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A band selection method based on two layers selection (TLS) strategy, which forms an optimal subset from all-bands set to
reconstitute the original hyperspectral imagery (HSI) and aims to cost a fewer bands for better performances, is proposed in this
paper. As its name implies, TLS picks out the bands with low correlation and a large amount of information into the target set to
reach dimensionality reduction for HSI via two phases. Specifically, the fast density peaks clustering (FDPC) algorithm is used to
select the most representative node in each cluster to build a candidate set at first. During the implementation, we normalize the
local density and relative distance and utilize the dynamic cutoff distance to weaken the influence of density so that the selection is
more likely to be carried out in scattered clusters than in high-density ones. After that, we conduct a further selection in the
candidate set using mRMR strategy and comprehensive measurement of information (CMI), and the eventual winners will be
selected into the target set. Compared with other six state-of-the-art unsupervised algorithms on three real-world HSI data sets,
the results show that TLS can group the bands with lower correlation and richer information and has obvious advantages in
indicators of overall accuracy (OA), average accuracy (AA), and Kappa coefficient.

1. Introduction

Hyperspectral imagery (HSI) is a combination of computer
generated imagery (CGI) and spectral detection technology,
and it can help us analyze the characteristics of objects
without direct contact. Since each pixel in HSI has both
plane coordinate and spectral information, we usually de-
scribe HSI as a three-dimensional cube; that is, on the
spectral axis, each band corresponds to a 2D image. Due to
the different degree of absorption and reflection of object
surface against electromagnetic waves with various wave-
lengths, as well as the continuous accuracy improvement of
spectral acquisition instruments, spectra are distributed on
hundreds of narrow bands (generally bandwidth less than
10 nm) continuously. Up to now, HSIs obtained via remote
sensing mapping are widely applied for data analyses in
many application fields, such as mineral exploration [1],
environmental and atmospheric monitoring [2, 3], and

agricultural information services [4]. Compared with color
image and multispectral image, more information can be
recorded in HSI because of its high resolution, which is very
useful for targets classification. However, it also brings some
technological obstacles such as high dimensionality and
information redundancy owing to similar or overlapped
bands. Existing research studies have shown that high
correlations frequently appear in some adjacent bands that
probably cause the “Hughes phenomenon” [5]. ,erefore,
we always preprocess the spectrum before classification,
including noise removed and redundancy reduction, which
can effectively cut down the operation costs and improve the
processing speed on the premise of maintaining accuracy of
image recognition.

,ere are two approaches to achieve dimensionality
reduction for HSI, i.e., band extraction and band selection
(BS) [6, 7]. ,e former projects the all-bands into low di-
mensional subspace to form a simplified image; however, it
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may lead inherent feature of information to change. Some
recent technologies include singular spectrum analysis [8],
sparse representation [9], and stacked auto-encoders [10]. In
essence, BS is a combined optimization problem; that is, we
should find out a band combination with rich information,
low correlation, and good discrimination via the evaluation
criteria function. Whatever method is adopted, it is difficult
to increase speed and accuracy simultaneously, so a common
practice is that improve the efficiency of dimensionality
reduction by optimizing some existent algorithms.

In this paper, our main contributions are summarized as
follows. (1) Strategy of two layers selection is proposed for
generating an optimal band combination. Specifically, we
build a candidate set U using the bands selected by FDPC at
first, and then spectral analyses are conducted to choose the
high-quality elements from U, where we take not only in-
formation contained in a single band but also correlation of
interband into consideration. (2) We put forward a new
information evaluation method called comprehensive
measurement of information (CMI), and by introducing the
standard deviation and k-neighbors average similarity, both
individual information and correlations among each other
are considered synthetically. (3) Inspired by the idea of the
greedy algorithm, we adopt the mRMRmethod to enrich the
target set iteratively that can minimize redundancy and
maximize representativeness.

,e remaining sections are organized as follows. In
Section 2, we will introduce some related research work
about BS technologies in recent years. In the following
section, principles of FDPC and information analysis as well
as implementation flow of mRMRwill be presented in detail.
In Section 4, we state concretely how to build an optimal
subset to replace the original spectrum via the TLS algo-
rithm. A series of experiments and comparative analyses for
results will be conducted to prove the efficiency of the
proposed algorithm, and we arrange these in Section 5. In
the last section, some conclusions will be given.

2. Related Work

As mentioned previously, it is an effective way to reduce the
spectral dimensions of HSI via BS because this preprocessing
can remove the redundant parts contained in the original
spectrum, which is beneficial to decreasing the storage and
computing consumption for subsequent image procession.
If we have grasped the facts that various objects reflect
against the electromagnetic waves, establishing an object-
spectrum dictionary can guide us to select bands accurately;
however, it is time-consuming, costly, and even impossible
to get them in many cases. Unsupervised methods can well
adapt to various application scenarios, which just make full
use of the band distribution and interband relationship. At
present, unsupervised BS is mainly categorized into ranking-
based method, searching-based method, sparsity-based
method, clustering-based method, and so on.

2.1. Unsupervised Band Selection Methods. For a long time,
the research studies related to BS mainly focus on two

themes. One is the selection algorithm that is commonly
designed by using idea of supervised, semisupervised, or
unsupervised method, and the other is the output evaluation
criterion which is adopted to measure the performance of an
algorithm. According to the needs of discussion, we briefly
introduce some unsupervised methods, as well as corre-
sponding algorithms used in Section 5.

