters
dips at roughly 0.5 (see black line in Figure 1a). We thus
set the border for separating LCP versus HCP to this
value resulting in about 46% of all Ensembl mouse
promoters falling into the HCP category.

For tissue-specific genes we find that the percentage of
LCP and HCP promoters depends strongly on the tissue
under consideration (Figure 1b). While promoters of liver-
specific genes are strongly CpG-depleted, 70-80% of
promoters from genes expressed specifically in brain are
CpG-rich. Results are hereby comparable between tissue
gene sets derived from microarray (22) and EST data (21).
As expected, over all tissues there is a clear trend for the
most tissue-specific genes to fall into the class of CpG-
depleted promoters. However, with the exception of
liver, even when restricting the analysis to only the 50
most specific genes in each tissue a considerable pro-
portion of promoters are CpG-rich. As exemplified for
differently sized sets of heart-specific genes (Figure la),
larger gene sets even tend to contain an excess of CpG-
rich promoters compared to what is expected based on the
CpG distribution across all 28205 Ensembl mouse
promoters (Figure 1b and c¢). We conclude that gene sets
derived based on tissue-specificity typically contain a
mixture of genes belonging to the LCP and HCP
categories and are by no means only composed of genes
with CpG-depleted promoters.

General TFs associate with both, HCP and LCP genes,
across all tissues

Having established that most tissue-specific gene sets
contain a considerable percentage of genes with CpG-
rich promoters, we next investigate whether binding
signals for general TFs show a tendency to occur in
CpG-rich or CpG-depleted promoters and whether such
a preference is tissue-specific. To this end, we compute
binding affinities for 200-bp sequence windows that are
shifted in steps of 100bp along all promoters. In order
to assess a possible preference of a factor for high or
low CpG promoters we split the tissue gene sets into
two groups. The first group contains for each tissue the
500 most specifically expressed HCP genes. The second
group contains the 500 LCP genes whose expression
P-values match most closely those of the genes put into
the HCP group but with the restriction of being less tissue-
specific than the corresponding HCP gene (Supplementary
Figure S3). Subsequently, we report for each factor the
locations of windows with highest affinity in each gene
set (see ‘Materials and Methods’ section and Figure S2).
As shown in Supplementary Figures S5 and S6, we find a
weak trend for the general TFs and core promoter motifs
to occur preferentially in CpG-rich promoters. The
exceptions are YY1, a general TF implicated in pinpoint-
ing the transcription start position, whose high affinity
sites are found exclusively within 100-bp downstream of
CpG-rich promoters, and the TATA box motif which
occurs more frequently upstream of CpG-depleted rather
than CpG-rich promoters. As might be expected, when
performing enrichment testing (see ‘Materials and
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Figure 1. (a) Bimodal CpG distribution across the promoters of the 50, 200 or 500 most heart-specific genes. The fraction of HCPs in the 200 and
500 gene sets is larger than expected based on the CpG content across all mouse promoters (the black line indicates the expected CpG distribution
for random gene sets of size 500). (b) and (c) show the contribution of HCP genes to other tissue sets of indicated size based on EST or microarray
data, respectively. The contribution of HCP promoters usually increases with gene set size and is >20% even for most sets of size 50. Sets with more
than 200 genes often contain an excess of HCP genes compared to the fraction of 46% of HCPs across all Ensembl promoters (indicated by

horizontal lines).

Methods’ section) we find none of these general motifs to
be strongly overrepresented in any of the tissue-specific
gene sets (see Supplementary Figure S8 for results from
the CAAT box).

Location of sites with maximal affinity for HNF1 and
MEF2 demonstrates strong difference in regulatory
input to CpG-rich and CpG-depleted promoters

We now turn to TFs with tissue-specific activity and ask
whether high affinity regions for such factors occur
preferentially in the CpG-rich or CpG-depleted promoters
of genes with tissue-specific expression. Two of the best
described associations between sets of tissue-specific genes
and TFs are that of hepatocyte nuclear factor, HNFI,
with sets of liver specific genes, and that of the muscle
enhancer factor, MEF2, with sets of muscle and heart
specific genes (1,9,28,30,32). We therefore chose these
two tissues and factors as a detailed test case before

investigating the situation for a wider range of tissues
and TFs. To identify regions of high affinity for HNFI
and MEF2 we again report the location of sequence
windows with highest affinity with respect to the TSSs
(see ‘Materials and Methods’ section).

