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Bronchiolitis is the most common cause of hospitalization of children in the first year of

life and pneumonia is the leading cause of infant mortality worldwide. Lung ultrasound

technology (LUS) is a novel imaging diagnostic tool for the early detection of respiratory

distress and offers several advantages due to its low-cost, relative safety, portability,

and easy repeatability. More precise and efficient diagnostic and therapeutic strategies

are needed. Deep-learning-based computer-aided diagnosis (CADx) systems, using

chest X-ray images, have recently demonstrated their potential as a screening tool for

pulmonary disease (such as COVID-19 pneumonia). We present the first computer-aided

diagnostic scheme for LUS images of pulmonary diseases in children. In this study,

we trained from scratch four state-of-the-art deep-learning models (VGG19, Xception,

Inception-v3 and Inception-ResNet-v2) for detecting children with bronchiolitis and

pneumonia. In our experiments we used a data set consisting of 5,907 images from

33 healthy infants, 3,286 images from 22 infants with bronchiolitis, and 4,769 images

from 7 children suffering from bacterial pneumonia. Using four-fold cross-validation,

we implemented one binary classification (healthy vs. bronchiolitis) and one three-class

classification (healthy vs. bronchiolitis vs. bacterial pneumonia) out of three classes.

Affine transformations were applied for data augmentation. Hyperparameters were

optimized for the learning rate, dropout regularization, batch size, and epoch iteration.

The Inception-ResNet-v2 model provides the highest classification performance, when

compared with the other models used on test sets: for healthy vs. bronchiolitis, it

provides 97.75% accuracy, 97.75% sensitivity, and 97% specificity whereas for healthy

vs. bronchiolitis vs. bacterial pneumonia, the Inception-v3 model provides the best

results with 91.5% accuracy, 91.5% sensitivity, and 95.86% specificity. We performed

a gradient-weighted class activation mapping (Grad-CAM) visualization and the results

were qualitatively evaluated by a pediatrician expert in LUS imaging: heatmaps highlight

areas containing diagnostic-relevant LUS imaging-artifacts, e.g., A-, B-, pleural-lines,

and consolidations. These complex patterns are automatically learnt from the data, thus
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avoiding hand-crafted features usage. By using LUS imaging, the proposed framework

might aid in the development of an accessible and rapid decision support-method for

diagnosing pulmonary diseases in children using LUS imaging.

Keywords: deep-learning CNN, bronchiolitis, pneumonia, children, lung ultrasonography

1. INTRODUCTION

Bronchiolitis is a viral acute lower respiratory-tract infection
and the most common reason for hospitalization and intensive-
care-unit admission of children worldwide (Choi and Lee, 2012;
Øymar et al., 2014).

The diagnosis of infants with bronchiolitis is difficult: there
exists no unambiguous definition of the disease; the diagnosis
is based on clinical evaluation and anamnesis (Ralston et al.,
2014) hence determined by different conditions such as age
and variability in the disease state. Furthermore, many of these
parameters are based on subjective clinical findings and can
be diversely interpreted by different physicians, according to
their clinical experience. Finally, bronchiolitis can require serial
observations over time, which in turn presents several challenges
when performed in emergency departments.

Community acquired pneumonia (CAP) is also pervasive and
a frequent cause of pediatric morbidity and mortality (Liu et al.,
2015). A diagnosis of CAP, similarly to that of bronchiolitis, relies
mainly on medical history and clinical examination. However,
these methods suffer from poor sensitivity and specificity hence,
to confirm CAP, physicians need to prescribe medical imaging
techniques such as chest X-ray (Bradley et al., 2011;WorldHealth
Organization, 2014; Shah et al., 2017).

There is growing research interest (Ralston et al., 2014; Collins
and Varmus, 2015) in discovering objective parameters that are
easy to measure and that could help the physician to perform
a more accurate evaluation of children possibly infected with a
respiratory disease, thus to make prompt clinical decisions.

Ultrasound technology (US) is one of the most often used
imaging diagnostic tools for physicians and radiologists, due
to its relative safety, portability, repeatability, cost effectiveness,
and operator comfort. Examinations can be carried out, after
appropriate training, even by non-specialist radiologists [point-
of-care ultrasound, POCUS (Kessler et al., 2017)]. Therefore, US
imaging presents several major advantages over other medical
imaging modalities such as magnetic resonance imaging (MRI),
computed tomography (CT), and X-ray.

In the last few decades, lung ultrasound (LUS) imaging
supported clinical examinations for neonatal and pediatric
respiratory diseases, as a valid tool for evaluating the lung
parenchyma (Dunn and Fry, 1961; Bauld and Schwan,
1974; Volpicelli et al., 2012; Rosenfield et al., 2015). This
avoids unnecessary exposure of children to ionizing radiation
(Buonsenso et al., 2019a). Several studies have demonstrated
the usefulness of LUS imaging in the diagnosis and follow-up of
community-acquired pneumonia (Berce et al., 2019; Musolino
et al., 2019; Najgrodzka et al., 2019; Buonsenso et al., 2021) and,
in particular, of bronchiolitis (Basile et al., 2015; Di Mauro et al.,
2019; Supino et al., 2019; Buonsenso et al., 2021).

