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Abstract 23 

Evaluating drug use within populations in the United States poses significant challenges 24 

due to various social, ethical, and legal constraints, often impeding the collection of 25 

accurate and timely data. Here, we aimed to overcome these barriers by conducting a 26 

comprehensive analysis of drug consumption trends and measuring their association 27 

with socioeconomic and demographic factors. From May 2022 to April 2023, we 28 

analyzed 208 wastewater samples from eight sampling locations across six wastewater 29 

treatment plants in Southern Nevada, covering a population of 2.4 million residents with 30 

50 million annual tourists. Using bi-weekly influent wastewater samples, we employed 31 

mass spectrometry to detect 39 analytes, including pharmaceuticals and personal care 32 

products (PPCPs) and high risk substances (HRS). Our results revealed a significant 33 

increase over time in the level of stimulants such as cocaine (pFDR=1.40x10-10) and 34 

opioids, particularly norfentanyl (pFDR =1.66x10-12), while PPCPs exhibited seasonal 35 

variation such as peak usage of DEET, an active ingredient in insect repellents, during 36 

the summer (pFDR =0.05). Wastewater from socioeconomically disadvantaged or rural 37 

areas, as determined by Area Deprivation Index (ADI) and Rural-Urban Commuting 38 

Area Codes (RUCA) scores, demonstrated distinct overall usage patterns, such as 39 

higher usage/concentration of HRS, including cocaine (p=0.05) and norfentanyl 40 

(p=1.64x10-5). Our approach offers a near real-time, comprehensive tool to assess drug 41 

consumption and personal care product usage at a community level, linking wastewater 42 

patterns to socioeconomic and demographic factors. This approach has the potential to 43 

significantly enhance public health monitoring strategies in the United States. 44 

  45 
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Introduction 46 

Monitoring drug consumption behaviors in the United States presents a complex 47 

challenge, both at individual and community levels1,2. Individuals often hesitate to self-48 

report due to a variety of concerns encompassing social stigma, ethical dilemmas, privacy 49 

issues, and legal ramifications3. This reluctance can lead to biases that diminish the 50 

accuracy and reliability of collected data. At the community level, drug consumption 51 

behaviors are subject to rapid changes, often influenced by the emergence of new 52 

substances and the prevalence of polydrug use4,5. Furthermore, neighborhood 53 

characteristics—such as the degree of urbanization, demographic profiles, and social 54 

determinants of health—can significantly alter drug consumption patterns6. Historically, 55 

neighborhood disparities have been linked to various health-related behaviors, outcomes, 56 

and mortality7–9. Yet, the specific impact of urbanization and social determinants on drug 57 

consumption patterns remains an underexplored area. A deeper understanding of the 58 

interplay between drug consumption behaviors and socioeconomic factors could aid in 59 

identifying risk factors for drug overdoses and support efforts to promote health equity. 60 

 61 

In response to COVID-19, wastewater monitoring programs have gained renewed 62 

importance as a method for tracking public health threats, providing real-time insights 63 

through the analysis of community sewage10–12. This method can detect a wide range of 64 

substances, from pharmaceuticals2,13,14 to pathogens15–21, thereby reflecting the health 65 

behaviors and exposures of a population. Such analysis reveals important trends in drug 66 

usage, dietary habits, and the presence of environmental contaminants—key indicators 67 

of social determinants like economic status, healthcare access, and environmental risks. 68 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302241doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302241
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Moreover, it can uncover health disparities across neighborhoods by examining 69 

substance concentrations that correlate with socioeconomic and lifestyle factors. For 70 

example, studies outside the United States have shown a link between socioeconomic or 71 

demographic factors and the consumption of specific chemicals or dietary components6. 72 

In the United States, tools like the Area Deprivation Index (ADI)22,23 and Rural-Urban 73 

Commuting Area (RUCA) codes24 provide in-depth insights into these factors. When used 74 

in conjunction with wastewater analytics, these tools have the potential to enable a 75 

detailed understanding of health disparities across neighborhoods. 76 

 77 

In this study, we analyzed wastewater data from Southern Nevada over a span of 78 

12 months to characterize drug consumption behaviors across a population of ~2.4 million 79 

people and the ~50 million tourists that visit Las Vegas annually. Using wastewater data 80 

on high risk substances (HRS) and pharmaceuticals and personal care products (PPCPs), 81 

we asked several questions: 1) Do drug consumption patterns cluster based on 82 

geographic locations, 2) Do consumption patterns change over time, and 3) Can 83 

socioeconomic variables be associated with the consumption of HRS and PPCPs. Taken 84 

together, our data highlight how wastewater data can be used to complement 85 

conventional public health tools and be leveraged for the analysis of population health 86 

dynamics in Southern Nevada.  87 

 88 

Results 89 

Spatial trends in drug usage patterns across Southern Nevada.  90 

To investigate spatial trends in drug usage and consumption, we conducted an 91 
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unsupervised clustering analysis of analytes across various sewersheds (Figure 1A). For 92 

each facility, normalized usage rates of 34 metabolites (five metabolites were detected in 93 

less than 10% samples and therefore not included) across 26 time points were studied, 94 

resulting in a total of 884 measurements. Our results demonstrated that pairwise 95 

Pearson’s correlations (r) of drug usage among these facilities consistently exceeded 96 

0.90, indicating significant similarities in usage trends (Figure 1B). The highest similarity 97 

was found between Facilities 1 and 3 (r=0.96), both serving larger populations, and 98 

between Facilities 4A and 4B (r=0.96), located within the same geographic community. 99 