As shown in Figure 2a and b, high affinity windows of
HNF1 and MEF2 accumulate in proximal promoters of
the 500 most liver and heart specific genes, between 0 and
200 bp upstream of the corresponding TSSs. Evaluating
separately the set of 500 most tissue-specific HCP genes
and the set of 500 LCP genes whose expression P-values
match most closely those of the genes in the HCP group
(Figure S3) reveals that high affinity windows accumulate
only near the TSS of CpG-depleted promoters (Figure 2a
and b) while the strongest affinities observed in HCP genes
are scattered randomly across the promoters (for the
situation across the other tissues see Supplementary
Figure S7).
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Figure 2. Enrichment of high affinity sites for HNF1 and MEF2 near the TSS of liver- and muscle-specific genes with CpG-depleted promoters. (a)
and (b) Sequence windows with highest affinity are preferentially located directly upstream of the TSS (red bars). This signal is due to sites in the
CpG-depleted promoters as no preferential binding pattern is observed when restricting the analysis to CpG-rich promoters (compare blue and
yellow bars for results from CpG-rich and CpG-depleted genes, respectively). (¢) and (d) show the corresponding PASTAA enrichment scores (see
‘Materials and Methods’ section) for each sequence window as well as the separate sets of high and low CpG promoters.

In order to quantify to what extent the observed
accumulation of high affinity sites is restricted to only
the genes specifically expressed in the corresponding
tissue, we perform enrichment testing as described in
‘Materials and Methods’ section. As shown in Figure 2c
and d when analyzing the 500 most tissue-specific genes we
find a clear peak in TF target gene enrichment only when
performing the analysis for the sequence windows directly
upstream of the TSS. The accumulation of high affinity
sites for HNF1 and MEF2 near the TSS is thus restricted
to the promoters of genes from the corresponding tissues.
Performing the enrichment test separately on the 500
HCP and 500 P-value matched LCP genes shows that
the observed associations between HNFI1 and liver,
and MEF2 and heart, are almost exclusively due to the
contributions from CpG-depleted promoters. Similar
enrichment scores for HNF1 and MEF2 are obtained
also only for CpG-depleted promoters from kidney and
muscle, respectively, but not for promoters from other
tissues (see Supplementary Figure S8 for the target gene
enrichment in other tissues).

Enriched motifs reside in CpG-depleted promoters
across all tissue-specific gene sets

We extend the above analysis from liver and heart to all
15 tissues from Figure 1 and first analyze where across
the tissue-specific promoters we find the strongest enrich-
ment for high affinity sites from any of the 588 vertebrate
TFs from Transfac (7) and JASPAR (6). Performing the
enrichment testing on the 500 most specific genes of each
tissue, irrespective of the CpG content of their promoters,
we find a very strong peak in TF affinity enrichment
within 200-bp upstream of the TSS across all tissues
except lung and breast (see Supplementary Figure S9a).
The TFs corresponding to these strongest enrichments
match well to the factors that have previously been
implied as potential regulators for these tissues [Table 1;
(33-40)]. Following the procedure of separating tissue-
specific genes into HCP and matched LCP groups, we
next assessed whether the observed enrichment stems
from high affinity sites in CpG-rich or depleted promoters.
As shown in Figure 3a), when performing the enrichment
analysis on the HCP groups we find no clear peak in
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Table 1. Top ranking matrices for 200 bp proximal promoters from LCP, HCP and joint gene sets

