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Phosphate and tensin homolog on chromosome ten (PTEN) germline mutations are associated with an
overarching condition known as PTEN hamartoma tumor syndrome. Clinical phenotypes associated with
this syndrome range from macrocephaly and autism spectrum disorder to Cowden syndrome, which
manifests as multiple noncancerous tumor-like growths (hamartomas), and an increased predisposition
to certain cancers. It is unclear, however, the basis by which mutations might lead to these very diverse
phenotypic outcomes. Here we show that, by considering the molecular consequences of mutations in
PTEN on protein structure and function, we can accurately distinguish PTEN mutations exhibiting differ-
ent phenotypes. Changes in phosphatase activity, protein stability, and intramolecular interactions
appeared to be major drivers of clinical phenotype, with cancer-associated variants leading to the most
drastic changes, while ASD and non-pathogenic variants associated with more mild and neutral changes,
respectively. Importantly, we show via saturation mutagenesis that more than half of variants of
unknown significance could be associated with disease phenotypes, while over half of Cowden syndrome
mutations likely lead to cancer. These insights can assist in exploring potentially important clinical out-
comes delineated by PTEN variation.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Phosphatase and tensin homolog deleted on chromosome 10
(PTEN) is a dual-specificity phosphatase, and powerful tumor sup-
pressor, with additional lipid dephosphorylation properties within
the PI3K/AKT/mTOR signalling pathway. It is responsible for the
dephosphorylation of PIP3 to PIP2, ultimately blocking cell division
mediated by AKT. Independent of its PIP3 dephosphorylation activ-
ity, it is associated with the regulation of transcription, cell prolif-
eration and genome maintenance [1]. PTEN activity is closely
regulated by its subcellular localization, which is mediated by
post-translational modifications (PTMs) including phosphoryla-
tion, SUMOylation and ubiquitination, as well as protein–protein
interactions [1,2].

Structurally, PTEN is 403aa long and composed of two main
domains (Fig. 1): (i) the phosphatase domain (N-terminus; resi-
dues 1–185), which contains the protein tyrosine phosphatase
(PTP) conserved signature motif (HCXXGXXR) responsible for its
dual-specificity phosphatase activity and lipid binding site [3,4],
and (ii) the C2 domain (C-terminus; residues 186–403), which con-
tains a disordered loop spanning residues 286–309 [4,5] (Fig. 1).
The active site is essentially formed by the P-loop, which contains
the HCXXGXXR motif, and the WPD- and TI-loop backbone atoms
[4] (Fig. 1B). The TI loop is uniquely inserted in PTEN and is respon-
sible for a large active site volume which permits PIP3 binding [4].
Parts of the WPD and TI loops are also present in the Phosphatase-
C2 domain interface, which have been suggested to be important
for overall folding, are highly conserved, and mutated in different
cancers [4]. The C-terminal domain harbors the C2 domain, which
contains the CBR3 loop responsible for PTEN attachment to the
phospholipid membrane, with adequate phosphatase domain ori-
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Fig. 1. Main domains and subdomains present in PTEN. PTEN is primarily made up of two domains (A), the phosphatase domain (light orange) which comprises the P-, TI- and
WPD- loops and the C2 domain (green) which comprises the membrane binding CBR3 tip and cɑ2 helix basic patch. The phosphatase is the site for PIP3 binding, shown in (B)
bound to tartrate ion (black). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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entation to enable membrane-associated PIP3 binding [4]. This
property is a result of the net + 5 charge, and two hydrophobic resi-
dues at the CBR3 tip, as well as a basic patch within the neighboring
cɑ2 helix (Fig. 1B) [4]. Mutations in this domain were also associated
with a reduction in PTEN’s tumor suppressor activity [4].

Missense mutations across the entire structure of PTEN have
been associated with PTEN hamartoma tumor syndrome (PHTS)
[6], an overarching condition with a broad range of phenotypes
including different cancers and other tumorigenic states like Cow-
den syndrome [7], Bannayan-Riley-Ruvalcaba syndrome [8], Proteus
[9] and Proteus-like [10] syndromes, to brain-related disorders such
as macrocephaly, developmental delay and autism spectrum disor-
der (ASD) [11]. While tumor-related phenotypes have been attribu-
ted to changes in PIP3 dephosphorylation, the molecular
consequences leading to ASD-related phenotypes remain unclear.

Initial efforts to understand PTEN-related disease mechanisms
have focused on evaluating the effects of missense mutations on
cellular fitness through an in vivomeasurement of lipid phosphatase
activity [12]. This revealed that the fitness effects of ClinVar patho-
genic mutations and gnomAD population variants clustered in two
distributions [12]. While this provided insight into the distinction
between pathogenic and non-pathogenic mutations, differentiating
between cancer-causing and ASD-causing phenotypes within the
pathogenic class remains a challenge, primarily because of the lim-
ited numbers of reported ASD-causing mutations.

In an effort to address this, Smith and colleagues [13] looked at
the effects of a limited subset of cancer-and ASD-causing muta-
tions on PTEN’s conformational dynamics. They suggested that
cancer-causing mutations (n = 6) exhibited higher connectivity to
core PTEN nodes, and greater effects on interdomain interactions;
while the ASD-causing mutations (n = 6) were focused at nodes
near the CBR3 loop [11]. While this showed the potential for struc-
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tural insights to delineate the different phenotypic outcomes of
mutations in PTEN, it was based on a very limited subset of known
PTEN disease mutations, and it was unclear how this might trans-
late beyond those twelve mutations. Therefore, a more thorough
analysis of the underlying molecular mechanisms across all clini-
cally characterized variants is needed to provide a better under-
standing of overall disease etiology and how it can be treated.

We have previously shown that by considering the diversity of
potential molecular consequences of a mutation on protein struc-
ture and function, it is possible to accurately predict mutations
leading to cancer [14–18], different genetic diseases [19–23] and
drug resistance [24–36]. Here, we therefore investigated the effects
of mutations on protein stability, dynamics, activity, and molecular
interactions across all clinically observed PTEN mutations till date,
in order to identify molecular mechanisms driving the different
clinical phenotypes in PTEN. Our analysis suggested that protein
stability plays an important role in PTEN function and disease,
where different pathologies displayed different residue-level inter-
action profiles and localized at different protein backbone environ-
ments. This suggests that PTEN stability and backbone
conformation determines the subsequent interactions within bio-
logical pathways. A similar pattern was observed in lipid phos-
phatase activity, which is considered a proxy measure for cellular
fitness, suggesting that protein stability and local residue interac-
tions also mediate this functional effect.

2. Materials and methods

2.1. Dataset curation

Due to the wide spectrum of phenotypes manifested clinically
resulting frommissense PTENmutations, data curation was carried
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out in sequential steps. Mutations conferring pathogenicity were
initially extracted from ClinVar [37] (accessed July 2020), which
classified them as ‘Pathogenic’ and ‘Likely Pathogenic’. To ascertain
clinical involvement and increase confidence of assigned pheno-
types, each mutation was cross checked with the literature, where
only mutations identified directly from patients were kept for anal-
ysis. During this literature check, any mutations outside of the
ClinVar dataset, which were similarly identified in clinical patients
were also collected. Finally, to ensure that curation of pathogenic
mutations was as comprehensive as possible, specific studies
detailing large clinical PHTS, Cowden Syndrome (CS), or
Bannayan-Riley-Ruvalcaba syndrome (BRRS) cohorts obtained
from the Cleveland Clinic [38,39], and a list of ASD and cancer
mutations curated by Spinelli et al. [40], were used as a final check.

When present in the literature, clinical manifestations brought
about by mutations were noted and used to assign a specific class
(Suppl. Table 1). For the purposes of this study, the main patho-
genic classes analyzed were ‘Cancer’ and ‘ASD’. Therefore, these
phenotypes were prioritized even when co-occurring with other
PHTS, CS and BRRS symptoms such as macrocephaly, gastro-
intestinal polyps, café-au-lait marks, and thyroid dysfunction.
While CS and its debated pediatric manifestation BRRS are linked
to increased cancer risk, only mutations which were found in clin-
ical cancer cases were assigned the ‘Cancer’ phenotype. Similarly,
mutations in patients clinically presenting with ASD, developmen-
tal or speech delay or mental retardation were assigned the ‘ASD’
class. To further exhaust the search for PTEN mutations in ASD,
mutations present in ASD-dedicated databases VariCarta [41] and
SFARI [42] were similarly compared with the literature [11,43–
58] and assigned the ‘ASD’ phenotype. Notably, during machine
learning, a subset of ASD mutations which were only identified
in ASD cases, without PHTS symptoms, were kept as a clinical val-
idation test set.

Data curation revealed specific phenotypic manifestations
within the PHTS condition. Specifically, patients having PHTS, CS
or BRRS symptoms were sometimes observed to manifest neither
cancer nor ASD (considered as ‘mild PHTS’), or both diseases (con-
sidered as ‘severe PHTS’). Ultimately, following consolidation of
data from different sources, the interim ‘PHTS’ class was composed
of ‘mild PHTS’ mutations not otherwise reported in a specific dis-
ease, and those which caused ‘severe PHTS’. A subset of ‘mild PHTS’
Table 1
Data curation and in silico analyses. The curation of data from different sources identified
pathogenic classes of interest in this study. To best characterize the biological effects med
which consisted of qualitative structural analysis, statistical t-test, data visualization tec
analysis is summarized.