In contrast, Facilities 5 and 6 displayed distinct patterns, with average correlations being 100 

0.83±0.08 and 0.72±0.03, respectively, when compared to other facilities (Figure 1B). 101 

Although the patterns for PPCPs mirrored the overall trends for PPCPs combined with 102 

HRS (Figure 1C), the HRS-focused analysis showed significant differences, especially in 103 

Facilities 2 and 6 compared to other wastewater treatment plants (WWTPs) (Figure 1D). 104 

  105 

As a validation of our approach, we characterized the similarities for each analyte 106 

across 26 time points and 8 sampling locations. We found a robust correlation in the levels 107 

of cocaine and its metabolites, specifically ecgonine, ecgonine methyl ester, and 108 

benzoylecgonine (total of 208 measures for each analyte, r=0.87±0.09, first red box, 109 

Figure 2A). Pain relievers, including acetaminophen and the two nonsteroidal anti-110 

inflammatory drugs (NSAIDs) (ibuprofen and naproxen), recreational marijuana 111 

metabolites (THC-COOH, THC-OH), and central nervous system (CNS) stimulants 112 

(amphetamine, methamphetamine) also showed closely related usage patterns 113 

(r=0.74±0.12, second red box). Opioids such as methadone (and its major metabolite 2-114 
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ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP)), oxycodone, hydrocodone, and 115 

tramadol exhibited similar consumption trends (r=0.58±0.12, third red box), and 116 

correlated with the usage of the over-the-counter pain relievers. Additionally, our 117 

observations revealed interconnected usage patterns among specific PPCPs. This is 118 

highlighted by the significant correlation between caffeine and sucralose (r=0.67, fourth 119 

red box), as well as the frequent co-prescription of certain antibiotics, such as 120 

sulfamethoxazole and trimethoprim (r=0.69, fifth red box) (Figure 2A). 121 

 122 

Temporal trends in drug usage patterns. 123 

In our longitudinal study, with repeated measurements of PPCPs and HRS-related 124 

analytes, we sought to identify temporal trends in usage and consumption patterns. 125 

Utilizing a linear mixed effect (LME) model, we discovered a significant time-related effect 126 

for nine of the 34 analytes. This included six HRS (Figure 2B-C and Supplementary 127 

Figure 1) and three PPCPs (Figure 2D-E).  128 

 129 

Among the HRS, cocaine occurrence exhibited a steady rise over time 130 

(pFDR=1.40x10-10), as did its major metabolites ecgonine, ecgonine methyl ester, and 131 

benzoylecgonine, indicating a marked increase from 2022 to 2023 (Figure 2B and 132 

Supplementary Figure 1). Prior to September 2022, Norfentanyl was detected only on 133 

Memorial Day weekend in May 2022 at Facility 4A, but a significant increase in detection 134 

frequency and concentration was observed at all facilities starting in September/October 135 

2022 (pFDR =1.66x10-12, Figure 2C). A direct comparison for Facility 1 suggested an 136 

increase in occurrence/consumption between 201013 and 2023 for 14 HRS (green in 137 
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Supplementary Table 1). 138 

 139 

Unlike for the HRS, the usage patterns of PPCPs showed significant temporal 140 

fluctuations between 2022 and 2023. N,N-Diethyl-meta-toluamide (DEET), an insect 141 

repellent ingredient, peaked in the summer of 2022 and declined towards spring 2023 142 

(pFDR=4.87x10-2, Figure 2D), reflecting a seasonal usage pattern. Acetaminophen usage 143 

surged in November 2022, remaining high through the holiday season until January 2023 144 

(pFDR=3.36x10-2, Figure 2E). The level of PPCP usage in 2023 paralleled those in 201013 145 

(yellow in Supplementary Table 1), including atenolol, primidone, carbamazepine, 146 

trimethoprim, sulfamethoxazole, and DEET. Interestingly, a decline was observed in the 147 

use of meprobamate, a popular sedative in the 1950s, and tris (2- chloroethyl) phosphate 148 

(TCEP), a flame retardant, compared to 2010 (red in Supplementary Table 1). Overall, 149 

our analysis highlights an uptick in HRS consumption and seasonal variation in PPCP 150 

use/occurrence in Southern Nevada.   151 

 152 

Correlating PPCP and HRS Usage Patterns with Neighborhood Context  153 

Our retrospective analysis of the urban-rural status and neighborhood contexts of eight 154 

sampling locations revealed two key findings. First, Facility 6 was unique with a higher 155 

Rural-Urban Commuting Area (RUCA) code of 2, indicating less urbanization compared 156 

to other facilities (Table 1). Second, Facility 5 had a significantly higher Area Deprivation 157 

Index (ADI) than Facility 2, suggesting a more socioeconomically disadvantaged 158 

population (Figure 3). The LME model showed a significant location or location x time 159 

effect for nearly all analytes, except for the antibiotics trimethoprim and sulfamethoxazole, 160 
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TCEP, and triclosan (Table 2), highlighting distinct spatial trends across the facilities. The 161 

significant post-hoc pairwise differences among Facilities 2, 5 and 6 further linked the 162 

distinct analyte occurrence patterns to neighborhood contexts (Table 3). For HRS, 163 

significant consumption pattern differences were observed between facilities, with 164 

Facilities 2 and 5 typically showing the lowest and highest rates, respectively. In contrast, 165 

fewer PPCPs showed significant differences between facilities (Table 3). 166 

 167 

Among the 30 analytes that displayed a significant effect based on location or 168 

location x time (Supplementary Figure 2-4), the consumption/occurrence patterns of six 169 

analytes exhibited a significant positive correlation with the average ADI of each facility 170 