,e ranking-based method evaluates the importance of a
band by using a criterion and employs top-ranked ones
instead of all-bands to represent HSI. Clearly, this method
can find out most discriminative bands, while the high
correlation is inevitable owing to differences between each
other neglected. Constrained band selection (CBS) [11] and
maximum variance principal component analysis (MVPCA)
[12] are both typical ranking-based algorithms. Compared
with CBS, MVPCA is more sensitive to noise, so it should be
used selectively according to the characteristics of data sets.

,e searching-based method converts BS into an opti-
mization problem of a given criterion and iteratively
searches for the best bands to constitute a target set. For
example, in [13], linear prediction (LP) is adopted to
evaluate the similarity between a single band and other ones,
and on this basis, the best band in current round is picked
out.,e sparsity-basedmethod uses sparse representation or
regression to reveal the information structure of a data set,
and we select the representative bands by solving an opti-
mization problem using sparsity constraints. ,e improved
sparse subspace clustering (ISSC) algorithm [14] which will
be employed for comparative analysis in Section 5is a sparse
representation-based method.

Nodes belonged to the same cluster have similar features,
so based on clustering, we select several exemplars to replace
the entire cluster. Hierarchical-based clustering firstly ini-
tializes the whole set or a single node as a cluster and then
groups the nodes by aggregation or splitting. Classical al-
gorithms include WaLuDi [15], BIRCH [16], and CURE
[17]. For the partition-based clustering algorithm, both
number and centers of the clusters must be initialized in
advance. We adjust the composition of each cluster by
constantly updating the ownership of nodes until the stop
condition is met. Some typical algorithms, such as K-means
[18] and FCM [19], are widely applied in various classifi-
cation applications. Observed from the perspective of geo-
metric distribution, the high-density areas are separated by
low-density ones, and each cluster is corresponding to a data
subset with the maximum local density that can be con-
nected. ,erefore, the density-based algorithm can solve the
classification problem for irregularly spatial distribution
perfectly, and some algorithms, such as AP [20], DBSCAN
[21], and FDPC [22], have shown good performances in
nonspherical distribution clustering.

In the process of seeking a target set to reconstitute HSI,
both initialization parameters and noise information impact
greatly on the implementation effect. In many cases, the
capability of an algorithm depends on initial parameters
heavily, and the improper parameters may cause deviations
between the clustering results and actual situations, even
significant errors. Furthermore, during image acquisition,
noises are generated inevitably owing to the environment or
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imaging equipment, which probably bring obstacles to
subsequent processing. Usually, noise nodes are outliers
with low density, so the density-based clustering algorithm
has prominent advantage to noise recognition.

2.2. Fast Density Peaks Clustering. ,e FDPC algorithm was
proposed by Rodriguez and Laio in 2014, which can obtain
the globally optimal solution through a few parameters and
simple process (no iteration required), and an obvious
advantage compared with other clustering-based algorithms
is that it can find arbitrary-shaped clusters, rather than just
spherical regions. In the field of HSI processing, besides
band selection [23], FDPC is also applied to superpixel
segmentation [24]. Nevertheless, its performance still needs
to be promoted, including computational complexity re-
duction, adaptive ability of parameters enhanced, and ac-
curacy and robustness improved.

,e time complexity of FDPC is O(n2) without con-
sidering dimensions, where n is the number of nodes. Ac-
cordingly, the algorithm is unsuitable for large-scale data
clustering because of its high complexity. As improvements,
researchers introduce parallel algorithms (e.g., EDDPC [25]
and LSH-DDP [26]) or use grid treatment in advance (e.g.,
DGB [27], DPCG [28], and PDPC [29]) to accelerate it. For
example, FastDPC-KNN [30] provides a solution, in which
KNN is adopted to cooperate with FDPC, and the time
complexity is reduced to O(n.log2n). It utilizes cover tree to
speed up the calculation by distinguishing the type of peak
density so as to avoid calculating the distance in the global
range.

Parameter self-adaption (PS) is another important re-
search issue for FDPC. Specifically, cutoff distance delimits
the neighborhood size of each node that directly determines
the statistical result of local density and also has a great
influence on the composition of clusters. PS can cut down
the probability of errors caused by experience setting, and it
is more adaptable to various data scenarios. Researchers
have employed some methods such as density estimation
[31] and ADPC-KNN [32] to realize the PS.

3. Method and Strategy

3.1. FDPC forCandidate Set. FDPC is based on the following
two assumptions. In each cluster, firstly, the density of a
center is higher than that of the surrounding nodes, and
secondly distance between the center and higher density
node is relatively large. Moreover, there are two extremely
important values in the algorithm, i.e., local density ρand
relative distance δ, and both of them depend on the simi-
larity matrix S. A hyperspectral image I can be described
in both spectral and geometric spaces, I � (b1, b2,

. . . , bL) � (x1, x2, . . . , xN), where L andN are denoted as the
number of bands and pixels, respectively. ,us,
bl � bi

l|i � 1, 2, . . . , N􏼈 􏼉 is the response of all pixels to lth
band, and xt � xi

t|i � 1, 2, . . . , L􏼈 􏼉 is reflection of tth pixel on
different bands. Generally, we should build an initial sim-
ilarity matrix S � RL×L at first, and the similarity between b
and i and j is expressed as the following equation:

Sij � Ri − Rj

�����

�����
2

� 􏽘
N

n�1
Rni − Rnj􏼐 􏼑

2
. (1)

In practice, Gaussian kernel function
RG(x, y) � exp(− ‖x − y‖2/2σ2) is commonly applied to
calculate Euclidian distance. In equation (2), dij is defined as
the interband distance based on matrixS, and we obtain the
correlation between the pairwise bands. Obviously, the
closer two bands are, the higher redundancy is.

dij �

���
Sij

􏽱

L
. (2)

Closely related to cutoff distance dc, the local density ρiis
defined as follows:

ρi � 􏽘
L

j�1,j≠ i

χ dij − dc􏼐 􏼑,

χ(x) �
1, x≤ 0,

0, x> 0.
􏼨

(3)

A convenient and intuitive way to get ρi is that indicator
function χ accumulates the nodes with Euclidean distances
from bi is less than dc. However, this approach does not
distinguish the contribution of distance to density, and ρi

increases by one as long as dij < dc. Hence, we also adopt
Gaussian kernel function to overcome the limitation.