Class n Description

Cancer 59 Mutations present in cancer cases, irrespective of ‘mild PH
not been identified in ASD

ASD 65 Mutations present in ASD patients, irrespective of ‘mild
have not been identified in Cancer

PHTS 26 Mutations which either presented with overall PHTS sym
and BRRS and no cancer/ASD (‘‘mild PHTS”), or mutations
diseases within the same patient (‘‘severe PHTS”)

Both 31 Mutations causing both Cancer and ASD, identified from
CS 26 ‘Mild PHTS’ mutations identified in CS/BRRS patients wi

phenotype identified

VUS 294 ClinVar classified ‘variants of unknown significance’ or ‘
interpretations of pathogenicity’ which have not been id
pathogenic classes

Non-Pathogenic 22 Mutations present in the general population which have
in the pathogenic datasets
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mutations identified in studies on CS and BRRS patient families
were kept aside as a separate ‘CS’ class. Despite the lack of data
accompanying these mutations with respect to cancer develop-
ment, these mutations are considered ‘likely cancer-causing’ as it
is known that CS is associated with increased cancer risk. The cura-
tion of data from different sources also identified overlaps across
diseases. Mutations leading to both cancer and ASD in separate
patients (identified from separate sources), were labelled ‘Both’.

Finally, following a thorough identification of pathogenic muta-
tions within PTEN, any missense mutations present in the general
population, as obtained from gnomAD [59] (accessed July 2020),
which were not identified as pathogenic during data curation, were
considered as ‘Non-Pathogenic’. This class also included one muta-
tion in ClinVar which was classified as ‘likely Benign’. Further to
that, ClinVar mutations which were classified as variants of
unknown significance (‘VUS’) and were not identified in the clinical
literature were kept aside as the ‘VUS’ class. A total of 229 missense
mutations were grouped in specific pathogenic or non-pathogenic
classes, while 294 mutations were retained in the VUS class.

For the purpose of this study, the main classes being compared
were those describing ASD, Cancer, and Non-Pathogenic mutations.
However, interim classes (PHTS, Both and CS) were also used in
specific analyses, for possible insight into biological effects describ-
ing different mutation profiles, which can help delineate under-
standings of disease. A summary of the classes, description and
use across different analyses is detailed in Table 1 and Fig. 2, while
an account of all mutations curated in this work is detailed in
Suppl. Table 1.
2.2. PTEN structural curation

The experimental crystal structures of PTEN bound to tartrate
ion (TLA; PDB ID: 5BZZ [5]), and the vanadate ion (VO4; PDB ID:
5BZX [5]) were obtained from the RCSB Protein Data Bank. Both
structures were of the full-length protein and had a good resolu-
tion (2.20–2.50 Å), unresolved N- and C- termini (1–13 and 352–
403) and an unresolved flexible loop (residues 286–309). Prior to
mutational analysis, the structures were preprocessed using Mae-
stro (Schrodinger suites), and MODELLER [60] to fill in missing
atoms and model the missing loop. The TLA-bound structure was
used for all structural analyses, while the VO4-bound structure
subsets of pathogenic mutations apart from ASD and Cancer, which were the main
iated by these mutations, all classes and subclasses served a purpose in our analyses,
hniques and supervised machine learning (ML). The use of the subsets within each

Analyses

TS’ and which have Qualitative structural, statistical, data visualization,
supervised ML

PHTS’ and which Qualitative structural, statistical, data visualization,
supervised ML: n = 43 for model development; n = 22 for
clinical validation

ptoms, including CS
manifesting in both

Qualitative structural, statistical, data visualization

separate patients Qualitative structural, statistical, data visualization
th no other Qualitative structural, statistical, data visualization,

supervised ML: identification of mutations increasing
cancer risk

conflicting
entified in the

Supervised ML: suggesting reclassification of VUS

not been identified Qualitative structural, statistical, data visualization,
supervised ML



Fig. 2. Methodology Pipeline followed in this study. Initial mutation curation was carried out to obtain Cancer (n = 59), ASD (n = 65) and Non-Pathogenic (n = 22; labelled as
Benign in figure) mutations from five different sources. Data curation also involved processing of the experimental crystal structure to fill in missing residues and model the
missing loop (286–309). In silico biophysical tools were then used to measure the effects of mutations on protein structure and function (Feature Generation), which was
followed by different structural and statistical analyses and the development of a three-class prediction model.
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was only used to calculate changes in affinity to VO4 upon muta-
tion, and associated distance between mutated residues and ion
binding site.
2.3. Feature engineering

In order to quantify the different potential mechanistic effects
of mutations to protein structure and function, a range of
sequence- and structure-based properties were calculated using
in silico biophysical tools (Fig. 2) in a manner previously described
[26,61]. A total of 101 features were calculated on the curated
structures, which can be categorized into four classes describing
(i) the local residue environment, (ii) non-covalent interactions,
(iii) changes in active, binding and conserved sites, and (iv) pre-
dicted changes on protein stability and dynamics. A list of calcu-
lated features per category is summarized in Suppl. Table 2. For
feature calculation requiring both wildtype and mutant structures
(e.g., differences in non-covalent interactions), homology mod-
elling (using MODELLER [60]) was performed for every single-
point mutation individually.

Local residue environment. We calculated features describing
the local residue environment, including backbone psi and phi
angles, secondary structure (SST [62]), residue depth and relative
solvent accessibility (using BioPython [63]), levels of disorder (us-
ing IUPRED [64]), protein fluctuation and deformation energies
(using Bio3D [65]). As a measure of residue environment geometry
and physicochemical properties, graph-based signatures were also
calculated [66]. We have previously shown that graph-based sig-
natures are a powerful approach to represent a protein 3D struc-
ture in order to predict the effects of mutations on protein
stability [66–70] and interactions [66,71–77].
3100
Interactions. Features describing PTEN interactions included
changes in ligand affinity to TLA and VO4, and associated distances
to ligand, which were calculated using mCSM-lig [76]. We also
measured changes in local interactions upon mutation using
Arpeggio [78] and described relevant molecular interactions as fre-
quencies such as hydrogen bonds, pi-interactions and hydrophobic
interactions. Changes in residue pharmacophore such as hydrogen
bond donors and acceptors, were also calculated to reflect residue-
level changes which can affect interactions.

Functional changes. Since PTEN function is related to its con-
served sites, we measured the rate of residue evolution through
ConSurf [79], and analyzed the functional effect of each mutation
using conservation-based features SIFT [80], SNAP2 [81] and PRO-
VEAN [82] protein. Further to these, we measured the Missense
Tolerance Ratio [83,84], which accounts for rate of mutation under
neutrality and evolutionary substitution matrices PAMs and BLO-
SUMs, which measure the statistical likelihood of a mutation to
occur. Finally, an additional biological feature was obtained from
Mighell et al. [12] which described the lipid phosphatase activity
of each mutation, which is a function of cellular fitness.

Changes in stability and dynamics. Changes in protein stability
and dynamics upon mutation can play an important role in the
emergence of different phenotypes [21,23,85,86]. In this work we
quantified these changes, also referred here as in silico biophysical
measurements, using a range of well-established computational
methods including mCSM-Stability [66], DUET [69], SDM [87],
Dynamut [70] and ENCoM [88].

2.4. Qualitative structural and statistical analyses

The mutations within each phenotypic subset (ASD, Cancer and
Non-pathogenic) were assigned to major molecular mechanisms of
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disease in a method similar to ones previously described [26,89].
The in silico biophysical measurements of changes in ligand affin-
ity, protein stability and protein dynamics were quantitatively
compared for every mutation, and classified based on direction of
change (e.g., increased or decreased stability) and intensity (mea-
sured as the change in Gibbs Free Energy of folding or binding,
DDG, given in kcal/mol, and labelled as mild: 0.5 <= |DDG| < 1;
moderate: 1 <= |DDG| < 2 or high: |DDG| >=2) [89]. The overall
mechanism assigned depended on the extent of mutational change
across all mutational measurements. Proportions of overall mech-
anisms across the datasets were obtained to possibly shed light on
the patterns underlying different phenotypic classes. Finally, a
two-tailed Welch sample t-test [90] was carried out on all calcu-
lated features to identify stratifying features between all patho-
genic (n = 207) and Non-Pathogenic (n = 22) mutations, and
cancer-causing (n = 59) and autism-causing (n = 65) mutations
using the t.test function in R (v.3.6.1) [91]. Similarly, to identify
possible differences between interim classes, a two-tailed Welch
sample t-test [90] was also carried out between the classes PHTS
(n = 26) and ‘Both’ (n = 31), and PHTS (n = 26) and CS (n = 26). Fea-
tures were considered significant if their associated p-value
was < 0.05.
2.5. Data visualization techniques

A visual discernment between classes can highlight phenotype-
distinguishing features. This was particularly important consider-
ing that a large number of features (n = 101), or dimensions, were
generated to describe a small number of data points spread across
the three main phenotype classes: ASD (n = 65), Cancer (n = 59)
and Non-Pathogenic (n = 22). As the purpose of this analysis was
to highlight potentially distinguishing features between these
three main classes in lower dimensions, data visualization tech-
niques were used on all features describing ASD, Cancer and
Non-Pathogenic mutations. To visually compare the interim
classes PHTS (n = 26), CS (n = 26) and ‘Both’ (n = 31) to the main
phenotypes, these data points were plotted on the same 2D axes,
and their clustering patterns observed.