(i.e., more disadvantaged). This included cocaine and its metabolites ecgonine and 171 

benzoylecgonine (Figure 4A), as well as methamphetamine, norfentanyl (major 172 

metabolite of fentanyl), and the anti-convulsant carbamazepine (Figure 4B). These 173 

associations further underscore the relationship between drug usage patterns in different 174 

facilities and socioeconomic factors.  175 

 176 

Discussion 177 

Wastewater monitoring is emerging as an innovative tool to address the growing problem 178 

of drug abuse6,14,25. In our study, we investigated the temporal and spatial patterns of 16 179 

PPCPs and 18 HRS across eight sampling locations in Southern Nevada from May 2022 180 

to April 2023. Our analysis revealed significant temporal variations in the estimated drug 181 

consumption from wastewater, highlighting an overall increase in HRS usage over time, 182 

alongside seasonally fluctuating PPCP utilization patterns. Moreover, by correlating 183 
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wastewater drug consumption data with neighborhood contexts, we observed 184 

significantly greater HRS usage in more disadvantaged areas, as determined by ADI. 185 

These findings underscore the potential for wastewater monitoring programs to not only 186 

serve as a reliable method for tracking drug consumption, but also as a tool for identifying 187 

specific drug use patterns influenced by the socioeconomic and demographic 188 

characteristics of communities.  189 

 190 

The unsupervised clustering analysis of drugs in wastewater revealed strong 191 

correlations in estimated consumption patterns, specifically among cocaine and its 192 

metabolites, between methadone and its derivative, and between methamphetamine and 193 

its partially excreted form, amphetamine (Figure 2A). These findings support the utility of 194 

wastewater data as a complementary source of information to determine drug exposure. 195 

Moreover, the clustering analysis of facilities highlighted geographically varied usage 196 

patterns, aligning with s socioeconomic and demographic differences across facilities, 197 

even without prior information on the neighborhoods they serve (Figure 1B and Figure 198 

3). These findings imply that drug consumption patterns in wastewater at individual 199 

WWTPs are influenced by distinct community characteristics, laying a foundation for 200 

further exploration of how social determinants of health correlate with drug usage patterns 201 

in wastewater. 202 

 203 

Our study revealed a significant increase in all four cocaine-related analytes across 204 

eight sampling locations over the past year (Figure 2B), including a substantial 70% 205 

increase in their usage at Facility 1 over the last decade (Supplementary Table 1). These 206 
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wastewater data align with the increase in cocaine-related emergency department visits 207 

and hospital admissions reported in the 2022 Nevada Epidemiologic Profile26, 208 

underscoring the effectiveness and reliability of wastewater data in tracking drug 209 

consumption trends. Furthermore, consistent with previous studies linking cocaine use to 210 

income status in different geographic areas6,27,28, our application of the state-ranked ADI 211 

to assess regional socioeconomic conditions (encompassing education, income, housing, 212 

and household characteristics) also supports these findings. Spatial analysis revealed 213 

that communities with lower socioeconomic standing tend to show higher wastewater-214 

estimated cocaine usage (Figure 4A), a pattern similarly observed in the increased use 215 

of another central nervous system (CNS) stimulant, methamphetamine, in these more 216 

disadvantaged neighborhoods (Figure 4B). 217 

 218 

Wastewater-estimated opioid usage was strongly correlated with the consumption 219 

of NSAIDs, marijuana, and CNS stimulants (Figure 2A), suggesting facility-level polydrug 220 

usage often linked to chronic pain management. While opioid usage increased 221 

significantly in 2023 compared to 2010 (Supplementary Table 1), only norfentanyl and 222 

hydrocodone showed temporal changes from 2022 to 2023 (Figure 2C), indicating that a 223 

one-year interval might be insufficient to observe substantial variations in opioid usage. 224 

This could also be attributed to the diversity of available drugs influencing the fluctuation 225 

in individual opioid consumption. A detailed analysis of norfentanyl trends, reported in 226 

Gerrity et al., 2024, showed a significant increase post-October 2022, consistent with 227 

local clinical reports of fentanyl-related deaths in Southern Nevada14. Similar to cocaine, 228 

increased norfentanyl usage was significantly associated with neighborhoods facing 229 
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socioeconomic disadvantages (Figure 4B), aligning with previous findings that higher 230 

prescription opioid rates correlate with social determinants of health such as poverty, 231 

unemployment, lower education levels, and unstable housing, both in the United States 232 

and internationally6,27,28. Given these findings and the observed increase in HRS in 233 

disadvantaged neighborhoods, combined with lifestyle challenges and limited healthcare 234 

resources in these areas29, wastewater monitoring of HRS could inform long-term public 235 

health planning in these communities.  236 

 237 

Our clustering analysis of WWTPs using HRS revealed that Facility 2, 238 

characterized by a higher-income demographic and a large retirement-age population14, 239 

was the most distinct, followed by Facility 6 (Figure 1D). Consistent with having the lowest 240 

ADI in this study, Facility 2 exhibited the lowest consumption rates for nearly every HRS 241 