ALL LCP HCP
Brain EGR_Q6 5.90 CHCH_01 11.32 NRSF_01 6.08
Eye GATA1_03 16.62 GATA1 03 16.93 LRF_Q2 8.44
Liver HNF1_01 30.81 HNF4_Q6_01 38.27 NFY_Q6_01 8.00
Kidney HNF1_01 30.27 HNF1_01 24.02 NFY_Q6_01 5.18
Intestine HNF4_Q6_01 17.02 HNF4_Q6_01 16.87 MTATA B 6.56
Stomach TATA_01 11.17 LMO2COM_02 9.18 TATA_C 6.81
Pancreas TATA_01 9.71 PTFIBETA_Q6 9.18 PEA3_Q6 6.93
Muscle SRF_C 11.58 MEF2_Q6_01 10.74 SRF_C 6.26
Heart MEF2_Q6_01 15.42 MEF2_Q6_01 13.77 SRF_Q5_02 5.97
Leukocyte NFKAPPAB_01 9.99 ELF1_Q6 14.29 OCT1_B 5.13
Spleen ICSBP_Q6 16.02 ICSBP_Q6 18.65 STAT1_01 6.62
Thymus ETS_Q6 12.20 ETS_Q6 17.34 ZF5 01 4.73
Lung NGFIC 01 4.90 ZF5 01 7.55 CAAT 01 451
Breast PEBP_Q6 6.11 SMAD4_Q6 7.09 1K2_01 3.87
Testis CREBP1CJUN_01 11.26 CREBPICJUN_01 24.12 VMYB_02 12.06

For each tissue the top associated matrix and the corresponding enrichment score from PASTAA is shown (see ‘Materials and Methods’ section)
depending on whether the analysis was performed on all 500 tissue-specific promoters indiscriminate of CpG content, on the 500 tissue-specific genes
with CpG-rich or on the 500 tissue-specific genes with CpG-depleted promoters. Matrices in bold correspond to well documented TF-tissue

associations and are preferentially discovered for sets of LCP genes.

(a)

Figure 3. TF-binding affinity enrichment near the TSS of tissue-specific genes with either CpG-rich (a) or CpG-depleted promoters (b). The height of
each bar corresponds to the PASTAA enrichment score of the most significant association that is found for the corresponding tissue. With the
exception of testis, no significant enrichment signals are detected when analyzing the tissue sets containing the 500 most specific CpG-rich promoters.
In contrast, enrichment peaks strongly for tissue-specific sets of 500 P-value matched LCP genes when computing TF-binding affinities for 200-bp

windows directly upstream of the TSSs.

affinity enrichment near the TSS for any of the tissues
except testis. Also, for most tissues the enrichment
analysis returns general binding motifs such as TATA
and CAAT as the most strongly associated motifs. In
contrast, very strong enrichment directly upstream of the
TSS is observed when performing the analysis for the
groups of 500 P-value matched LCP genes (Figure 3b).
In fact, for most tissues a better enrichment is obtained
when performing the analysis on all CpG-depleted
promoters alone rather than on LCP and HCP genes
combined (Table 1 and Supplementary Figure S9b).
Together these findings indicate a lack of tissue-specific
binding signals in the proximal regions of HCP promoters
and a very strong accumulation of binding signals right

upstream of the TSS of LCP genes. An interesting excep-
tion is observed for the neuron-restrictive silencing factor,
NRSF, whose binding signals are enriched much more
strongly in brain specific genes of the HCP (enrichment
P-value 8.3 x 1077) rather than the LCP class (P-value
7.8 x 1072, Table 1).

TFs associate preferentially with CpG-depleted promoters

Having tested the enrichment across all tissues, we now
switch from the tissue-centric to a TF-centric view and
assess with which promoter class each of the 588 verte-
brate TF matrices associates preferentially. To this end,
we again perform enrichment testing on the 15 tissue sets,



6312 Nucleic Acids Research, 2009, Vol. 37, No. 19

N
o
o

[ JcpG=05
ICpG<0.5|-
Il combined

-

@©

o
T

=
(9]
o
T
L

N
N
o

-
N
o

80

number of matrices
-
o
o

60

40

20

—3kb —2kb —1kb —800 —600 -400-200 TSS 200 400 600 800 2kb 3kb
window start position

Figure 4. TF targets have low average CpG content. Yellow and blue
bars indicate the number of matrices whose target genes have an
average CpG content >0.5 and <0.5, respectively. Red bars indicate
the overall propensity to find the most significant association between
matrices and any of the tissues at a particular window position. About
a third of all matrices show the strongest association with any of the
tissues when computing the binding affinities for the window ranging
from —200 to 0bp upstream of the TSS, indicating a strong location
preference for the proximal promoter (see red bars). The target genes of
the vast majority of matrices thereby have an average CpG content
<0.5 (compare yellow and blue bars).

this time reporting the promoter location of the most sig-
nificant association and the average CpG content of its
assumed target genes for each of the 588 vertebrate
matrices. As shown in Figure 4, about one third of all
matrices show the strongest association with any one of
the 15 tissues within 200-bp upstream of the TSS. For the
vast majority of factors the average CpG content of the
target genes is thereby smaller than 0.5, again indicating
that high affinity peaks reside preferentially within CpG-
depleted promoters. A similar picture is observed not
only for the sequence window at the TSS but across the
whole promoter region ranging from —3kb to +3kb.
This finding also strongly underlines a fundamental differ-
ence in the regulatory mechanisms of CpG-rich and
CpG-depleted promoters of tissue-specific genes.