ρi � 􏽘
j

exp −
dij

dc

􏼠 􏼡

2
⎛⎝ ⎞⎠, (4)

dc is the only parameter provided for human-machine in-
teraction, and experience shows that the algorithm performs
well when dc is set to 1%-2% of all interband distances sorted
in descending order. Inappropriate dc may cause high
overlap between clusters or produce a large number of
meaningless clusters. Since FDPC is very sensitive to dc, we
should set it precisely through some reasonable methods,
e.g., PSO [33] and ADPclust [34], rather than relying on the
empirical values. In Section 4.2, we determine dc according
to the number of required bands.

Next, we give the definition of δi as the following
equation:

δi �

min
j: ρi < ρj

dij, ∃j s.t. ρi < ρj

max
j

dij, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(5)

δi is the distance between bi and the node farthest from it,
only when bi has the maximum local density. More gen-
erally, there are several nodes with higher density around bi;
the distance between it and the nearest node is taken as δi.
After ρ and δ of all nodes are obtained, we establish the
decision graph to describe them. In Figure 1(b), the nodes
that can act as cluster centers are usual outliers; for example,
node 1 has the largest projection values on two-dimensional
axis, which means that it has both highest local density and
sufficient intercluster spacing.
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However, most of the remaining nodes are concentrated
near the bottom of graph with small δ (region B), which
indicates that they are grouped around the high-density
nodes and have less power to be independent centers. In
addition, FDPC has strong noise detection capability, and it
can help us eliminate interference bands before BS. In
Figure 1(b), the nodes near the vertical axis are probably
labeled as noise ones, e.g., node 27 and 28.

For each bi, we utilize inner product ci � ρi × δi to in-
tegrate density and distance at first and sort c in descending
order for getting a priority sequence
c1 > c2 > · · · > cm > cm+1 > · · · > cL. On this basis, we select
m top-ranked bands, i.e., bspt(c1), bspt(c2), . . . , bspt(cm)􏽮 􏽯 to
form a candidate set U, where spt(ci) is the subscript of band
corresponding to ci and m is the number of required bands.
,e outputs of FDPC are all exemplars in each cluster, and
the vital information is maintained accordingly. However,
some bands that can provide more information for classifier
are probably not picked out, such as boundary ones, because
FDPC is more likely to select in high-density regions rather
than low-density ones. Hence, based on the candidate set, we
must conduct further analysis from the perspective of
spectral information.

3.2. Layer 2 Selection for Target Set. In this paper, we analyze
the amount of information (AoI) and band correlation as
foundation and integrate them to evaluate information
comprehensively. As stated in the last section, the bands
selected by FDPC are already representative, whereas it is
one-sided owing to just from the view of spatial position
which implies that less, similar, or overlapped information
may still exist in candidate set.

3.2.1. Comprehensive Measurement of Information.
Shannon entropy is a common index to measure event
uncertainty, and researchers usually employ it to distinguish
the AoI contained in a band. It is generally believed that an
event with large entropy corresponds to strong uncertainty,

which means that more information can be provided for
judgement. Assuming that the band bi gets different values
with various probabilities, its Shannon entropy is defined as
equation (6), where bik is the kth possible value of bi.

H bi( 􏼁 � − 􏽘
k

p bik( 􏼁lb p bik( 􏼁( 􏼁. (6)

,e standard deviation is another way to measure AoI,
and it reflects the uncertainty through the difference between
a set of data and its mean value, as defined in the following
equation:

μi �

�������������

􏽐
N
k�1 bik − bi􏼐 􏼑

2

N

􏽳

, (7)

where bi is the mean value of bik. Apparently, greater μi

corresponds to large AoI.
It is improper to consider AoI in a single band alone, but

ignore the relationships among them because high infor-
mation correlation between adjacent bands is also very
common, just like spatial redundancy.

Hence, we put forward CMI to reevaluate information
situation for a band by taking both AoI and information
redundancy into account comprehensively.

CMI bi( 􏼁 �
μi

φi

�
μi

􏽐
i+(h/2)
j�i− (h/2) φi,j􏼒 􏼓/h

.
(8)

,e correlation between bi and its h-neighbors is
measured by average similarity φi, where φi,j ∈ (0, 1) is
correlation coefficient between adjacent bands and h is an
even number. For example, when h = 2, we judge the in-
formation independence of bi via average similarity on
pairs of (bi− 1, bi , bi+1), which is called the nearest neighbor
metric. In general, we get φi in a wider neighborhood by
appropriately increasing h because we cannot guarantee
that φi,i+1 is always greater than φi,i+2. However, the
probability of information redundancy between bands with
large label difference is very small, so excessive hmay cause
meaningless computation.
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Figure 1: Nodes distribution and decision graph: (a) the spatial distribution of nodes and (b) the decision graph corresponding to (a).
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According to equation (8), if bi is what we are looking
for, it should have either a large μi or a small φi or both.
Hence, it can prevent bands with high information re-
dundancy from being selected via CMI.