(Figure 4, Table 3, and Supplementary Figure 3), reinforcing the link between HRS 242 

usage and neighborhood socioeconomic status. A closer look at Facility 6 showed lower 243 

consumption of CNS stimulants and moderate use of opioids and marijuana 244 

(Supplementary Figure 3). Unique in its RUCA code of 2, these patterns in Facility 6 245 

suggest that drug usage is influenced not only by socioeconomic factors but also by socio-246 

demographic elements like urbanization.  247 

 248 

Significant temporal changes were recorded in only three of the 16 PPCPs 249 

analyzed. In contrast to HRS, most PPCP usage remained stable when compared to 2010 250 

data, indicating a generally consistent consumption over time (Supplementary Table 1). 251 

The use of DEET, an insect repellent, exhibited marked seasonal variation with a peak in 252 
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summer months (Figure 2D), affirming the reliability of wastewater data for monitoring 253 

PPCP usage. Additionally, the consumption of the acetaminophen varied quarterly, with 254 

an increase during the holiday season, while antibiotics like trimethoprim showed 255 

significant bi-monthly fluctuations (Figure 2E), suggesting regular and periodic use of 256 

these substances. Across different catchment areas, we observed significant variations 257 

in PPCP consumption/occurrence for all analytes except antibiotics (sulfamethoxazole 258 

and trimethoprim), TCEP (a flame retardant), and triclosan (an antimicrobial agent found 259 

in some soaps and lotions, Table 2). Interestingly, only the use of the anticonvulsant 260 

carbamazepine, like HRS, showed a significant positive correlation with the ADI (Figure 261 

4B), possibly due to its use in treating neuropathic pain6. These patterns imply a relatively 262 

uniform use of PPCPs across socioeconomic strata, or alternatively, suggest that factors 263 

other than socioeconomic status, as indicated by ADI, may influence PPCP usage at 264 

specific facilities. 265 

 266 

Limitations 267 

This study faces several limitations. First, the ADI offers refined resolution at 9-digit zip 268 

code levels, but our wastewater facilities cover broader areas spanning multiple 5-digit 269 

zip codes, leading to a generalized rather than precise socioeconomic status estimation 270 

for each facility. Although the RUCA codes are specific to 5-digit zip codes, uniform RUCA 271 

codes across all facilities simplified urbanization characterization. Notably, Facilities 6 and 272 

2, serving fewer zip code areas, provided a more reliable SES context using ADI, reflected 273 

in the distinct consumption patterns of HRS observed in these facilities. Second, our 274 

analysis assumes that drug concentrations in wastewater solely represent population 275 
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consumption, a premise challenged by factors like method sensitivity, in-sewer 276 

transformation, and alternative drug disposal methods. Third, our LME model only 277 

captures linear relationships between drug use and ADI scores or temporal changes, 278 

suggesting that more advanced multivariate and nonlinear methods could better assess 279 

complex associations. Finally, Facility 1 serves the Las Vegas Strip, an area known for 280 

tourism attractions and hospitality. Due to the mixing of analytes from tourists and the 281 

local population, our current analysis of Facility 1 is likely influenced by the confounding 282 

effects of mobile populations. 283 

 284 

Conclusions 285 

To our knowledge, this is the first report to examine how spatiotemporal drug usage 286 

behaviors, examined through community wastewater, can be integrated with ADI or 287 

RUCA scores in the United States. The results of this observational study demonstrate 288 

how wastewater data can complement public health tools to provide an unbiased estimate 289 

of socioeconomic and demographic indicators in communities served by a wastewater 290 

treatment plant.  291 

 292 

Methods 293 

Data source. This observational study adhered to the Strengthening the Reporting of 294 

Observational Studies in Epidemiology (STROBE) reporting guidelines30. The University 295 

of Nevada Las Vegas (UNLV) Institutional Review Board (IRB) reviewed this project and 296 

determined it to be exempt from human subject research according to federal regulations 297 

and University policy.  298 
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 299 

Wastewater collection and analysis. For this study, the methodology for wastewater 300 

collection and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) 301 

with isotope dilution was extensively detailed in Gerrity et al., 202414. Briefly, from May 302 

2022 to April 2023, wastewater samples were collected biweekly from eight sampling 303 

locations across six wastewater treatment plants (WWTPs). The corresponding 304 

sewersheds are delineated in Figure 1A. Facility 4 is a 24-hr composite sample for the 305 

combined sewershed spanning Facility 4A and Facility 4B, which were also independently 306 

monitored using grab samples collected from the respective sewer trunk lines prior to 307 

their entry into Facility 4.  308 

 309 

These samples were collected directly into amber glass vials containing 50 mg/L 310 

of ascorbic acid (oxidant quenching, albeit not needed for this study) and 1 g/L of sodium 311 

azide (biological preservation). Samples were briefly stored at 4°C prior to processing 312 

and analysis, typically within 1-2 days, and the target analytes included 17 PPCPs and 313 

22 HRS, including major metabolites. Sample processing and analysis for PPCPs 314 

included automated solid phase extraction (ASPE) and injection of methanol extracts, 315 

while HRS analysis involved direct injection of 10-fold diluted aqueous samples. PPCP 316 

analysis was conducted using a SCIEX API 4000-series mass spectrometer (Redwood 317 

City, CA), employing both negative and positive electrospray ionization (ESI) in multiple 318 

reaction monitoring (MRM) mode. Drug analytes were tested on a SCIEX 6500 QTRAP 319 

mass spectrometer (Redwood City, CA, USA), focusing on positive ESI in MRM mode. 320 

 321 
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Five analytes, including delta-9-tetrahydrocannabinol (THC), heroin, 3,4-322 

methylenedioxyamphetamine (MDA), norcocaine, and triclocarban, were detected in 323 

fewer than 10% of the samples in this study, so our analysis focused on the remaining 34 324 

analytes (16 PPCPs and 18 HRS). This was in part due to aqueous instability (e.g., THC 325 

and heroin) and/or insufficient sensitivity (e.g., MDA and norcocaine) for certain analytes. 326 