General implications for enrichment testing

Several approaches for detecting overrepresented motifs in
promoter sets utilize the annotation of discrete TF-
binding sites rather than continuous binding affinities
(1,41). To evaluate for such methods the effect of having
HCPs included in sets of tissue-specific promoters, we
assess the top regulators for the tissues liver, kidney,
muscle and eye, as suggested by a Z-score statistic
applied to discrete binding site predictions. A similar sta-
tistic was used previously to determine an enrichment of
discrete binding sites in sets of co-regulated genes (1,9). As
shown in Table 2 and in accordance with previous studies,
when analyzing the top 500 kidney- and liver-specific
genes the approach recovers HNF1 and HNF4 as the
top associated regulators. In contrast, for the 500 most
muscle- and eye-specific genes we find GC-rich motifs

Table 2. Top ranking matrices returned by a hit based z-score statistic

ALL HCP matched LCP
Kidney
HNF1_01 SP1_Q6 HNF4_01
HNF4_Q6_01 SP1_Q4 01 HNF4_Q6_01
HNF4_01 SP1_Q6_01 P53 01
HNF1_C ZF5 01 HNF1_01
SP1_Q4 01 GC_01 COUP_01
Liver
HNF4_Q6_01 SP1_Q4 01 HNF4_Q6_01
HNF4_01 SP1_Q6 HNF4_01
DR1_Q3 GC_01 HNF1_C
HNF4_01_B SP1_Q6_01 COUP_01
COUP_01 SP1_Q2 01 DR1_Q3
Muscle
GC 01 ZF5 01 MEF2_02
SP1_Q6 AP2_Q6_01 MEF2_03
SP1_Q4 01 SP1_Q6 SRF_Q5_02
ZF5 01 WTI1_Q6 DRI1_Q3
WTI1_Q6 E2F_Q2 SRF_Q6
Eye
AP2_Q6_01 AP2_Q6 01 P53 01
WTI1_Q6 WTI1_Q6 MZF1_02
SP1_Q6 ZF5 01 PAX4_04
SP1_Q4 01 SP1_Q6 GATAI1_03
SP1_Q2 01 SP1_Q4 01 CRX_Q4

Experimentally verified TF-tissue associations (indicated in bold) are
found in liver and kidney when analyzing the top 500 genes for each
tissue. While no verified associations are detected when performing the
analysis on only HCP genes (all discovered motifs are GC rich) verified
associations are found for all tissue sets when analyzing P-value
matched LCP genes.

including SP1 and WTI1 as top ranking. The situation
worsens when performing the enrichment analysis on the
500 most tissue-specific HCP genes with the background
gene set consisting of all other 10996 HCP genes. In this
case, GC-rich motifs are found as top ranking in all tissues
(indicating that the tissue-specific HCP genes possess
particularly CpG-rich promoters). In contrast, when
using the 500 P-value matched LCP genes (together with
the remaining ~6942 LCP genes as background) we find
well characterized TF-tissue associations for all tissues
including MEF2 for muscle and cone rod specific TF
CRX for eye. At the same time, general TFs such as
SP1 are not found among the top ranking factors in
either tissue. This finding indicates that an incorporation
of CpG-rich promoters in sets of co-regulated genes
hampers not only affinity-based enrichment testing
approaches but also methods based on discrete binding
site predictions.

DISCUSSION

Traditionally, vertebrate genes are being divided into two
distinct classes based on the CpG content of their
promoters. While tissue-specific genes tend to possess
CpG-depleted promoters, housekeeping genes (broadly
expressed) usually have CpG-rich promoters. However,
as shown here, this picture is less clear-cut than generally
assumed with many tissue-specific genes falling into the



HCP rather than the LCP class. We find that the amount
of tissue-specific regulatory TF-binding signals around the
TSS is thereby vastly different for LCP and HCP
promoters. Consequently, any promoter content analysis
assessing the overrepresentation of TF motifs should start
by separate the two promoter classes.