Two different techniques were tested: Principal Component
Analysis (PCA) [92] and uniform manifold approximation and pro-
jection (UMAP) [93], using R (v.3.6.1) [91] packages ‘‘cluster” and
‘‘umap”, respectively. These methods were chosen as they are
based on different approaches: PCA is a linear approach, which
focuses on maintaining data variance [92], while UMAP is non-
linear, where the distances between individual data points are
maintained in the visualization [93]. Testing out two fundamen-
tally different approaches ensured that the data could be visually
represented as comprehensibly as possible, while accounting for
underlying correlations between data points. These techniques
were carried out at different feature levels. When using all fea-
tures, features contributing to the two visualized dimensions could
help suggest protein properties underlying mechanisms of disease,
particularly if the classes could be distinguished visually. This pro-
cess was also carried out on the subset of features which presented
high class stratification from the statistical analysis (n = 54, i.e.,
features that presented a significant distribution difference
between classes), where a visual distinction between classes can
again prioritize which features are most important. Based on this
similar rationale, these techniques were also carried out on the
final features identified following greedy feature selection. Visually
inspecting how classes cluster at different feature levels could be
considered as validation for the results from other methods, where
an improvement in class distinction is expected upon lowering the
number of features statistically, and through greedy feature
selection.
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2.6. Supervised learning

A predictive model was developed using supervised learning
aiming to accurately distinguish between three classes of missense
mutations arising in PTEN: ASD, Cancer and Non-pathogenic. This
composes a multiclass classification problem, which can be tackled
by different approaches. For simplicity, we opted to use the ‘‘trans-
formation into binary” technique, assessing both OneVsOne (which
performs a pairwise comparison of all classes) and OneVsRest
(which accounts for the performance of one class compared to the
remaining two) strategies during model development, both avail-
able within the scikit-learn (v.0.23.2) [94] ‘‘multiclass” package.

The predictive model was trained on the curated mutations
describing clinical presence of ASD (n = 43) and Cancer (n = 59),
and the Non-pathogenic (n = 22) mutations were derived from
residual population variation. A subset (n = 22) of ASD mutations,
which described mutations identified in ASD patients without
other PHTS symptoms, was kept aside as a second clinical valida-
tion test, to verify the clinical utility of the final model. The remain-
ing ASD data used (n = 43) described mutations causing ASD
symptoms in conjunction with other PHTS symptoms, excluding
cancer manifestation.

ASD (n = 43), Cancer (n = 59) and Non-pathogenic (n = 22)
mutations were divided into a training set (70%; ASD: 32; Cancer:
39; Non-Pathogenic: 17) and a non-redundant blind test (30%;
ASD: 11; Cancer: 20; Non-Pathogenic: 5), using the GroupShuffleS-
plit function within scikit-learn (v.0.23.2) [94], which retained the
relative proportions of classes. Due to the smaller dataset curated
for Non-Pathogenic mutations, training was also carried out at
one level of oversampling for this class (n = 34), to establish a more
balanced training set [95].

A range of classification algorithms available within the Python
scikit-learn toolkit (v.0.23.2) [94] were assessed using default
parameters: Gaussian Naïve Bayes, Support Vector Machines (ker-
nel = ‘rbf’), K-nearest neighbor (k = 3), XGBoost (n_estimators = 3
00), Multilayer Perceptron, and the ensemble classifiers: Gradient
Boosting (n_estimators = 300), ExtraTrees (n_estimators = 100),
Random Forest (n_estimators = 300) and AdaBoost (n_estimators =
300). To minimize risk of overfitting, internal model validation was
carried out during training through k-fold cross validation, at k = 3,
5 and 10. Briefly, this cross-validation splits the training dataset
into k number of folds, and iteratively leaves one fold out as a test
set. Due to the relatively small number of data points used for
training, cross validation was carried out using the StratifiedKfold
function within scikit-learn (v.0.23.2) [94], which ensured that
each fold retained class proportions representative of the whole
dataset, and that the final metrics were representative of the whole
data. A bottom-up greedy feature selection approach was
employed to minimize model complexity, as prevoiusly described
[67,68,71,72,77]. Best performing models were selected based on
the Matthew’s Correlation Coefficient (MCC), which is a well-
established and balanced metric not affected by class sizes. The
best classifier was chosen out of 108 resultant models (Suppl.
Table 6), based on consistent performance between cross-
validation and blind test, and number of features. The final model
was subjected to an additional clinical ASD dataset, which permit-
ted the assessment of model applicability in the clinic.
3. Results

3.1. Curation of PTEN disease mutations reveals that cancer mutations
cluster at the phosphatase domain

The final curated dataset was obtained from ClinVar, gnomAD,
SFARI and through the literature (in total 80 papers manually
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curated) and consisted of 65 ASD-causing, 59 cancer-causing and
22 Non-pathogenic mutations. In addition, two interim classes
were defined, one labelled ‘PHTS’ (n = 26), which had the same
phenotype in ClinVar with no additional details, and another
labelled ‘Both’ (n = 31), which contained mutations associated with
both ASD and cancer across the different sources. It is worth not-
ing, however, that the major class of mutations obtained through
ClinVar were variants of unknown significance (‘VUS’, n = 294),
suggesting that disease etiology within PTEN is very complex and
still poorly understood. Observing the spatial distribution of the
main mutation classes within the gene and subsequent structure
(Fig. 3) shows that, while mutations associated with either cancer
or ASD were widely distributed across the whole gene, those caus-
ing cancer were more enriched within the phosphatase domain,
which mediates its tumor suppressive function.

While it was previously proposed that ASD-causing variant
effects were concentrated around the CBR3 tip, we observed that
the spatial distribution of ASD-causing variants was not localized
to a specific domain. This included ASD-causing variants in the
PIP3-binding site residues: D92, H93 and Q171. Of these, D92 is
required for protonation, while the other three residues are impor-
tant for PIP3 binding [4]. When considering the phosphatase-C2
interdomain region, two ASD variants were observed in the C2
domain residue D252, which is involved in interdomain
hydrogen-bond networks, and lies in a highly conserved region.

Cancer-causing mutations were predominantly found in the
phosphatase domain, which is associated with the tumor-
suppressing activity of PTEN, particularly in residues D92, H123,
G127, K128, R130 and T167 which lie within the PIP3 binding site.
Of these, K128 was reported to bind directly to PIP3, R130 is
required for catalysis, H123 and G127 determine the conformation,
and D92 is required for protonation. Some cancer mutations were
also observed in the phosphatase interdomain region, in position
Y174. This region is highly conserved within the protein, with
neighboring residues S170 and R173 involved in interdomain
hydrogen-bonding [4].

Finally, non-pathogenic mutations were observed at a lower
frequency across the gene, with no specific domain localization.
Only one variant was observed within the PIP3 binding site (at
T167), and only two in the membrane binding region (at L265
and D268). Interestingly, no Non-pathogenic variants were
Fig. 3. Mutation distribution. Differences in distribution of mutations across the three ma
structure (A), and gene (B). Cancer mutations are observed in higher concentrations with
subsequent tumor suppression. (For interpretation of the references to colour in this fig
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observed in interdomain residues, suggesting that these residues
play an important role in disrupting PTEN function and leading
to both ASD and cancer.
3.2. Exploring the molecular consequences of PTEN mutations leading
to disease

Analyzing the molecular and structural properties of mutations
associated with disease (n = 207) to those identified as non-
pathogenic (n = 22; Suppl. Table 3) revealed that most measures
of conservation (as described in Section 2.3) showed a significant
distinction between the two classes (ConSurf: p = 3.3e�4, PRO-
VEAN: p = 2.0e�5, SNAP2: p = 1.6e�6, SIFT: p = 1.7e�3), suggesting
that pathogenic mutations are more likely to be found at highly
conserved regions, and would be associated with more deleterious
fitness consequences. Consistent with this, pathogenic mutations
were also more likely to be buried within the protein core
(ResDepth: p = 1.1e�4, RSA: p = 2.2e�3), and to significantly desta-
bilize the PTEN protein structure (SDM: p = 2.6e�4, DUET:
p = 8.4e�3, mCSM-Stability: p = 0.03).

This disruption in protein stability may be explained through
local environmental changes, where pathogenic mutations tended
to localize at residues having a smaller backbone Psi angle
(p = 0.04) and were enriched in mutations occurring from a wild-
type Glycine (p = 4.8e-5), and to a mutant Proline (p = 2.7e�5). This
suggests that a disruption in normal PTEN function in disease is
mediated through changes in backbone conformation, consistent
with a previous study by Smith et al. [13], suggesting different pat-
terns of connectivity between cancer- and ASD-causing mutations.
Other measures of local environment which highlight molecular
differences underlying pathogenicity include graph-based signa-
ture features. Specifically, features describing the presence of polar
residue atoms at varying distances from other polar (e.g. PP:11.00:
p = 1.1e�7; PP:2.00: p = 9.8 e�6) or hydrophobic atoms (e.g.
HP:11.00: p = 1.7e�4; HP:2.00: p = 1.6 e�6), were enriched for
within the pathogenic mutation class. As polar residues mediate
fundamental and specific interactions during molecular recogni-
tion, this distinct pattern observed for the pathogenic class sug-
gests that these mutations are clustered at sites involved in
specific molecular interactions.
in phenotypes: ASD (yellow), Cancer (red) and non-pathogenic (blue) across protein
in the phosphatase region, suggesting a direct effect on PIP3 dephosphorylation and
ure legend, the reader is referred to the web version of this article.)
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Additionally, pathogenic mutations also exhibited differential
interaction patterns at the residue level when compared to the
non-pathogenic mutations. These residue-mediated interactions
included wildtype residue polar interaction counts (p = 1.4e�3),
which were higher at pathogenic mutation sites. These differences
also explain the functional profiles observed through conservation-
based features. In addition, while considering specific PTEN func-
tions, we also observed that pathogenic mutations tended to be
located close to the PIP3 binding site (distance to tartrate:
p = 0.01) and leading to a significant reduction in ligand binding
affinity (mCSM-lig, p = 0.02) and lipid phosphatase activity
(p = 3.0e�13). This is consistent with a previous study [12] that sug-
gested that lipid phosphatase activity was reduced by cancer and
ASD mutations, and not by non-pathogenic ones.