However, the target compound list included other relevant analytes that could inform 327 

consumption patterns for the parent compounds of interest. For example, the major 328 

metabolites THC-COOH and THC-OH were used to assess THC consumption; the major 329 

metabolite 6-acetylmorphine was used to assess heroin use; and cocaine, 330 

benzoylecgonine, ecgonine methyl ester, and ecgonine served as alternatives to 331 

norcocaine. 3,4-Methylenedioxymethamphetamine (MDMA) is sufficiently stable as a 332 

parent compound to assess consumption directly (i.e., rather than using MDA). Finally, 333 

triclocarban was banned by the U.S. Food and Drug Administration (FDA) in September 334 

201631.  335 

 336 

Unsupervised clustering. To evaluate PPCP and HRS usage patterns across various 337 

facilities, we conducted an unsupervised clustering analysis on all 34 analytes, assessed 338 

at 26 distinct time points as features for each facility. We developed a similarity matrix for 339 

the facilities by calculating pairwise Pearson’s correlations, followed by hierarchical 340 

clustering to determine the similarities and differences among them. For an unbiased 341 

evaluation of the interconnections between different usage patterns, we carried out a 342 

separate hierarchical clustering analysis on the analytes, considering their concentrations 343 

at 26 time points across all six facilities (eight sampling locations). This approach helped 344 
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establish similarities among analytes based on Pearson’s correlation measures. We 345 

applied this methodology for both PPCPs and HRS, enabling a comprehensive analysis 346 

of their respective usage patterns. 347 

 348 

Statistical analyses: Linear mixed effect model. To assess temporal changes and 349 

differences across facilities for each analyte, we employed a linear mixed effect (LME) 350 

model. This model incorporated fixed effects for the location (eight sampling locations), 351 

time (26 time points), and their interaction (location x time). Random effects included the 352 

intercept and time variation by location. To account for multiple comparisons (Ndrugx3), 353 

we applied a false discovery rate (FDR) correction method (pFDR) to the raw p-values for 354 

both main and interaction effects. To explore whether usage patterns vary based on 355 

population background and neighborhood context, our focus was on analytes showing 356 

significant location effects or interaction effects in the LME model. Post-hoc two-sample 357 

t-tests between Facilities 2 vs. 5 and Facilities 2 vs. 6 were conducted to analyze 358 

differences in usage patterns in relation to Area Deprivation Index (ADI) and Rural-Urban 359 

Commuting Area (RUCA) code variations, respectively. For all sampling locations, 360 

another LME model was utilized to examine the relationship between usage patterns and 361 

ADI scores, calculated as the average across all zip codes each facility covers. Here, we 362 

used individual analyte concentrations at each time point, rather than temporal averages, 363 

to enhance statistical power. The fixed effects in this second model were ADI and time, 364 

while the random effects remained consistent with the first model. All statistical analyses 365 

were conducted in MATLAB 2022b (https://www.mathworks.com/).  366 

 367 
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Figure Legends: 368 

Figure 1. Spatial characteristics of pharmaceutical and personal care product (PPCP) 369 

and high risk substance (HRS) usage patterns across Southern Nevada sewersheds from 370 

May 2022 to Apr 2023. (A) Map of eight sampling locations across six wastewater 371 

treatment plants in Southern Nevada. (B) Similarities in usage patterns across eight 372 

locations, revealed by the Pearson’s correlation matrix for usage of all PPCPs and HRS 373 

(mg/day-person) from May 2022 to Apr 2023 (Nmeasure=884 for each location). (C) 374 

Similarities in PPCP or (D) HRS usage patterns across facilities, revealed by the 375 

Pearson’s correlation matrix. 376 

 377 

Figure 2. Temporal characteristics of usage patterns across all pharmaceuticals and 378 

personal care products (PPCPs) and high risk substances (HRS) in Southern Nevada 379 

sewersheds from May 2022 to Apr 2023. (A) Similarities in consumption (mg/day-person) 380 

patterns across all PPCPs and HRS, revealed by the Pearson’s correlation matrix for 381 

each analyte across eight sampling locations from May 2022 to Apr 2023 (Nmeasure=208 382 

for each analyte). Five red boxes, from upper left to bottom right, indicate similar 383 

usage/occurrence patterns of cocaine-related metabolites, pain relievers, opioids, daily 384 

PPCPs and prescribed antibiotics. (B-E) Significant temporal trends in the linear mixed 385 

model for seven analytes, including: (B) increased consumption of cocaine (and 386 

occurrence of its metabolite ecgonine) from May 2022 to 2023; (C) increased 387 

consumption of opioids, such as fentanyl (based on its major metabolite norfentanyl) and 388 

hydrocodone, from Sep. 2022 to 2023; and (D-E) PPCP usage patterns fluctuated 389 

significantly and revealed seasonal consumption patterns. 390 
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 391 

Figure 3. Correlating rankings of neighborhoods by socioeconomic disadvantage with 392 

wastewater facilities. (A) Comparisons of neighborhood context, in terms of the national 393 

and state area deprivation index (ADI), across each (B) Southern Nevada sewershed. 394 