3.2.2. Further Selection Employed mRMR. ,e abbreviation
mRMR denotes maximum representativeness andminimum
redundancy.ρhas a larger weight because of measurement
scale during the implementation of FDPC, so the targets are
most probably generated in the high-density regions. In
Figure 1(b), if we want to select more from region B, the
results must be the neighbors of node 1 instead of any node
else. Clearly, FDPC guarantees the representativeness of
candidate set but inclines to cause redundancy, so based on
its outputs, we employ mRMR strategy to conduct a further
filter.

Let U � b1, b2, . . . , bm􏼈 􏼉 be the candidate set, and target
set and residual set are denoted as Ut and Ur, respectively;
U � Ut ∪ Ur. Supposing that k (k≥ 1) bands have already
existed in Ut, if the (k+ 1) th band is required from Urto
enrich Ut, the best one should satisfy the following condi-
tions. (1) Lowest correlation within Ut, that is, the average
distance from it to every element inUt is farthest; (2) Highest
similarity with Ur, which indicates that it has themost power
to represent other bands in Ur. According to formula (9), we
select the most appropriate bi ∈ Ur.

argmax
bi∈Ur

1
k

􏽘
bj∈Ut

di,j −
1

m − k
􏽘

bj∈Ur

di,j
⎛⎜⎜⎝ ⎞⎟⎟⎠. (9)

Motivated by above descriptions, taking AoI and in-
formation correlation into account simultaneously as for-
mula (10), we get the target set with strong
representativeness, good discrimination, and low redun-
dancy to reach dimensionality reduction for HSI.

argmax
bi∈Ur

1
k

􏽘
bj∈Ut

di,j −
1

m − k
􏽘

bj∈Ur

di,j
⎛⎜⎜⎝ ⎞⎟⎟⎠ × CMI bi( 􏼁

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(10)

4. TLS Algorithm

4.1. Implementation Flow. TLS integrates spatial position,
information contained in a single band, and correlation
between each other to evaluate the importance of a band, so
it is suitable for spectral dimensionality reduction because of
the comprehensiveness of its outputs.

In this section, we explain how TLS works. As the
preliminary BS (layer 1 selection), FDPC prioritizes the
bands firstly and selects the top-ranked ones to establish U.
In layer 2, we make some relevant initialization for prep-
aration, Ut � bspt(c1)􏽮 􏽯, Ur � bj|j � spt(c2), spt(c3), . . . ,􏽮

spt (cm)}, and score for each band in U by using CMI index.
In current round, the most valuable band bp satisfied for-
mula (10) is picked out to join Ut, and those ones that have
approximate information to bp will be removed from Ur.

Iterate until Ur � ∅, and the informative and low infor-
mation-redundancy band combination is built.

We give the technology roadmap of TLS as Figure 2.
TLS filters the redundant information bands via

threshold λ. According to equation (8), bp becomes the
winner in a certain selection round only when it has both
rich AoI and strong information independence. For each
bq ∈ Ur, p≠ q, if φp,q > λ, we take bqout of Urowing to its
high correlation.We state the implementation flow of TLS in
Algorithm 1and put some related explanations and analyses
in Section 4.2and 4.3.

4.2. Normalization and Parameter Initialization. As men-
tioned previously, different metrics cause that ρhas a heavy
impact on prioritization, and bands with high-densities are
more attractive to FDPC. As a direct improvement, both
ρand δare normalized to interval (0, 1).

􏽥ρi �
ρi − ρmin( 􏼁

ρmax − ρmin( 􏼁
,

􏽥δi �
δi − δmin( 􏼁

δmax − δmin( 􏼁
.

(11)

In addition, we also reduce the influence of ρby adjusting
dcdynamically so that the probability of selecting in the low-
density regions increases gradually. Improper dc may lead to
algorithm failure, even domino effect happened and cannot
be corrected by itself. For the sake of simplicity, the empirical
method sets dcwith fixed size; however, it is inefficient when
dealing with high-dimensional data or fake peaks.

In order to make the density value relatively accurate, it
ought to be avoided as much as possible that a band appears
in different neighborhood repeatedly. Hence, we deem that
dc should not be fixed but change dynamically corre-
sponding to m, shown as the following equation:

dc � α × dc− 0

� log2
L

m
× dc− 0,

(12)

where dc− 0 is the initial value of cutoff distance. With the
increase inm, dc keeps getting smaller, and the situation that
a band belongs to different density neighborhood will
gradually disappear. Usually, m< (L/2), and dc− 0 is multi-
plied by a coefficient αto determine dc. In extreme case, if
each node corresponds to a cluster, i.e., m � L, we get dc � 0.

4.3. Performance Analysis to TLS. ,e time complexity of
FDPC is O(N × L2), which is mainly the time consumption
of building similarity matrix. On this basis, TLS increases the
cost of acquiring CMI of each band (linear complexity
O(m × N) and iteratively generating the target set
O(m × N). ,erefore, in the field of dimensionality re-
duction to HSI, the time complexity of TLS is O(N × (L2 +

m)) which affects the real-time performance when dealing
with high-resolution images.
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Besides high time complexity, TLS also needs to initialize
m in advance because it has no ability to automatically
configure the number of clusters according to the data
distribution. In layer 1, no peak or fake peak will cause the
proposed algorithm invalid, for the hypothesis that makes
FDPC work does not hold. In addition, the outputs of
mRMR are not back-traceable, which implies that it cannot
be deleted if a band has been selected into the target set.