3.3. Exploring the molecular differences of PTEN mutations leading to
different pathogenicities

To better understand how pathogenic mutations in PTEN specif-
ically lead to cancer (n = 59) or ASD (n = 65; Suppl. Table 3), we
looked closer at the molecular and structural features describing
these mutations. Interestingly, further to our observation on the
role of backbone conformation in mediating pathogenicity, muta-
tions causing cancer were observed to be significantly enriched
(p = 0.05) in changes to Proline, while ASD mutations were signif-
icantly enriched in mutating from a Proline residue (p = 0.04). Fur-
ther to this, at the residue interaction level, cancer mutations were
observed to occur in residues mediating ionic interactions
(p = 0.02) while ASD mutations clustered at ones mediating alipha-
tic amide-ring interactions (p = 6.0 e�3). These opposing properties
highlight the involvement of mutant residue interactions in dis-
tinct molecular pathways and PTEN functions. These interactions
and protein backbone profiles may further possibly explain the sig-
nificantly different level of lipid phosphatase activity (p = 0.02)
between classes, observed to be more disrupted via cancer
mutations.

The trends underlying general PTEN pathogenicity, studied
through the comparison of interim classes PHTS (n = 26) and ‘Both’
(n = 31; Suppl. Table 3) were less specific to those observed for the
main pathogenic mutation classes, ASD and cancer. Interestingly,
this comparison highlighted that mutations observed to lead to
both diseases in separate patients, given by the ‘Both’ class, were
present in more conserved regions (ConSurf: p = 0.05) and were
enriched in aromatic substitutions (p = 0.04). On the other hand,
mutations within the PHTS class, where the main phenotypes, if
present, were occurring in the same patient, were observed to sig-
nificantly occur from a Proline (p = 0.04), and lead to neutrally
charged residues (p = 6.9 e�3). Similarly to what was observed
when comparing pathogenic and non-pathogenic mutations,
mutations in the ‘Both’ class were observed to occur closer to the
PIP3 binding site (p = 4.1e�3), and were more enriched in neighbor-
ing polar residues given by graph-based signature features
(p = 0.03), where mutations significantly increased hydrophobic
interactions counts (p = 0.02) at the residue level. Collectively these
results suggest that mutations found in both diseases separately
(‘Both’) are more detrimental to fitness than those present in PHTS,
given by a molecular profile closely related to pathogenicity
effects. In comparing mutations causing CS with those present in
the general condition PHTS, similar trends towards fitness costs
were observed through the CS class, where these mutations
reduced protein stability (DUET: p = 0.02; mCSM-Stability:
p = 0.03; SDM: p = 0.02) and occurred at a greater backbone Phi
angle (p = 3.5e-3) than PHTS mutations, again suggesting the role
of backbone conformation in mediating disease.

When further considering the structural effects of mutations on
protein stability (DUET), protein dynamics (Dynamut), ligand affin-
3103
ity and lipid phosphatase activity (Suppl. Table 4), we observed a
general trend where non-pathogenic mutations were associated
with neutral or mild effects, followed by mutations linked to
ASD, which had a mix of mild and large molecular consequences,
and finally Cancer mutations, which overall had the largest molec-
ular effects. This suggests that PTEN mutations leading to cancer
have higher fitness costs compared to those leading to ASD. The
pattern was evident, for example, in changes in protein stability
(Suppl. Tables 4 and 5), with 54.2% of Cancer, 52.3% of ASD and
only 27.3% of non-pathogenic mutations predicted to decrease sta-
bility. By contrast, only 5.1% of cancer mutations increased protein
stability as an overall effect, while 9.2% of ASD and 18.2% of non-
pathogenic mutations were estimated to increase protein stability.
When the same analysis was carried out on the interim classes
‘Both’, PHTS and CS, it was again observed that mutations present
in the PHTS had milder fitness effects, particularly on protein sta-
bility, where 61.5% of mutations, compared to 71.0% in the ‘Both’
class, and 80.8% within the CS class were observed to reduce pro-
tein stability.

Collectively, these observations suggest that different patho-
genic phenotypes within PTEN, even interim disorders, lie on a
spectrum, where the main protein property involved seems to
affect function through mutations in conserved regions, changes
in core residues and lipid phosphatase activity. It is known that
stability is also regulated by protein–protein interactions [1], sug-
gesting that different stages of PTEN stability play a role in differ-
ent biological pathways, hence leading to different diseases.

3.4. Using the structural consequences of PTEN mutations to
distinguish distinct disease outcomes

To better understand the interplay of protein properties
between the distinct disease states associated with PTEN muta-
tions, we used data visualization techniques to analyze property
distributions across both main (ASD, Cancer, Non-pathogenic)
and interim classes (Both, PHTS and CS) and supervised machine
learning approaches to assess our ability to predict the three main
phenotypes observed.

Two different data visualization techniques: 2-component PCA
and U-MAP, were evaluated across mutations labelled as ASD, Can-
cer and Non-Pathogenic and applied to the interim classes ‘Both’,
PHTS and CS for observation. While U-MAP offered no visual
insight into possible mutation distribution patterns across differ-
ent protein properties (Suppl. Fig. 1), 2-component PCA consis-
tently showed a distinction of the non-pathogenic class (Fig. 4,
Suppl. Fig. 2; blue). The two principal components accounted for
34.2% of the variance observed within all the features. Despite this
small variance, the main component PC1 (24.0%) was consistent
with our previous analyses, and had significant contributions from
mutation properties such as relative solvent accessibility (RSA),
changes in protein stability (calculated by DUET, mCSM-Stability
and SDM), lipid phosphatase activity, measures of conservation
(ConSurf, PROVEAN, SIFT), changes in ligand affinity and distance
to active site. These measures were all significant in distinguishing
pathogenic from non-pathogenic mutations, which accounts for
the visual distinction of the Non-pathogenic class from the rest.
The second principal component (PC2; 10.21%) was composed of
a measure of vibrational entropy change (ENCoM), which accounts
for dynamic effects, but was primarily composed of residue level
interactions such as changes in Polar, hydrogen bond and
hydrophobic interaction counts. While interesting to note, these
specific interaction types did not account for the distinct residue
level interactions mediated by ASD and Cancer mutations observed
from the statistical analysis, which can be visually observed in the
plot through a direct overlap of these two classes. Interestingly,
when plotting the interim classes on the same axes, common



Fig. 4. Principal component analysis plot on all features. When considering the
main phenotypes (A), pathogenic classes ASD (yellow) and Cancer (red), were
observed to overlap, while Non-pathogenic mutations (blue) mapped at distinct
regions on the plot. A comparison of the interim classes (B) shows slight
distinctions between Both (purple) and PHTS (green), while CS (grey) mutations
lied in between. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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patterns between these classes, previously observed through other
methods, have emerged. Specifically, mutations in the PHTS class
(Fig. 4B; Suppl. Fig. 2; green), which were suggested by the struc-
tural analyses to have the mildest effects, mapped close to the
Non-pathogenic mutations (Fig. 4A; blue). On the other hand,
mutations in the ‘Both’ class (Fig. 4B; purple) shared a similar
molecular property distribution to the Cancer mutations (Fig. 4A;
Suppl. Fig. 2; red). This was in line with structural and statistical
findings which suggested that mutations in the ‘Both’ class were
the most disruptive. These results further highlight that different
pathogenic classes within PTEN have spectral effects, where the
resultant phenotype is an interplay between different pathway
level effects.

Based on the consistent observations across different tech-
niques, we employed supervised machine learning to assess the
extent to which combinations of specific protein features can be
used to distinguish between ASD, Cancer and Non-pathogenic
mutations. Machine learning was carried out on all features gener-
ated, which included a graph-based signature representation of the
3-dimensional protein environment around the mutated residue
[96]. The atoms, labelled as either hydrophobic or polar, were rep-
resented as nodes, with the edges capturing the molecular interac-
tions between atoms. We have previously shown that graph-based
signature representation of the mutation environment is a power-
ful and accurate approach to predicting the effects of mutations
[61,66].

During model development, different model parameters were
tested in parallel across 108 runs (Suppl. Table 6) which included
the presence or absence of oversampling for the non-pathogenic
class, multiclass approaches OneVsOne and OneVsRest, different
classification algorithms and different cross validation schemes
(k = 3, 5, 10). When choosing the best performing model, greedy
feature selection cut-offs prioritized consistent values between
MCC cross-validation result and blind test. During this process,
the number of features was kept to a minimum, in order to limit
model complexity, with the AdaBoost algorithm being the best
performing model under 10-fold cross validation, using oversam-
pling of the least frequent class.