 395 

Figure 4. Significant association between drug usage (in mg/day-person) and 396 

neighborhood context revealed by area deprivation index (ADI). An increased usage with 397 

advanced neighborhood disadvantage were evident for (A) cocaine and its metabolites 398 

and (B) methamphetamine, norfentanyl, and carbamazepine. Circles (O) represent 399 

consumption values at each individual time point and crosses (X) indicate the average 400 

usage over time.  401 

 402 

Table 1. Southern Nevada sewershed coverages by zip codes. Average daily flow (million 403 

gallons per day (mgd)) and sewershed population (number of people) are listed below 404 

each facility. Socioeconomic and demographic characteristics of each sewershed are 405 

characterized using 2010 rural-urban commuting area codes (RUCA) and area 406 

deprivation index (ADI) scores, respectively. A RUCA of 1 represents metropolitan area 407 

core: primary flow within an urbanized area (UA), and a RUCA of 2 represents 408 

metropolitan area high commuting: primary flow 30% or more to a UA. The ADI allows for 409 

rankings of neighborhood by socioeconomic disadvantage at the national (National ADI) 410 

and state (State ADI) levels. A higher ADI score indicates more socioeconomic 411 

disadvantages. ADI is based on 9-digit zip codes, and therefore an average value is 412 

computed and listed for each 5-digit zip code here.  413 
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 414 

Table 2. F-Statistics and significance levels (p-values) of time, facility, and time-facility 415 

interactions in the linear mixed effect model running using data from all eight facilities. P 416 

values are corrected for multiple comparisons using the false-discovery rate (FDR) 417 

method. Degrees of freedom (dF) are listed below each F-statistics. 418 

 419 

Table 3. Post-hoc comparisons among Facilities 2, 5 and 6 that share significantly 420 

different RUCA code and neighborhood contexts. Average consumptions across time are 421 

listed in column 4 to 6, and significant levels (p-values) for pair-wise between facility 422 

comparisons are listed in column 7 to 9.   423 

 424 

Supplementary Table 1. Direct comparison of PPCP and HRS loading (mg/day-person) 425 

at Facility 1 during the same months in 2010 and 2023. 426 

 427 

Supplementary Figure 1. Metabolites of cocaine such as benzoylecgonine and 428 

ecgonine methyl ester increase (mg/person-day) over time from 2022-2023. 429 

 430 

Supplementary Figure 2. Usage patterns of 12 PPCPs, with a significant location 431 

effect in the linear mixed effect model, in wastewater from the eight sampling locations 432 

across six WWTP facilities.  433 

 434 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302241doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302241
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Supplementary Figure 3. Usage patterns of 16 HRS analytes, with a significant 435 

location effect in the linear mixed effect model, in wastewater from the eight sampling 436 

locations across six WWTP facilities. 437 

 438 

Supplementary Figure 4. Temporal usage patterns across eight sampling locations of 439 

seven analytes with a significant location x time effect in the linear mixed effect model, 440 

including (A) four stimulants, (B) two opioids, and (C) one PPCP.  441 

 442 
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Table 1. Southern Nevada sewershed facility coverage by zip codes. Average daily flow (million gallons per day (mgd) and sewershed population (number of people) are listed for each facility. 

Socio-demographic and socio-economic characteristics of each sewershed are characterized using 2010 rural-urban commuting area codes (RUCA) and area deprivation index (ADI) scores, 

respectively. A RUCA of 1 represents a metropolitan area core: primary flow within an urbanized area (UA), a RUCA of 2 represents metropolitan area high commuting: primary flow 30% or 

more to a UA. The ADI allows for ranking of neighborhoods by socioeconomic disadvantages at the national (National ADI) and state (State ADI) levels. A higher ADI score indicates more 

socioeconomic disadvantages. ADI is based on 9-digit zip codes, and therefore an average value is computed and listed for each 5-digit zip code. 

Zip-code Ruca1 National ADI State ADI Zip-code Ruca1 National ADI State ADI

Facility 1 89103 1 61.51 7.27 Facility 2 89052 1 25.17 2.75

100 mgd 89109 1 32.78 4.03 5 mgd 89044 1 21.93 2.24

872,009 89113 1 29.43 3.49 86,330

89115 1 64.74 8.10 Facility 3 89101 1 63.90 8.19

89118 1 31.82 3.81 42 mgd 89104 1 54.81 7.20

89119 1 61.81 7.96 757,418 89110 1 57.66 7.55

89120 1 42.51 5.45 89143 1 28.95 3.45

89121 1 63.31 8.05 89131 1 24.28 2.81

89122 1 65.50 8.43 89166 1 23.92 2.31

89123 1 32.35 3.81 89149 1 27.53 3.42

89139 1 27.03 2.95 89130 1 36.06 4.61

89141 1 22.94 2.30 89129 1 33.08 4.23

89142 1 51.69 7.36 89138 1 11.22 1.25

89146 1 41.89 5.46 89134 1 28.27 3.53

89147 1 39.53 5.24 89144 1 21.87 2.52

89148 1 30.67 3.60 89145 1 46.44 6.43

89156 1 60.64 8.12 89128 1 48.14 6.46

89158 1 3.00 1.00 89108 1 53.69 7.53

89169 1 60.29 7.78 89107 1 54.71 7.47

89178 1 26.50 2.96 89102 1 55.16 6.95

89179 1 28.44 3.40 89106 1 63.25 8.27

89183 1 36.66 4.77 89117 1 27.73 3.25

89199 1 53.30 7.69 Facility 4A 89011 1 36.83 4.81

Facility 5 89085 1 26.49 3.09 16 mgd 89015 1 43.39 5.75

20 mgd 89084 1 30.91 3.66 133,977 89002 1 31.18 3.72

255,008 89031 1 39.90 5.45 Facility 4B 89014 1 35.86 4.54

89032 1 46.95 6.50 6 mgd 89074 1 29.54 3.55

89030 1 65.73 8.73 114,532 89012 1 25.12 2.92

89081 1 37.57 4.96

89086 1 39.04 4.96 Facility 6

89033 1 47.04 7.17 0.8 mgd 89005 2 42.55 5.03

89165 1 50.71 7.71 16,399
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Table 2. F-statistics and significance levels (p-values) of time, facility, and time-facility interactions in the linear mixed effect model using data from all facilities. P-values are 

corrected for multiple comparisons using the false-discovery rate (FDR) method. Degrees of freedom (dF) are listed below each F-statistic.  