In conclusion, the distinct advantage is that TLS can find
out a more effective band combination in the condition of

using the same m with others. Clearly, TLS not only inherits
the characteristics of FDPC, such as good at exemplar se-
lection, noise insensitivity, and no initialization to cluster
center, but also makes information to be an important
reference by using CMI.

5. Experiment and Discussion

In this section, a series of comparative experiments have
been designed and implemented on three HSI data sets, and
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Figure 2: Technology roadmap of TLS. In layer 1, FDPC is employed to carry out preliminary selection from all-bands set to build a
candidate set. In layer 2, AoI and correlation analyses are used to form optimal band combination.

Input: all-bands set I � (b1, b2, . . . , bL), threshold λ, initial value dc− 0, m

Steps:
(1) dc � log2(L/m) × dc− 0;
(2) for bi ∈ I

Calculate ρiand δiaccording to equations (3) and (5);
􏽥ρi � (ρi − ρmin)/(ρmax − ρmin)
􏽥δi � (δi − δmin)/(δmax − δmin)

ci � 􏽥ρi × 􏽥δi

(3) Sort ci|i � 1, 2, . . . , L􏼈 􏼉to get sequence c1 > c2 > · · · > cL

U � bj|j � spt(c1), spt(c2), . . . , spt(cm)􏽮 􏽯

(4) Initialize Ut � bspt(c1)􏽮 􏽯, Ur � bj|j � spt(c2), spt(c3), . . . , spt(cm)􏽮 􏽯

(5) CMI(bi) � (μi/φi) � (μi/(􏽐
i+(h/2)
j�i− (h/2) φi,j)/h)

(6) while (Ur ≠∅)

bp � argmax
bi∈Ur

[((1/k)􏽐bj∈Ut
di,j − (1/m − k)􏽐bj∈Ur

di,j) × CMI(bi)]

Ut←Ut + bp

V � bq|φp,q > λ, bq ∈ Ur, p≠ q􏽮 􏽯

Ur←Ur − V

Output: target set: bj|j � 1, 2, . . . , t􏽮 􏽯t<m

ALGORITHM 1: Implementation flow of the TLS algorithm.
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the capability comparisons of TLS and other state-of-the-art
algorithms using OA, AA, and Kappa coefficient are fol-
lowed. Analyses and discussions are carried out in three
aspects: (1) the difference of band distribution formed by
various algorithms; (2) influence of number of the selected
bands on HSI performance; and (3) influence of other
factors, such as classification model and data set, on the
performance of the algorithms. Before the experiments, the
relevant contents should be introduced firstly, including data
sets, algorithm competitors, classifiers for validation, and
indicators for capability comparison.

5.1. Preparation for Experiments

5.1.1. Data Sets. ,ree real-world HSI data sets which are
derived from remote sensing images, i.e., Indian Pines, Pavia
University (PaviaU), and Salinas are used for experiments.
,e essential information about them is briefly described in
Table 1.

As universal data sets, there are some common char-
acteristics with them. First of all, pixels of land cover that
belong to the same class have the similar features, whereas
the spectra corresponding to distinct classes are obviously
different, which is very suitable for BS by clusteringmethods.
Secondly, the distribution of pixels among classes is inho-
mogeneous and even most pixels of HSI are concentrated in
a few bands, as shown in Figure 3. Finally, some contam-
inated bands have been removed to ensure the validity of the
data; for example, 16 bands disturbed by external circum-
stances in Indian Pines, which are numbered 104–108,
150–163 and 220, are cleared beforehand.

5.1.2. Basic Setup for Experiment. In order to verify the
effectiveness of TLS, in this paper, MVPCA [12], WaLuDi
[15], DBSCAN [21], FDPC [22], LP [13], and ISSC [14]
algorithms are applied to reconstitute HSIs as competitors,
respectively.

We train KNN (K= 5) and SVM (RBF kernel function)
models with labeled samples in advance, and the classifiers
have stronger generalization ability after sufficient experi-
ences mastered. Due to the uncertainty of individual result,
we take the average of 10 rounds as finals using cross-val-
idation so as to make the outputs of algorithms more re-
ferable and convincing. In Indian Pines/PaviaU/Salinas,
30%/10%/10% pixels in every class are for classifiers learning
and 10%/5%/5% ones are for tests during each round.

For a specific data set, we set the ranges of parameters
and thresholds for testing, and the values corresponding to
the best results are adopted. ,e detailed settings are as
follows: dc− 0 � mindij, m< (L/2), h ∈ [2, 8],
λ � c × maxφi,j, and c ∈ [0.8, 0.95].

5.1.3. Performance Indicators. OA, AA, and Kappa coeffi-
cient are commonly used as indicators to evaluate classifi-
cation effect based on confusion matrix. OA represents the
ratio of number of correctly classified pixels to the total;
however, it cannot show the real situation when the class-

scale difference is relatively large. As a more reasonable
metric, AA reflects the recognition accuracy on a single class.
Kappa coefficient is usually employed for consistency check,
and in general, a larger Kappa coefficient means that the
prediction results are more consistent with the ground
truths. Specifically, conclusion is substantial when
0.8>Kappa> 0.6, while Kappa≥ 0.8 corresponds to perfect
matching.

5.2. Results Analysis and Discussion

5.2.1. Distribution of Algorithm Outputs. As mentioned in
Section 5.1.2, seven algorithms are adopted to select bands,
representing the original image with reduced spectral di-
mensions. For example, the results of 10 bands selected in
Indian Pines are shown in Figure 4, from which we can
observe the band distribution and redundancy intuitively.