When comparing the two models obtained by the different
multiclass approaches (OneVsOne and OneVsRest; Suppl. Table 7),
it was observed that both models prioritized experimental lipid
phosphatase activity, which describes PTEN function, a change in
cation-Pi interaction counts and a graph-based signature feature
describing the presence of two polar atoms within interacting dis-
tance (2 Å; Suppl. Table 7). Despite having more features (n = 11
compared to n = 7 in OneVsRest), the model based on the OneVsOne
multiclass approach was chosen, as the MCC values obtained fol-
lowing cross-validation and subjection to a blind test were consis-
tent and robust (MCC: 0.68). This model was additionally based on
another graph-based signature detailing two polar residues within
6.5 Å of each other, relative solvent accessibility, MTR score, which
is a measure of missense intolerance at a specific residue, and dif-
ferent residue level interaction counts involving Pi interactions
(hydrogen bond donor-Pi, change in Pi-Pi interactions), aliphatic
(amide-ring interactions) and aromatic residues. Further to that,
this model accounted for mutations leading to Proline, which is
known to change backbone conformation. Interestingly, most of
these features were highlighted to be significant when distinguish-
ing between pathogenic and non-pathogenic mutations (graph-
based signatures, RSA), and between ASD and cancer-causing
mutations (mutation to Proline, amide-ring interactions), while
the functional lipid phosphatase activity was observed to con-
tribute significantly to both stratifications from our t-test [90]
analysis. These consistencies between analyses, further suggest
model robustness, based on biologically discerning features among
classes.
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Further model assessment using other metrics, including those
accounting for data imbalances: balanced accuracy and F1 score
(with micro, macro and weighted averaging) confirmed model
robustness through similar metrics obtained across the different
validation methods. This is particularly important considering the
small dataset used, and despite requiring oversampling for the
non-pathogenic class. Finally, to quantify how well the model
can detect each class, we calculated Recall per class via the confu-
sion matrices (Fig. 5A, Table 2), which showed inconsistencies
between cross validation and blind test, particularly for the ASD
cohort. This suggests that the features, despite identified as signif-
icant through other methods within this study, may not fully
encompass the complexities underlying ASD-mediating mutations.



Fig. 5. Metrics for the chosen model. Model was obtained after greedy feature selection, where the confusion matrices (A) calculated the three-class classifier using the
OneVsOne method on the Adaboost algorithm, validated through 10-fold cross validation, with prediction performance of up to 0.68 MCC. Confusion matrices show correctly
predicted data points per class, across the diagonal. (B) Observing the contribution of each feature within the estimators of our final model shows that MTR score and RSA are
important in identification of disease variants, while changes in lipid phosphatase activity plays an important role in distinguishing between disease outcomes.

Table 2
Balanced metrics observed in final model. The final model performed similarly between cross validation and blind test, suggesting there is no inherent bias underlying
predictions.

Validation method MCC B. acc F1 (micro) F1 (macro) F1 (weighted) Recall ASD Recall cancer Recall NP

10-fold CV 0.68 0.77 0.78 0.76 0.77 0.37 0.54 0.77
Blind test 0.68 0.77 0.81 0.77 0.81 0.91 0.41 0.60
ASD test – 0.32 0.32 0.16 0.48 0.32 – –
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To further test the applicability of the model to predict ASD muta-
tions, we checked the model performance on a held-out dataset
(n = 22), which was not used in model development. This test also
gave poor results, suggesting low confidence in clinical applicabil-
ity. One possible reason beneath these ASD metrics could be the
combination of PHTS phenotypes co-occurring with ASD in the
dataset used for model development, particularly since the clinical
validation test represented ASD-only mutations.

As our final model is based on OneVsOne binarization, three
pairwise estimators contribute to the final phenotype prediction:
ASD vs Cancer; ASD vs Non-Pathogenic and Cancer vs Non-
Pathogenic. As a final analysis, we then observed the extent to
which our final features (Suppl. Table 7) contribute to each pair-
wise problem. Fig. 5B shows that lipid phosphatase activity con-
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tributes highly to all pairwise estimators for classification. On the
other hand, MTR score was a particularly important contributor
to estimators involving the Non-Pathogenic class, reconfirming
that pathogenic mutations are localized at functionally important
regions of the gene. Interestingly, RSA and polar atom pairs within
interacting distances were also involved in distinguishing either
pathogenic class from the Non-pathogenic.

3.5. Exploring the potential disease landscape of PTEN using in silico
saturation mutagenesis

In order to help guide analysis of novel variants, we performed
in silico saturation mutagenesis using our best machine learning-
trained model (Suppl. Tables 6 and 8; Suppl. Fig. 3). Looking at
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the distributions of the different predicted phenotypes across the
gene, distinct patterns have emerged: predicted Cancer mutations
predominantly occupied the phosphatase domain, non-pathogenic
mutations were concentrated at the C2 domain, while ASD muta-
tions distributed across the whole gene, concentrating at the inter-
domain region. This distribution is thought to reflect specific
domain functions, particularly considering the predicted Cancer
cluster at the phosphatase domain, which includes the PIP3 binding
site. This also suggested that mutations within the dynamic loop of
the C2 domain are most likely to be Non-pathogenic mutations.
This suggests that our model might be able to detect specific muta-
tions affecting membrane binding and consequent tumor suppres-
sor activity.

Using the results from the saturation mutagenesis, we explored
the predicted phenotypes of the Variants of Unknown Significance
(VUS, n = 294) that had been curated. We observed that our model
predicted 26.5% of these as ASD, 39.1% as Cancer and 34.4% as Non-
Pathogenic. This suggests that nearly half of the previously unchar-
acterized variants could be associated with a disease phenotype,
suggesting that further follow up work is needed to explore the
potential clinical implications of these. Similarly, we also wanted
to assess the cancer risk for a subset of mutations which were asso-
ciated with CS/BRRS (n = 26), and found that our predictor consid-
ers 57.7% of these mutations to be cancer-causative. Clinically, this
risk could be considered as part of patient management strategies.
4. Discussion

Missense mutations in PTEN lead to very diverse disease states,
collectively referred to as PHTS. The main challenge in PTEN dis-
ease management is to differentiate and predict the effect of speci-
fic mutations within this gene, as treatment options and patient
monitoring across cancer and ASD is very diverse. Further to this,
we have observed that some mutations have been associated with
both phenotypes across different clinical sources, highlighting that
underlying mechanisms are affected by different traits and the
interactions between them. Despite being germline mutations,
manifestations may also differ between members of the same fam-
ily, making the distinction between ASD and cancer phenotypes
more complex, and suggesting a reason behind our lower predic-
tive performance for ASD mutations.

Previous efforts to distinguish between disease phenotypes
have looked at in vitro lipid phosphatase activity [12], a measure
traditionally correlated with the cancer phenotype, and conforma-
tional dynamics approaches [13] on only a very small sample of
cancer (n = 6) and ASD (n = 6) mutations. Despite the hypotheses
presented, neither work offers an in-depth comparison of different
mutational effects using multivariate protein properties, which can
lead to a better, more holistic understanding of the biological prob-
lem. In this work, we have manually curated our mutations from
different sources into three clinically confirmed phenotypes: ASD
(n = 65), Cancer (n = 59) and Non-pathogenic (n = 22), making
our dataset comprehensible enough to draw rational conclusions
from our different analyses.

Through in silico biophysical measurements describing different
protein properties, we have sought to identify the molecular basis
behind why specific mutations lead to one phenotype and not the
other. Using different data analysis techniques, the effect of muta-
tions on protein stability, as well as their localization in buried and
conserved regions have consistently been observed to lead to
pathogenicity. In comparing ASD-causing and cancer-causing
mutations, we observed that different interaction profiles at the
residue level correlated with protein backbone conformation
effects, highlighting that protein conformation may be responsible
for different diseases. A similar pattern was observed when consid-
3106
ering in vitro lipid phosphatase activity, which could differentiate
across all classes: ranging from the most detrimental (cancer) to
hypomorphic (ASD), to wild type (non-pathogenic) function. We
also analyzed mutations leading to both ASD and Cancer in differ-
ent patients (‘Both’ class), it was observed that these mutations
were a more disruptive ‘interim’ class, suggesting a molecular basis
for age-related mutational penetrance between those who develop
ASD and those who develop cancer. On the other hand, mutations
in patients with co-occurring PHTS symptoms, including both ASD
and cancer within the same patient, were observed to have less
disruptive effects on protein properties in this study. These results
collectively show that pathogenicity within PTEN may occur as a
spectrum, consistent with the hypothesis proposed by Mighell
et al. [12], with the most intense pathogenic mutations leading to
cancer, and ASD causing mutations lying between the two
extremes (cancer and non-pathogenic).

Using these structural insights, we have developed a three-class
prediction model, trained through supervised machine learning.
During development, our model was better able to detect cancer-
causing and non-pathogenic mutations, where a reduced applica-
bility to ASD may be due to co-occurrent (mild) PHTS conditions.
Subjecting the model to two sets of validation: 10-fold cross vali-
dation and validation through a blind test showed comparable
results across different balanced metrics, implying that the model
has not been overfit on the data it has been trained on. Our final
model is primarily composed of local, functional and interaction-
describing features, suggesting that differences in phenotype man-
ifestation lie predominantly at the molecular level. One possible
avenue for further improvement in our final model, however, is
the inclusion of epistatic effects through protein–protein interac-
tion features, as these are known to be regulatory mechanisms
driving PTEN action, and further optimizing the model towards
detection of ASD-only mutations in younger patients.