Name PPCP/HRS Category
Fvalue: Facility

dF(7,72)
FDR-p: Facility

Fvalue: Time

dF(1,72)

FDR-p: 

Time

Fvalue: 

Interaction

dF(7,72)

FDR-p: 

Interaction

Acetaminophen PPCP OTC Pain Reliever 21.63 3.70E-20 6.13 3.36E-02

Ibuprofen PPCP NSAID 20.84 1.44E-19

Naproxen PPCP NSAID 24.63 1.76E-22

Atenolol PPCP Licit Drug 14.34 5.10E-14

Carbamazepine PPCP Licit Drug 5.91 1.31E-05 3.22 8.79E-03

Fluoxetine PPCP Licit Drug 10.04 6.36E-10

Gemfibrozil PPCP Licit Drug 2.72 2.64E-02

Meprobamate PPCP Licit Drug 3.04 1.25E-02

Primidone PPCP Licit Drug 2.63 3.18E-02

Sulfamethoxazole PPCP Licit Drug

Trimethoprim PPCP Licit Drug 9.31 8.05E-03

Caffeine PPCP Daily 3.63 3.57E-03

DEET PPCP Daily 6.62 2.28E-06 5.37 4.87E-02

Sucralose PPCP Daily 3.19 8.89E-03

TCEP PPCP Daily

Triclosan PPCP Daily

Acetylmorphine HRS Opioid 3.24 8.52E-03

Codeine HRS Opioid 2.87 1.89E-02

EDDP HRS Opioid 14.22 6.21E-14

Hydrocodone HRS Opioid 8.78 1.14E-08 6.22 3.27E-02

MDMA HRS Opioid 5.83 1.55E-05

Methadone HRS Opioid 26.03 1.86E-23

Morphine HRS Opioid 3.77 2.61E-03 3.19 8.89E-03

Norfentanyl HRS Opioid 62.20 1.66E-12 4.52 4.16E-04

Oxycodone HRS Opioid 15.53 4.72E-15

Tramadol HRS Opioid 17.22 1.68E-16

Amphetamine HRS Stimulant 48.84 2.21E-37 2.51 4.03E-02

Benzoylecgonine HRS Stimulant 16.85 3.22E-16 14.62 6.49E-04

Cocaine HRS Stimulant 14.84 1.88E-14 50.59 1.40E-10 3.29 7.99E-03

Ecgonine HRS Stimulant 10.00 6.66E-10 28.48 1.23E-06 3.57 4.06E-03

Ecgonine methyl ester HRS Stimulant 10.60 1.77E-10 51.09 1.22E-10 4.78 2.23E-04

Methamphetamine HRS Stimulant 45.26 1.05E-35

THC-COOH HRS Marijuana 28.34 4.72E-25

THC-OH HRS Marijuana 9.06 6.12E-09
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Table 3. Post-hoc comparisons across Facilities 2, 5 and 6 that share significantly different RUCA code and neighborhood contexts. Average consumption/occurrence levels 

across time are listed in column 3 to 5, and significant levels (p-values) for pair-wise between facility comparisons are listed in column 6 to 8.   

Average 

consumption/occurrences

p-values for post-hoc two-sample t-test

Facilities with significant 

ADI difference

Facilities with RUCA 

differences

PPCP/HRS Category Facility 2 Facility 5 Facility 6 Facility 2 vs. Facility 5 Facility 2 vs. Facility 6 Facility 5 vs. Facility 6

Acetaminophen PPCP OTC Pain Reliever 44.02±12.4 24.47±9.13 52.49±16.19 4.00E-08 3.92E-02 5.10E-10

Ibuprofen PPCP NSAID 7.28±2.76 5.94±1.01 8.69±2.58 2.42E-02 5.99E-06

Naproxen PPCP NSAID 4.5±1.37 4.44±0.69 6.44±1.41 6.75E-06 3.98E-08

Atenolol PPCP Licit Drug 0.6±0.19 0.32±0.05 0.34±0.22 2.54E-09 4.38E-05

Carbamazepine PPCP Licit Drug 0.02±0.01 0.03±0.01 0.04±0.06 4.20E-04

Gemfibrozil PPCP Licit Drug 0.39±0.08 0.28±0.11 0.47±0.56 1.33E-04

Meprobamate PPCP Licit drug 0.05±0.01 0.04±0.01 0.09±0.08 3.51E-06 1.26E-02 1.87E-03