Obviously, the redundancy produced by MVPCA is
highest among all the employed algorithms, and most of
selected bands are concentrated in the interval [120, 140]. As
stated in Section 2, the ranking-based algorithm can find out
critical bands efficiently by prioritizing, while it probably
results in high redundancy and low discrimination because
of correlation between the bands neglected. ,ere are no
significant differences in the performance of remaining al-
gorithms although ideas they adopted are not exactly the
same. ,e selection results are not uniformly distributed in
entire band interval, and concentration may appear in some
local intervals. In Figure 4, different algorithms will conduct
selections in the same interval, which means that the at-
tractiveness of interval with remarkable characteristics to
various algorithms is similar, but the specific output within
an interval may be different. Nevertheless, the dispersion of
bands selected by TLS in global range is still better than that
of some competitors because layer 2 plays an effective role.
From the illustration, the concentrated bands appear in four/
three intervals intuitively when we employ FDPC/DBSCAN,
whereas they appear in just two if WaLuDi/LP/ISSC/TLS is
used.

5.2.2. Accuracy and Consistency Check

Comparison of Accuracy Index. As illustrated in Figures 5–7,
we conclude common characteristics at first. Nomatter what
algorithm or data set is employed, the improvement of OA is
always synchronized with the increase in m. Nevertheless,
the band contributions to classifier decrease gradually,
which implies that excessive selections have no great sig-
nificance for the evolution of classifier parameter. As
Figure 5(b), OA of each algorithm except MVPCA has been
improved by about 20% which is brought by the increase in
m from 6 to 30; however, if we raise the number to 36 or 42,
OAs are maintained at the current level and the classification
capability has not gone better obviously.

Moreover, the effects of the reduced sets formed by
different algorithms to image recognition are unstable,
which depends on both the classifier model and data set.
Intuitively, OA of the SVM model is higher than that of
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Figure 3: Pixel distribution on different classes of three data sets. ,e subfigures are explained with the format of data set name, number of
classes, and maximum difference ratio of interclass. (a) Indian Pines, 16, and 122.75 :1; (b) PaviaU, 9, and 19.7 :1; (c) Salinas, 16, and 12.3 :1.

Table 1: Essential information of experimental data set.

Data set Resolution Pixels (background + object) Bands Available bands Class
Indian Pines 145×145 21025 (10776 + 10249) 220 200 16
PaviaU 610× 340 2207400 (2164624 + 42776) 115 103 9
Salinas 512× 217 111104 (56975 + 54129) 224 204 16
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KNN in Indian Pines significantly, while the performances
of two classifiers are not widely different in PaviaU and
Salinas. From the view of the model, SVM seeks a hyper-
plane to maximize the margin between two classes by
learning the experiences provided by support vectors, and it
has good generalization power, as well as strong ability of
noise resistance. Differently, KNN uses the nearest neigh-
bors voting method to determine the class attribution of a
sample, and its accuracy is slightly lower than SVM. On the
other hand, the capability of the same algorithm may be
diverse when dealing with different data set, and for each
algorithm, OAs in PaviaU and Salinas are superior to those
in Indian pines. Evidently, there are several small-scale
classes in Indian Pines, even three ones with less than 50
samples (Figure 3(a)), and samples contained in these classes

have high probabilities of misclassification that make OA
declining.

According to the number of available bands L, we take
m � (1/5)Las required number (40 bands from Indian Pines
and Salinas and 20 bands from PaviaU), and the accuracy of
individual class, AA, and OA of algorithm is shown in
Tables 2–4. In each table, we notice the following facts.
Firstly, whatever algorithm is employed, the recognition
accuracies on most small-scale classes are relatively lower
(such as grass-pasture-mowed, oats, buildings-grass-trees-
drives in Table 2, gravel in Table 3, and lettuce-romaine-6wk
in Table 4), but there are exceptions (such as wheat in
Table 2and shadows in Table 3). ,is may be caused by over-
fit that classifier takes OA as the criterion to fit the samples
on training set as much as possible. It will generate some
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Figure 4: Comparison of band selection results with seven algorithms in Indian Pines.
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Figure 5: In Indian Pines, OA curves correspond to different BS algorithms using (a) the SVM model and (b) the KNN model.
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false negative samples on the small-scale class during model
training; in other words, some samples that originally belong
to small-scale class are wrongly classified to large-scale one.
,erefore, when the classificationmodel is applied to test set,
its generalization ability will decrease. Although AA can
make up for this defect, the main way is to reserve an ap-
propriate number of bands with high quality to promote the
discrimination ability of classifier. Secondly, OA is larger
than AA and the difference reflected in Indian Pines is more
prominent. Compared with averaging accuracies of all
classes, it can make smaller impact to accuracy if we use
proportion of quantity. Finally, some algorithms perform
well just on the specific classes (such asMVPCA on Alfalfa in

Table 2and DBSCAN on self-blocking bricks in Table 3),
which means that the effect of the algorithm relates not only
to class scale but also to match degree to data distribution.
Similarly, TLS is not superior to its competitors on some
classes, such as Alfalfa and meadows, although it is the best
on entire data set.

By comparing AA and OA, TLS has shown its superi-
ority, and the performance of ISSC is closest to it. WaLuDi,
DBSCAN, and FDPC have similar capabilities in the aspect
of BS, whereas MVPCA and LP are relatively poor. ,e
stability of an algorithm can be shown via variance, and a
small variance corresponds to low volatility. In Tables 3and
4, the recognition accuracy of TLS on each class has the
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Figure 7: In Salinas, OA curves correspond to different BS algorithms using (a) the SVM model and (b) the KNN model.
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Figure 6: In PaviaU, OA curves correspond to different BS algorithms using (a) the SVM model and (b) the KNN model.
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smallest change relative to the mean value, whereas its
stability is second only to ISSC in Table 2.