Applying this model to an in silico saturation mutagenesis
approach described a phenotypic landscape which linked back to
the specific domain functions, primarily in the localization of the
predicted cancer-causing mutations. In observing the predictions
on the VUS data points we saw that there is potential for reclassi-
fication of up to 65.6% of these mutations into cancer or ASD, war-
ranting more specific patient monitoring for those patients. Further
to that, we also tested for cancer-risk in a subset of mutations from
CS/BRRS patients, where 58% of mutations were predicted to lead
to cancer. Despite the small dataset used for training, the metrics
describing our final model strongly suggest a potential for clinical
utility, particularly at guiding protocols for patients with VUS and
CS. Finally, while PHTS is also commonly mediated through trun-
cating mutations, a distinction of the different phenotypes brought
about by missense mutations could inform therapeutic develop-
ment for the underlying pathologies.
5. Conclusions

Mutations in PTEN are associated with a range of complex dis-
ease phenotypes, which have proven hard to untangle. By consid-
ering the structural and functional consequences of mutations in
PTEN, we have shown that disease phenotypes can be accurately
predicted. This also revealed key underlying molecular drivers of
disease outcomes, with decreases in protein stability and phos-
phatase activity associated with disease. Interestingly, the severity
of these effects appeared to correlate with phenotype, with the
most drastic effects linked to cancer, mild reductions linked to
ASD and non-pathogenic mutations showing minimal changes.
Using these insights, we have identified that more than half of cur-
rently assigned VUS could be disease associated, and used our
model to predict the phenotypic outcomes of all possible
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mutations. This will be a valuable resource to further explore the
role of mutations in PTEN and their links to patient outcomes
and treatments.
CRediT authorship contribution statement

S.P. was responsible for data curation, structural and statistical
analysis, machine learning and manuscript preparation. L.B.
assisted with data curation. A.G.C.d.S. assisted with machine learn-
ing. D.E.V.P. assisted with supervision of machine learning. D.B.A.
conceived, designed and supervised all aspects of the project. All
authors assisted with manuscript writing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

S.P. was funded by a Melbourne Research Scholarship. A.G.C.d.S.
acknowledges the Joe White Bequest Fellowship for its support. D.
B.A. and D.E.V.P. were funded by a Newton Fund RCUK-CONFAP
Grant awarded by The Medical Research Council (MR/
M026302/1). D.B.A. was supported by the Wellcome Trust (grant
093167/Z/10/Z) and an Investigator Grant from the National Health
and Medical Research Council (NHMRC) of Australia
(GNT1174405). Supported in part by the Victorian Government’s
Operational Infrastructure Support Program.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.05.028.

References

[1] Lee Y-R, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour
suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018;19
(9):547–62.

[2] Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function:
the long and the short of it. Trends Biochem Sci 2014;39(4):183–90.

[3] Myers, M. P.; Stolarov Jp Fau - Eng, C.; Eng C Fau - Li, J.; Li J Fau - Wang, S. I.;
Wang Si Fau - Wigler, M. H.; Wigler Mh Fau - Parsons, R.; Parsons R Fau -
Tonks, N. K.; Tonks, N. K., P-TEN, the tumor suppressor from human
chromosome 10q23, is a dual-specificity phosphatase. (0027-8424 (Print)).

[4] Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, et al. Crystal
structure of the PTEN tumor suppressor: implications for its phosphoinositide
phosphatase activity and membrane association. Cell 1999;99(3):323–34.

[5] Lee CU, Hahne G, Hanske J, Bange T, Bier D, Rademacher C, et al. Redox
Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and
Bisperoxidovanadium Complexes. Angew Chem Int Ed Engl 2015;54
(46):13796–800.

[6] Yehia, L.; Keel, E.; Eng, C., The Clinical Spectrum of PTEN Mutations. Annu Rev
Med 2020, 71 (1545-326X (Electronic)), 103-116.

[7] Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of
the PTEN gene in Cowden disease, an inherited breast and thyroid cancer
syndrome. Nat Genet 1997;16(1):64–7.

[8] Hendriks YM, Verhallen JT, van der Smagt JJ, Kant SG, Hilhorst Y, Hoefsloot L,
et al. Bannayan-Riley-Ruvalcaba syndrome: further delineation of the
phenotype and management of PTEN mutation-positive cases. Fam Cancer
2003;2(2):79–85.

[9] Biesecker LG, Rosenberg MJ, Vacha S, Turner JT, Cohen MM. PTEN mutations
and Proteus syndrome. Lancet 2001;358(9298).

[10] Zhou XP, Marsh DJ, Hampel H, Mulliken JB, Gimm O, Eng C. Germline and
germline mosaic PTEN mutations associated with a Proteus-like syndrome of
hemihypertrophy, lower limb asymmetry, arteriovenous malformations and
lipomatosis. Hum Mol Genet 2000;9(5):765–8.

[11] Buxbaum JD, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, et al. Mutation
screening of the PTEN gene in patients with autism spectrum disorders and
macrocephaly. Am J Med Genet B Neuropsychiatr Genet 2007;144B
(4):484–91.
3107
[12] Mighell TL, Evans-Dutson S, O’Roak BJ. A Saturation Mutagenesis Approach to
Understanding PTEN Lipid Phosphatase Activity and Genotype-Phenotype
Relationships. Am J Hum Genet 2018;102(5):943–55.

[13] Smith IN, Thacker S, Seyfi M, Cheng F, Eng C. Conformational dynamics and
allosteric regulation landscapes of germline PTEN mutations associated with
autism compared to those associated with cancer. Am J Hum Genet 2019;104
(5):861–78.

[14] Bayley JP, Bausch B, Rijken JA, van Hulsteijn LT, Jansen JC, Ascher D, et al.
Variant type is associated with disease characteristics in SDHB, SDHC and
SDHD-linked phaeochromocytoma-paraganglioma. J Med Genet 2020;57
(2):96–103.

[15] Casey RT, Ascher DB, Rattenberry E, Izatt L, Andrews KA, Simpson HL, et al.
SDHA related tumorigenesis: a new case series and literature review for
variant interpretation and pathogenicity. Mol Genet Genomic Med 2017;5
(3):237–50.

[16] Jafri M, Wake NC, Ascher DB, Pires DE, Gentle D, Morris MR, et al. Germline
mutations in the CDKN2B tumor suppressor gene predispose to renal cell
carcinoma. Cancer Discov 2015;5(7):723–9.

[17] Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, et al.
Tumour risks and genotype-phenotype correlations associated with germline
variants in succinate dehydrogenase subunit genes SDHB SDHC and SDHD. J
Med Genet 2018;55(6):384–94.

[18] Hnizda A, Fabry M, Moriyama T, Pachl P, Kugler M, Brinsa V, et al. Relapsed
acute lymphoblastic leukemia-specific mutations in NT5C2 cluster into
hotspots driving intersubunit stimulation. Leukemia 2018;32(6):1393–403.

[19] Nemethova M, Radvanszky J, Kadasi L, Ascher DB, Pires DE, Blundell TL, et al.
Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus
on ’black bone disease’ in Italy. Eur J Hum Genet 2016;24(1):66–72.

[20] Soardi, F. C.; Machado-Silva, A.; Linhares, N. D.; Zheng, G.; Qu, Q.; Pena, H. B.;
Martins, T. M. M.; Vieira, H. G. S.; Pereira, N. B.; Melo-Minardi, R. C.; Gomes, C.
C.; Gomez, R. S.; Gomes, D. A.; Pires, D. E. V.; Ascher, D. B.; Yu, H.; Pena, S. D. J.,
Familial STAG2 germline mutation defines a new human cohesinopathy. NPJ
Genom Med 2017, 2 (2056-7944 (Electronic)), 7.

[21] Trezza A, Bernini A, Langella A, Ascher DB, Pires DEV, Sodi A, et al. A
computational approach from gene to structure analysis of the human ABCA4
transporter involved in genetic retinal diseases. Invest Ophthalmol Vis Sci
2017;58(12):5320–8.

[22] Usher JL, Ascher DB, Pires DE, Milan AM, Blundell TL, Ranganath LR. Analysis of
HGD gene mutations in patients with alkaptonuria from the united kingdom:
identification of novel mutations. JIMD Rep 2015;24 (2192–8304.

[23] Ascher DB, Spiga O, Sekelska M, Pires DEV, Bernini A, Tiezzi M, et al.
Homogentisate 1,2-dioxygenase (HGD) gene variants, their analysis and
genotype-phenotype correlations in the largest cohort of patients with AKU.
Eur J Hum Genet 2019;27(6):888–902.

[24] Albanaz ATS, Rodrigues CHM, Pires DEV, Ascher DB. Combating mutations in
genetic disease and drug resistance: understanding molecular mechanisms to
guide drug design. Expert Opin Drug Discov 2017;12(6):553–63.

[25] Phelan J, Coll F, McNerney R, Ascher DB, Pires DE, Furnham N, et al.
Mycobacterium tuberculosis whole genome sequencing and protein
structure modelling provides insights into anti-tuberculosis drug resistance.
BMC Med 2016;14(1):31.