In accordance with this paradigm, for set of tissue-
specific genes with CpG-depleted promoters we find
many well characterized TF-tissue associations such as
hepatocyte nuclear factor (HNF1) with liver, and
pancreas specific TF (PTF1) with pancreas. Successful
predictions thereby stem from cis-regulatory elements
located usually within only 200-bp upstream of the TSS.
Analyzing HCP promoters proved to be much less suc-
cessful. A notable exception is the association of neuron-
restrictive silencing factor, NRSF, with brain specific
genes of the HCP class. Interestingly, this association is
not detected in the corresponding LCP class and also
appears less significant when combining CpG-rich and
CpG-depleted promoters indicating that NRSF acts
preferentially on the transcription of CpG-rich promoters.
In general, while the overall enrichment scores across all
HCP categories are weak, motifs overrepresentation
analysis of the HCP genes revealed an accumulation of
core promoter elements in tissue-specific genes with
CpG-rich promoters. For instance, within 200-bp
upstream of the TSS we found NFY as the most
enriched motif in liver and muscle, TATA in intestine
and stomach and the CAAT box in lung. While these
motifs represent the very opposite to tissue-specific
signals, they demonstrate a general enrichment of such
core promoter elements in CpG-rich promoters of tissue-
specific genes. This suggests that such promoters might
tend to be activated differently from CpG-rich promoters
of broadly expressed genes.

A plausible explanation for the weak enrichment scores
across HCP genes is that regulatory elements driving
expression in these contexts are more likely to be outside
of ‘conventional’ promoter regions, and a typical analysis
in which a fixed sequence range around the TSS is
analyzed either misses them or drowns them in a too
large sequence space (42). An increasing amount of evi-
dence indicates that many genes have key regulatory
elements at large distances in both directions from the
core promoter (31,43)—too large, in fact, for any
approach that takes a fixed amount of upstream and/or
downstream sequence to work. For these, the only hope
for finding regulatory elements might come in the form of
exhaustive genome-wide experimental TF-binding data
from ChIP-seq and related technologies combined with
e.g. chromatin capture assays (44).

Another problem with enrichment testing in proximal
promoters might be caused by the presence of multiple
alternative promoters as expression data often does not
reveal which of them is used in a given context (45).
Similarly, in a large subset of individual vertebrate core
promoters, typically those overlapping a CpG island, TSS
positions are not unique but rather broadly distributed
(17). Therefore, taking a fixed amount of sequence
around any given TSS is likely to result in a functionally
heterogeneous set, on which the interpretation of TF
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content and their position relative to TSS becomes ambig-
uous. However, since the typical CpG-rich promoters
have TSS positions spread over a span of only 50—
200 bp, this imprecision cannot by itself account for the
lack of tissue-specific signals reported here. In the worst
case, it would result in a slightly weaker association due to
the ambiguous determination of TSS position, and not the
almost complete absence of it that is observed.

CpG islands are relatively easy to find in genomes of
tetrapod vertebrates; in many fish genomes, however, they
are much smaller and more difficult to detect, although the
main distinction between CpG-depleted promoters with
well defined TSSs and CpG-rich promoters with ambigu-
ous start positions still holds (A.C. Previti and B.
Lenhard, unpublished data). Of invertebrates, Drosophila
species were shown to have multiple types of core pro-
moters (46) that are associated with different responsive-
ness to long-range enhancers and different level of
tissue-specificity (47). It remains to be seen if genome
compaction has led to more of the promoters having the
majority of their regulatory elements close to the TSS.
Other model invertebrates were also shown to have a
distinct subset of genes responsive to long range enhancers
(48). It is tempting to conclude that the distinction
between promoters responding to proximal and distal
signals could be found in most metazoan genomes.

The specific enrichment of regulatory sequence elements
in only CpG-depleted promoters points to the potential
involvement of alternative mechanisms in the regula-
tion of tissue-specific expression of HCP genes. These
mechanisms likely include DNA methylation and
distinct histone modifications. With the recent advent of
technologies such as ChIP-seq new large-scale data will
become available soon that will allow to associate
specific histone modifications with specific expression
patterns across a variety of different tissues.
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