In particular, if we want a rough recognition for HSI
quickly, TLS can pick out a few high-quality bands to ac-
celerate the training process of classifier. For example, in
Figure 6(a), the accuracy of TLS exceeds 70% by training the
SVM model with only 6 bands, which is about 5% higher
than that of WaLuDi, LP, and FDPC. However, the ad-
vantage of TLS is gradually weakened along withmore bands
appended, and OA of various algorithms is quite close when
m reaches a certain value.

Comparison of Consistency Index. In Table 5, Kappa coef-
ficients of various algorithms with different m are all
within the interval (0.7, 0.95), indicating that the classi-
fication results are highly consistent with the actual values

in spite of only a part of ones utilized to represent the
entire set. Similarly, Kappa curve is also proportional to
the number of selected bands, while the rising speed slows
down step by step. Moreover, observed from the classi-
fication model and data set, it is confirmed that SVM is
more suitable for working on these data sets, and we can
obtain higher Kappa coefficients when conducting ex-
periments on PaviaU and Salinas owing to its relatively
balanced pixel distribution compared with Indian Pines.
From the aspect of the algorithm, TLS has stronger dis-
crimination and can help the classifier to make more
accurate judgement.

5.2.3. Execution Time. In Section 4.3, we have analyzed the
time complexity of TLS and pointed out that the algorithm

Table 3: Classification accuracies (%) achieved using 20 selected bands in PaviaU with SVM classifier.

Class
Algorithm

Accuracy (%)
MVPCA WaLuDi DBSCAN FDPC LP ISSC TLS

Asphalt 86.5 87.6 87.7 89.8 88.6 89.7 91.4
Meadows 96.4 96.8 96.2 94.8 94.7 98.1 96.6
Gravel 72.7 71.3 75.8 74.2 73.7 74.6 76.2
Trees 84.2 91.3 91 92.1 90.3 92.2 93.3
Painted metal sheets 99.1 99.4 99.4 97.8 97.3 98.2 99.1
Bare soil 53.2 82.5 81.5 82.4 80.4 82.8 83.5
Bitumen 79.8 83.8 81.7 76.6 80.1 82.7 83.3
Self-blocking bricks 83.4 85.2 86.3 83.8 82.4 83.6 84.9
Shadows 97.2 98.5 98.5 98 97.8 98.3 98.7
AA 83.6 88.4 88.6 87.7 87.3 88.9 89.6
OA 85.4 89.3 89.1 89.3 87.6 89.7 91.5
Variance 183.9 73.5 60.7 70.1 64.9 64.4 57.5

Table 2: Classification accuracies (%) achieved using 40 selected bands in Indian Pines with KNN classifier.

Class
Algorithm

Accuracy (%)
MVPCA WaLuDi DBSCAN FDPC LP ISSC TLS

Alfalfa 66.8 54.6 50.5 39.2 33.7 34.2 45.4
Corn-notill 60.5 71.3 69.6 71 64.3 75.8 73.7
Corn-mintill 41.5 57.4 60 66.8 48.7 65.2 66.8
Corn 48.4 57.4 57.7 58.3 53.8 53.1 60.1
Grass-pasture 82.6 88.7 86.2 85 88.4 82.1 84.4
Grass-trees 93.1 94.5 95 94.3 93.3 96.7 96
Grass-pasture-mowed 45.2 44.8 42.1 37.3 71.7 92 45.2
Hay-windrowed 97.6 96.3 96.6 95.8 98.1 96.7 96.6
Oats 29.8 24.2 27 24.4 38.3 61.2 29.7
Soybean-notill 59.5 76.2 73.7 68.3 67.2 79.4 75.7
Soybean-mintill 77.4 79.3 81.5 82.6 82.9 82.5 84.2
Soybean-clean 43.1 69.6 71 72.2 58.9 83.3 72
Wheat 93 97.7 98.4 98.1 96.2 96.2 95.4
Woods 93.6 94.4 93.3 93.5 94.6 96.8 95.8
Buildings-grass-trees-drives 42.7 52.7 51.9 50.4 54.9 53.6 55.1
Stone-steel-towers 94.9 76.3 78.4 83.6 69.7 80.9 82.4
AA 66.8 70.9 70.6 70 69.7 76.9 72.4
OA 74 77.8 76.2 77.1 75.3 79.7 80.8
Variance 515.4 421.4 421.1 487.7 410.0 326.2 399.3
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has no advantage in execution speed. ,e running time of
the algorithm is mainly dependent on the hardware con-
figuration; however, data set and the number of selected
bands will also affect it. In this paper, the experiments run on
a Windows 10 computer with an Intel i5 Quad Core pro-
cessor and 8GB of random-access memory. ,e

corresponding execution time of seven algorithms under
different conditions is shown in Table 6.

According to the setting in Section 5.1.2, the number of
samples used for experiments varies on different data sets,
which is clearly reflected by the time consumed, so the
execution time of all algorithms is longest in PaviaU

Table 5: Kappa coefficients of algorithms under different conditions.