[26] Portelli S, Myung Y, Furnham N, Vedithi SC, Pires DEV, Ascher DB. Prediction of
rifampicin resistance beyond the RRDR using structure-based machine
learning approaches. Sci Rep 2020;10(1):18120.

[27] Vedithi SC, Malhotra S, Skwark MJ, Munir A, Acebron-Garcia-De-Eulate M,
Waman VP, et al. HARP: a database of structural impacts of systematic
missense mutations in drug targets of Mycobacterium leprae. Comput Struct
Biotechnol J 2020;18:3692–704.

[28] Vedithi SC, Rodrigues CHM, Portelli S, Skwark MJ, Das M, Ascher DB, et al.
Computational saturation mutagenesis to predict structural consequences of
systematic mutations in the beta subunit of RNA polymerase in
Mycobacterium leprae. Comput Struct Biotechnol J 2020;18:271–86.

[29] Vedithi SC, Malhotra S, Das M, Daniel S, Kishore N, George A, et al. Structural
implications of mutations conferring rifampin resistance in mycobacterium
leprae. Sci Rep 2018;8(1):5016.

[30] Tunstall T, Portelli S, Phelan J, Clark TG, Ascher DB, Furnham N. Combining
structure and genomics to understand antimicrobial resistance. Comput Struct
Biotechnol J 2020;18:3377–94.

[31] Portelli S, Olshansky M, Rodrigues CHM, D’Souza EN, Myung Y, Silk M, et al.
Exploring the structural distribution of genetic variation in SARS-CoV-2 with
the COVID-3D online resource. Nat Genet 2020;52(10):999–1001.

[32] Ascher DB, Wielens J, Nero TL, Doughty L, Morton CJ, Parker MW. Potent
hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. Sci
Rep 2014;4:4765.

[33] Karmakar M, Globan M, Fyfe JAM, Stinear TP, Johnson PDR, Holmes NE, et al.
Analysis of a Novel pncA mutation for susceptibility to pyrazinamide therapy.
Am J Respir Crit Care Med 2018;198(4):541–4.

[34] Karmakar M, Rodrigues CHM, Holt KE, Dunstan SJ, Denholm J, Ascher DB.
Empirical ways to identify novel Bedaquiline resistance mutations in AtpE.
PLoS One 2019;14(5):e0217169.

[35] Karmakar M, Rodrigues CHM, Horan K, Denholm JT, Ascher DB. Structure
guided prediction of Pyrazinamide resistance mutations in pncA. Sci Rep
2020;10(1):1875.

[36] Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, et al.
Evolution of carbapenem resistance in Acinetobacter baumannii during a
prolonged infection. Microb Genom 2018;4(3):-.

https://doi.org/10.1016/j.csbj.2021.05.028
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0005
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0005
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0005
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0010
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0010
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0020
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0020
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0020
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0025
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0025
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0025
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0025
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0035
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0035
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0035
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0040
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0040
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0040
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0040
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0045
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0045
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0050
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0050
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0050
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0050
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0055
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0055
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0055
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0055
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0060
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0060
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0060
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0065
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0065
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0065
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0065
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0070
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0070
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0070
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0070
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0075
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0075
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0075
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0075
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0080
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0080
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0080
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0085
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0085
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0085
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0085
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0090
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0090
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0090
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0095
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0095
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0095
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0105
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0105
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0105
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0105
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0110
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0110
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0110
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0115
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0115
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0115
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0115
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0120
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0120
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0120
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0125
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0125
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0125
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0125
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0130
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0130
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0130
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0135
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0135
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0135
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0135
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0140
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0140
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0140
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0140
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0145
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0145
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0145
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0150
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0150
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0150
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0155
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0155
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0155
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0160
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0160
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0160
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0165
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0165
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0165
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0170
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0170
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0170
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0175
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0175
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0175
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0180
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0180
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0180


S. Portelli, L. Barr, Alex G.C. de Sá et al. Computational and Structural Biotechnology Journal 19 (2021) 3097–3109
[37] Landrum, M. J.; Lee, J. M.; Riley, G. R.; Jang, W.; Rubinstein, W. S.; Church, D.
M.; Maglott, D. R., ClinVar: public archive of relationships among sequence
variation and human phenotype. Nucleic Acids Res 2014, 42 (Database issue),
D980-5.

[38] Tan MH, Mester J, Peterson C, Yang Y, Chen JL, Rybicki LA, et al. A clinical
scoring system for selection of patients for PTEN mutation testing is proposed
on the basis of a prospective study of 3042 probands. Am J Hum Genet
2011;88(1):42–56.

[39] Mighell TL, Thacker S, Fombonne E, Eng C, O’Roak BJ. An Integrated Deep-
Mutational-Scanning Approach Provides Clinical Insights on PTEN Genotype-
Phenotype Relationships. Am J Hum Genet 2020;106(6):818–29.

[40] Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. Functionally distinct groups
of inherited PTEN mutations in autism and tumour syndromes. J Med Genet
2015;52(2):128–34.

[41] Belmadani M, Jacobson M, Holmes N, Phan M, Nguyen T, Pavlidis P, et al.
VariCarta: A comprehensive database of harmonized genomic variants found
in autism spectrum disorder sequencing studies. Autism Res 2019;12
(12):1728–36.

[42] Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA,
et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism
spectrum disorders (ASDs). Mol Autism 2013;4(1):36.

[43] Bubien V, Bonnet F, Brouste V, Hoppe S, Barouk-Simonet E, David A, et al.
French Cowden Disease, N., High cumulative risks of cancer in patients with
PTEN hamartoma tumour syndrome. J Med Genet 2013;50(4):255–63.

[44] Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, et al.
Subset of individuals with autism spectrum disorders and extreme
macrocephaly associated with germline PTEN tumour suppressor gene
mutations. J Med Genet 2005;42(4):318–21.

[45] Frazier TW, Embacher R, Tilot AK, Koenig K, Mester J, Eng C. Molecular and
phenotypic abnormalities in individuals with germline heterozygous PTEN
mutations and autism. Mol Psychiatry 2015;20(9):1132–8.

[46] Hobert JA, Embacher R, Mester JL, Frazier TW. 2nd; Eng, C., Biochemical
screening and PTEN mutation analysis in individuals with autism spectrum
disorders and macrocephaly. Eur J Hum Genet 2014;22(2):273–6.

[47] Klein S, Sharifi-Hannauer P, Martinez-Agosto JA. Macrocephaly as a clinical
indicator of genetic subtypes in autism. Autism Res 2013;6(1):51–6.

[48] McBride KL, Varga EA, Pastore MT, Prior TW, Manickam K, Atkin JF, et al.
Confirmation study of PTEN mutations among individuals with autism or
developmental delays/mental retardation and macrocephaly. Autism Res
2010;3(3):137–41.

[49] Mester J, Eng C. Estimate of de novo mutation frequency in probands with
PTEN hamartoma tumor syndrome. Genet Med 2012;14(9):819–22.

[50] O’Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, et al. Multiplex
targeted sequencing identifies recurrently mutated genes in autism spectrum
disorders. Science 2012;338(6114):1619–22.

[51] Orrico A, Galli L, Buoni S, Orsi A, Vonella G, Sorrentino V. Novel PTEN
mutations in neurodevelopmental disorders and macrocephaly. Clin Genet
2009;75(2):195–8.

[52] Rodriguez-Escudero I, Oliver MD, Andres-Pons A, Molina M, Cid VJ, Pulido R. A
comprehensive functional analysis of PTEN mutations: implications in tumor-
and autism-related syndromes. Hum Mol Genet 2011;20(21):4132–42.

[53] Saskin A, Fulginiti V, Birch AH, Trakadis Y. Prevalence of four Mendelian
disorders associated with autism in 2392 affected families. J Hum Genet
2017;62(6):657–9.

[54] Schwerd T, Khaled AV, Schurmann M, Chen H, Handel N, Reis A, et al. A
recessive form of extreme macrocephaly and mild intellectual disability
complements the spectrum of PTEN hamartoma tumour syndrome. Eur J Hum
Genet 2016;24(6):889–94.

[55] Vanderver A, Tonduti D, Kahn I, Schmidt J, Medne L, Vento J, et al.
Characteristic brain magnetic resonance imaging pattern in patients with
macrocephaly and PTEN mutations. Am J Med Genet A 2014;164A
(3):627–33.

[56] Varga EA, Pastore M, Prior T, Herman GE, McBride KL. The prevalence of PTEN
mutations in a clinical pediatric cohort with autism spectrum disorders,
developmental delay, and macrocephaly. Genet Med 2009;11(2):111–7.

[57] Wong CW, Or PMY, Wang Y, Li L, Li J, Yan M, et al. Identification of a PTEN
mutation with reduced protein stability, phosphatase activity, and nuclear
localization in Hong Kong patients with autistic features, neurodevelopmental
delays, and macrocephaly. Autism Res 2018;11(8):1098–109.

[58] Yeung KS, Tso WWY, Ip JJK, Mak CCY, Leung GKC, Tsang MHY, et al.
Identification of mutations in the PI3K-AKT-mTOR signalling pathway in
patients with macrocephaly and developmental delay and/or autism. Mol
Autism 2017;8(1):66.

[59] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al.
Genome Aggregation Database, C., The mutational constraint spectrum
quantified from variation in 141,456 humans. Nature 2020;581
(7809):434–43.

[60] Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial
restraints. J Mol Biol 1993;234(3):779–815.