Primidone PPCP Licit Drug 0.08±0.05 0.06±0.03 0.11±0.15 4.46E-02

Sulfamethoxazole PPCP Licit Drug

Trimethoprim PPCP Licit Drug

Fluoxetine PPCP Licit Drug

Caffeine PPCP Daily 29.36±6.5 21.68±3.83 40.68±40.81 3.83E-06 2.21E-02

DEET PPCP Daily 0.1±0.08 0.27±0.15 0.07±0.13 2.34E-06 4.09E-06

Sucralose PPCP Daily

TCEP PPCP Daily

Triclosan PPCP Daily

Acetylmorphine HRS Opioid 0±0.01 0.01±0.01 0.01±0.01 6.87E-03

Codeine HRS Opioid 0.04±0.01 0.05±0 0.05±0.04 6.70E-05 5.26E-02

EDDP HRS Opioid 0.02±0 0.04±0 0.06±0.03 3.37E-17 9.49E-08 8.86E-04

Hydrocodone HRS Opioid 0.04±0.01 0.05±0.01 0.06±0.03 9.84E-06 8.27E-04 3.31E-02

MDMA HRS Opiod

Methadone HRS Opioid 0±0 0.01±0.01 0.02±0.01 1.12E-08 7.56E-22 6.85E-05

Morphine HRS Opioid 0.13±0.02 0.21±0.01 0.37±0.3 2.18E-20 1.99E-04 9.61E-03

Norfentanyl HRS Opioid 0±0 0.01±0.01 0.01±0.02 2.14E-05 1.03E-02

Oxycodone HRS Opioid 0.04±0.01 0.04±0.01 0.05±0.02 6.23E-04 3.06E-04 5.17E-02

Tramadol HRS Opioid 0.13±0.02 0.14±0.01 0.2±0.06 1.56E-03 7.37E-07 1.93E-05

Amphetamine HRS Stimulant 0.11±0.01 0.15±0.02 0.2±0.04 1.18E-13 4.22E-15 1.80E-07

Benzoylecgonine HRS Simulant 0.32±0.05 0.76±0.12 0.25±0.26 5.70E-23 2.73E-12

Cocaine HRS Stimulant 0.14±0.06 0.34±0.09 0.05±0.04 4.37E-13 1.72E-08 1.45E-20

Ecgonine HRS Stimulant 0.04±0.01 0.12±0.02 0.03±0.04 4.79E-22 3.82E-13

Ecgonine methyl ester HRS Stimulant 0.1±0.02 0.25±0.06 0.06±0.06 7.62E-16 2.27E-03 1.50E-15

Methamphetamine HRS Stimulant 0.38±0.09 1.79±0.23 1.34±0.35 4.23E-33 1.45E-18 1.21E-06

THC-COOH HRS Marijuana 0.53±0.14 0.77±0.09 0.97±0.33 1.74E-09 8.41E-08 4.18E-03

THC-OH HRS Marijuana 0.06±0.11 0.12±0.16 0.26±0.13 1.15E-07 8.34E-04
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4

A.

B. C.
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Supplementary Table 1. Direct comparison of PPCP and HRS loading (mg/day-person) at Facility 1 during the same months in 2010 and 2023. 

Drug PPCP/HRS Category 2/7/2010 3/7/2010 2/6/2023 3/6/2023 Increase in usage

Acetaminophen PPCP OTC Pain Reliever 86.82 91.16

Ibuprofen PPCP NSAID 11.72 13.46

Naproxen PPCP NSAID 7.81 8.68

Atenolol PPCP Licit Drug 0.79 0.78 0.61 0.78 -11.87%

Carbamazepine PPCP Licit Drug 0.04 0.04 0.07 0.06 48.25%

Fluoxetine PPCP Licit Drug 0.03 0.03

Gemfibrozil PPCP Licit Drug 0.61 0.61

Meprobamate PPCP Licit Drug 0.35 0.34 0.06 0.08 -80.51%

Primidone PPCP Licit Drug 0.08 0.05 0.10 0.10 59.58%

Sulfamethoxazole PPCP Licit Drug 0.40 0.46 0.41 0.48 3.19%

Trimethoprim PPCP Licit Drug 0.28 0.29 0.23 0.23 -21.25%

Caffeine PPCP Daily 47.75 56.43

DEET PPCP Daily 0.07 0.08 0.08 0.20 78.17%

Sucralose PPCP Daily 43.41 56.43

TCEP PPCP Daily 0.13 0.17

Triclosan PPCP Daily

Acetylmorphine HRS Opioid 0.02 0.02

Codeine HRS Opioid 0.07 0.07

EDDP HRS Opioid 0.07 0.07

Hydrocodone HRS Opioid 0.06 0.08

MDA HRS Opioid 0.02 0.02

MDMA HRS Opioid 0.12 0.11 0.05 0.07 -46.60%

Methadone HRS Opioid 0.02

Morphine HRS Opioid 0.26 0.30 0.32 0.25 2.08%

Norcocaine HRS Opioid 0.01 0.01

Norfentanyl HRS Opioid 0.04 0.04

Oxycodone HRS Opioid 0.06 0.06

Tramadol HRS Opioid 0.16 0.17

Amphetamine HRS Stimulant 0.13 0.14 0.30 0.31 128.17%

Benzoylecgonine HRS Stimulant 0.81 0.55 1.13 1.48 90.78%

Cocaine HRS Stimulant 0.34 0.33 0.48 0.65 69.11%

Ecgonine HRS Stimulant 0.31 0.30 0.13 0.17 -48.89%

Ecgonine methyl ester HRS Stimulant 0.18 0.15 0.40 0.52 175.47%

Methamphetamine HRS Stimulant 0.92 1.04 2.69 2.78 180.21%

THC-COOH HRS Marijuana 1.95 2.04

THC-OH HRS Marijuana 0.65 0.78
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