Algorithm
Data set

Kappa coefficient
Indian pines PaviaU Salinas

SVM KNN SVM KNN SVM KNN

MVPCA
m= 12 0.723 0.708 0.782 0.796 0.77 0.762
m= 18 0.771 0.756 0.846 0.853 0.853 0.867
m= 24 0.806 0.782 0.873 0.872 0.893 0.901

WaLuDi
m= 12 0.714 0.702 0.824 0.829 0.816 0.814
m= 18 0.787 0.771 0.881 0.867 0.875 0.86
m= 24 0.821 0.804 0.918 0.89 0.91 0.893

DBSCAN
m= 12 0.726 0.71 0.797 0.784 0.813 0.806
m= 18 0.783 0.773 0.872 0.861 0.878 0.88
m= 24 0.822 0.818 0.905 0.903 0.911 0.917

FDPC
m= 12 0.72 0.732 0.804 0.796 0.822 0.808
m= 18 0.782 0.797 0.852 0.865 0.885 0.86
m= 24 0.817 0.83 0.897 0.902 0.907 0.902

LP
m= 12 0.716 0.704 0.803 0.78 0.797 0.804
m= 18 0.768 0.76 0.854 0.841 0.853 0.86
m= 24 0.811 0.797 0.87 0.882 0.88 0.894

ISSC
m= 12 0.736 0.715 0.845 0.84 0.833 0.838
m= 18 0.792 0.773 0.893 0.903 0.887 0.891
m= 24 0.83 0.81 0.921 0.926 0.92 0.923

TLS
m= 12 0.738 0.751 0.853 0.834 0.846 0.848
m= 18 0.803 0.822 0.905 0.897 0.89 0.904
m= 24 0.842 0.853 0.927 0.924 0.918 0.93

Table 4: Classification accuracies (%) achieved using 40 selected bands in Salinas with KNN classifier.

Class
Algorithm

Accuracy (%)
MVPCA WaLuDi DBSCAN FDPC LP ISSC TLS

Brocoli-green-weeds-1 83.4 84.5 83.2 82.7 82 84.4 84.7
Brocoli-green-weeds-2 88.8 92.3 90.2 94.2 89 91.7 91.4
Fallow 80.5 81.4 83.3 83.6 81.4 84.2 84.8
Fallow-rough-plow 76.4 80.5 79.2 77.8 79.6 80.4 81.1
Fallow-smooth 86.7 86.2 91.6 85 87.3 86.8 86.4
Stubble 92.8 93.1 89.6 91.6 89.2 90.4 88.7
Celery 87.7 89.1 92.4 92.8 90.3 92.2 87.4
Grapes-untrained 95.4 96.1 97.3 97 95.7 95.4 96.5
Soil-vinyard-develop 92.6 93.5 92.2 81.8 86.2 93.4 91.7
Corn-seneseed-green-weeds 86.9 89.5 86.2 90.3 84.2 86.3 87.7
Lettuce-romaine-4wk 75.4 79.2 78.5 80.4 75 79.3 79.7
Lettuce-romaine-5wk 81.6 83.2 83 84.4 81.2 81.6 84.8
Lettuce-romaine-6wk 74 72.6 72.3 76.2 73.6 75.3 75.5
Lettuce-romaine-7wk 73.2 76.3 74.8 75.5 74.6 75 77.4
Vinyard-untrained 95 95.3 94.7 95.2 91.2 95.6 96.2
Vinyard-vertical-trellis 80.4 80.7 81.7 81.6 76.7 81.5 82.3
AA 84.4 85.8 85.6 85.6 83.6 85.8 86.0
OA 87.5 89.2 89.1 89.8 88 89.2 90.8
Variance 52.0 47.9 50.1 45.6 41.4 42.7 34.7
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accordingly. Besides that the speed of an algorithm is greatly
impacted by its execution mode, and there is no doubt that
sort/noniteration may cost less time than iteration. Hence,
MVPCA takes the least amount of time followed by ISSC,
FDPC, and DBSCAN in order. TLS is faster than LP, and the
time consumed by the WaluDi is the longest.

6. Conclusion

In this paper, we propose a two layers selection (TLS) al-
gorithm to establish a dimensionality-reduced band set for
HSI. On the premise of keeping the basic features of the
spectrum, the bands with strong discrimination, low re-
dundancy, and high information are picked out to complete
the image reconstitution, and TLS achieves this goal through
two phases. First, we employ the FDPC algorithm to sort the
inner products of the local density and relative distance of all
nodes in the all-bands set aiming at building a priority
sequence, and the bands corresponding to top-ranks are
collected into the candidate set. Owing to great influence of
local density on FDPC outputs, we utilize methods of
normalization and dynamic cutoff distance to realize the
cherry-pick in scattered low-density regions as much as
possible. After getting CMI, mRMR is adopted to group the
bands that meet the given requirements in candidate set into
the target set iteratively. In order to verify the effectiveness of
TLS, six state-of-the-art algorithms are used as competitors
to carry out experiments on three remote sensing image data
sets. ,e comparative results that use indicators of OA, AA,
and Kappa coefficient show that the band combination
created by TLS is optimal. Especially, if we want a classi-
fication model to achieve higher accuracy with less training
cost, TLS provides an effective way to cut down the di-
mensions of samples. Besides HSI processing, it also fits
some applications where the sample has two ormore types of
features so that the hierarchical selection can be
implemented.

Although lots of work has been done to improve the
capability of the BS method, there are still many technical
obstacles that need to be overcome in the future. Henceforth,
the theory research studies will mainly focus on how to cut
down the complexity of algorithms and improve their ac-
curacy and robustness. Meanwhile, enhancing the

adaptability to large-scale and high-dimensional data en-
vironment is also the direction of our innovation.
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