[61] Pires DE, Chen J, Blundell TL, Ascher DB. In silico functional dissection of
saturation mutagenesis: Interpreting the relationship between phenotypes
and changes in protein stability, interactions and activity. Sci Rep
2016;6:19848.

[62] Konagurthu AS, Lesk AM, Allison L. Minimum message length inference of
secondary structure from protein coordinate data. Bioinformatics 2012;28
(12):i97–i105.
3108
[63] Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython:
freely available Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009;25(11):1422–3.

[64] Meszaros B, Erdos G, Dosztanyi Z. IUPred2A: context-dependent prediction of
protein disorder as a function of redox state and protein binding. Nucleic Acids
Res 2018;46(W1):W329–37.

[65] Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS. Bio3d: an R
package for the comparative analysis of protein structures. Bioinformatics
2006;22(21):2695–6.

[66] Pires DE, Ascher DB, Blundell TL. mCSM: predicting the effects of mutations in
proteins using graph-based signatures. Bioinformatics 2014;30(3):335–42.

[67] Pires DEV, Rodrigues CHM, Ascher DB. mCSM-membrane: predicting the
effects of mutations on transmembrane proteins. Nucleic Acids Res 2020;48
(W1):W147–53.

[68] Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: Assessing changes in
stability and flexibility upon single and multiple point missense mutations.
Protein Sci 2021;30(1):60–9.

[69] Pires, D. E.; Ascher, D. B.; Blundell, T. L., DUET: a server for predicting effects of
mutations on protein stability using an integrated computational approach.
Nucleic Acids Res 2014, 42 (Web Server issue), W314-9.

[70] Rodrigues CH, Pires DE, Ascher DB. DynaMut: predicting the impact of
mutations on protein conformation, flexibility and stability. Nucleic Acids Res
2018;46(W1):W350–5.

[71] Myung Y, Pires DEV, Ascher DB. mmCSM-AB: guiding rational antibody
engineering through multiple point mutations. Nucleic Acids Res 2020;48
(W1):W125–31.

[72] Myung Y, Rodrigues CHM, Ascher DB, Pires DEV. mCSM-AB2: guiding rational
antibody design using graph-based signatures. Bioinformatics 2020;36
(5):1453–9.

[73] Pires DE, Ascher DB. mCSM-AB: a web server for predicting antibody-antigen
affinity changes upon mutation with graph-based signatures. Nucleic Acids
Res 2016;44(W1):W469–73.

[74] Nemethova M, Radvanszky J, Kadasi L, Ascher DB, Pires DEV, Blundell TL, et al.
Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus
on ‘black bone disease’ in Italy. Eur J Hum Genet 2016;24(1):66–72.

[75] Pires DEV, Ascher DB. mCSM-NA: predicting the effects of mutations on
protein-nucleic acids interactions. Nucleic Acids Res 2017;45(W1):W241–6.

[76] Pires DE, Blundell TL, Ascher DB. mCSM-lig: quantifying the effects of
mutations on protein-small molecule affinity in genetic disease and
emergence of drug resistance. Sci Rep 2016;6:29575.

[77] Rodrigues CHM, Myung Y, Pires DEV, Ascher DB. mCSM-PPI2: predicting the
effects of mutations on protein-protein interactions. Nucleic Acids Res
2019;47(W1):W338–44.

[78] Jubb HC, Higueruelo AP, Ochoa-Montano B, Pitt WR, Ascher DB, Blundell TL.
Arpeggio: A Web Server for Calculating and Visualising Interatomic
Interactions in Protein Structures. J Mol Biol 2017;429(3):365–71.

[79] Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016:
an improved methodology to estimate and visualize evolutionary conservation
in macromolecules. Nucleic Acids Res 2016;44(W1):W344–50.

[80] Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for
genomes. Nat Protoc 2016;11(1):1–9.

[81] Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for
sequence variants. BMC Genom 2015;16 Suppl 8 (8):S1.

[82] Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of
amino acid substitutions and indels. Bioinformatics 2015;31(16):2745–7.

[83] Silk M, Petrovski S, Ascher DB. MTR-Viewer: identifying regions within genes
under purifying selection. Nucl Acids Res 2019;47(W1):W121–6.

[84] Traynelis J, Silk M, Wang Q, Berkovic SF, Liu L, Ascher DB, et al. Optimizing
genomic medicine in epilepsy through a gene-customized approach to
missense variant interpretation. Genome Res 2017;27(10):1715–29.

[85] Hildebrand JM, Kauppi M, Majewski IJ, Liu Z, Cox AJ, Miyake S, et al. A missense
mutation in the MLKL brace region promotes lethal neonatal inflammation
and hematopoietic dysfunction. Nat Commun 2020;11(1):3150.

[86] Jatana N, Ascher DB, Pires DEV, Gokhale RS, Thukral L. Human LC3 and
GABARAP subfamily members achieve functional specificity via specific
structural modulations. Autophagy 2020;16(2):239–55.

[87] Pandurangan AP, Ochoa-Montano B, Ascher DB, Blundell TL. SDM: a server for
predicting effects of mutations on protein stability. Nucleic Acids Res 2017;45
(W1):W229–35.

[88] Frappier V, Chartier M, Najmanovich RJ. ENCoM server: exploring protein
conformational space and the effect of mutations on protein function and
stability. Nucleic Acids Res 2015;43(W1):W395–400.

[89] Portelli S, Phelan JE, Ascher DB, Clark TG, Furnham N. Understanding molecular
consequences of putative drug resistant mutations in Mycobacterium
tuberculosis. Sci Rep 2018;8(1):15356.

[90] Welch BL. The generalisation of student’s problems when several different
population variances are involved. Biometrika 1947;34(1–2):28–35.

[91] Team R. C. R A language and environment for statistical computing., R
Foundation for Statistical Computing 2019 Vienna, Austria.

[92] Wold S, Esbensen K, Geladi P. Principal component analysis. Chemomet Intell
Lab Syst 1987;2(1):37–52.

[93] McInnes, L., John Healy, and James Melville, Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018). 2018.

[94] Pedregosa F, Varoquaux I, Gramfort A, Michel V, Thirion B. Machine Learning in
Python. J. Mach. Learn. Res. 2011;12:2825–30.

http://refhub.elsevier.com/S2001-0370(21)00209-9/h0190
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0190
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0190
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0190
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0195
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0195
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0195
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0200
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0200
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0200
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0205
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0205
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0205
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0205
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0210
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0210
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0210
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0215
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0215
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0215
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0220
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0220
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0220
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0220
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0225
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0225
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0225
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0230
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0230
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0230
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0235
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0235
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0240
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0240
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0240
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0240
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0245
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0245
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0250
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0250
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0250
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0255
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0255
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0255
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0260
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0260
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0260
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0265
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0265
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0265
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0270
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0270
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0270
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0270
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0275
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0275
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0275
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0275
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0280
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0280
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0280
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0285
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0285
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0285
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0285
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0290
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0290
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0290
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0290
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0295
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0295
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0295
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0295
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0300
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0300
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0305
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0305
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0305
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0305
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0310
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0310
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0310
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0315
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0315
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0315
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0320
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0320
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0320
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0325
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0325
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0325
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0330
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0330
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0335
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0335
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0335
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0340
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0340
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0340
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0350
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0350
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0350
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0355
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0355
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0355
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0360
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0360
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0360
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0365
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0365
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0365
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0370
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0370
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0370
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0375
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0375
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0380
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0380
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0380
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0385
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0385
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0385
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0390
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0390
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0390
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0395
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0395
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0395
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0400
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0400
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0405
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0405
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0410
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0410
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0415
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0415
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0420
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0420
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0420
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0425
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0425
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0425
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0430
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0430
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0430
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0435
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0435
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0435
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0440
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0440
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0440
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0445
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0445
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0445
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0450
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0450
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0460
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0460
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0470
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0470


S. Portelli, L. Barr, Alex G.C. de Sá et al. Computational and Structural Biotechnology Journal 19 (2021) 3097–3109
[95] Guo X, Yin Y, Dong C, Yang G, Zhou G. In On the class imbalance problem,
Fourth international conference on natural computation. IEEE
2008;2008:192–201.
3109
[96] da Silveira CH, Pires DE, Minardi RC, Ribeiro C, Veloso CJ, Lopes JC, et al. Protein
cutoff scanning: A comparative analysis of cutoff dependent and cutoff free
methods for prospecting contacts in proteins. Proteins 2009;74(3):727–43.

http://refhub.elsevier.com/S2001-0370(21)00209-9/h0475
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0475
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0475
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0480
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0480
http://refhub.elsevier.com/S2001-0370(21)00209-9/h0480

	Distinguishing between PTEN clinical phenotypes through mutation analysis
	1 Introduction
	2 Materials and methods
	2.1 Dataset curation
	2.2 PTEN structural curation
	2.3 Feature engineering
	2.4 Qualitative structural and statistical analyses
	2.5 Data visualization techniques
	2.6 Supervised learning

	3 Results
	3.1 Curation of PTEN disease mutations reveals that cancer mutations cluster at the phosphatase domain
	3.2 Exploring the molecular consequences of PTEN mutations leading to disease
	3.3 Exploring the molecular differences of PTEN mutations leading to different pathogenicities
	3.4 Using the structural consequences of PTEN mutations to distinguish distinct disease outcomes
	3.5 Exploring the potential disease landscape of PTEN using in silico saturation mutagenesis

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