In an attempt to objectively quantify respiratory distress,
many scoring systems were developed on the bases of the visual
features generated by the interaction between the ultrasound
beam and the lung (Supino et al., 2019; Buonsenso et al.,
2020e). The appearance of these features varies according to
the specific composition of the lung periphery. In general, the
main lung ultrasound features of lung inflammatory diseases
include irregular pleural line; short and long vertical artifacts;
white-lung; consolidations and effusions. However, despite
documented medical evidence (Lichtenstein et al., 1997, 2009;
Reißig and Kroegel, 2003; Jambrik et al., 2004; Soldati et al.,
2006; Volpicelli et al., 2006; Copetti et al., 2008; Gargani et al.,
2008) and extensive acoustic studies (Dunn and Fry, 1961; Bauld
and Schwan, 1974; Dunn, 1974, 1986; Pedersen and Ozcan,
1986; Mikhak and Pedersen, 2002; Volpicelli et al., 2012), the
interpretation of the lung ultrasound features is subjectively
made by the clinician/sonographer. US imaging also presents
unique challenges, such as low imaging-quality caused by noise
and artifacts, and high inter- and intra-observer variability
across different institutes and manufacturers of US systems.
To address these challenges, it is essential to develop advanced
automatic US image-analysis methods in order to make US
diagnosis, assessment, and image-guided interventions/therapy
more objective, accurate, and intelligent.

In the past 7 years, deep learning (LeCun et al., 2015), a
subfield of machine learning (ML), also due to improvements
in device capabilities (computing power, memory capacity,
power consumption, image sensor resolution, and optics) has
seen a dramatic resurgence, with striking improvements in the
performance and cost-effectiveness of vision-based applications
(Voulodimos et al., 2018). It solves problems that are beyond
human capability or that were previously considered intractable,
and it demonstrates huge potential for various automatic tasks
in medical-image analysis (Greenspan et al., 2016; Litjens
et al., 2017; Shen et al., 2017; Ker et al., 2018). Therefore, it
receives increasing attention by the medical-imaging scientific
community (Esteva et al., 2019).

Recent works uncovered the deep-learning potential
to perform automatic US image-analysis tasks, including
detection, classification, segmentation, biometric measurements,
registration, and quality assessment, as well as emerging
tasks such as image-guided interventions and therapy (Anas
et al., 2015). It was also successfully applied, in medical US
imaging analysis to different anatomical structures: breast (Bian
et al., 2017; Hiramatsu et al., 2017), thyroid (Ma et al., 2017),
heart/cardiac (Ghesu et al., 2016; Pereira et al., 2017), brain
(Milletari et al., 2015; Sombune et al., 2017), fetus (Yaqub et al.,
2017), and many other organs and body parts (see Liu et al.,
2019 for a review). However, only a limited amount of studies
investigated the performances of deep neural networks on lung
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ultrasound images, and these studies mainly focus on detecting
and extracting domain specific, hand-crafted features such as
A-lines, B-lines (also known as vertical artifacts), pleural lines
(Carrer et al., 2020), pleural effusions, and consolidations, with
B-line detection being the most common task (Kulhare et al.,
2018; Wang et al., 2019; van Sloun and Demi, 2020).

The recent outbreak of the novel 2019 coronavirus (COVID-
19) has required the development of fast diagnostic techniques,
among which the chest X-ray is key. Given the paucity of
radiologists and expertise in the field, in order to provide
physicians with valid assistance for accurate diagnosis, there is
an increased interest in quickly developing AI systems. Recently,
there have been many publications that focused on using deep
neural networks over raw chest X-ray images rather than learning
hand-engineered features by using deep neural networks.

For instance, Wang et al. (2020) designed COVID-Net,
an open-source deep convolutional neural network that was
specifically tailored for the task of detecting COVID-19 cases
from chest X-ray images. The authors also introduced COVIDx,
an open-access benchmark data set that comprises 13,975
chest X-ray images across 13,870 patient cases. The COVID-
Net achieves 93.3% test accuracy in classifying images from
individuals who belong to three different classes: healthy, non-
COVID pneumonia, and COVID-19.

Another example is the study from Apostolopoulos and
Mpesiana (Apostolopoulos and Mpesiana, 2020) who applied
transfer learning on state-of-the-art CNN architectures for
classification tasks that involve COVID-19 as one of the target
classes. Specifically, they used a database of chest X-ray scans that
contain 224 images of patients with COVID-19, 700 images of
people infected with non-COVID pneumonia, and 504 images
of healthy individuals. The best performance model (VGG19)
achieved an accuracy of 98.75% in classifying the followingmulti-
class problem: normal vs. COVID-19 pneumonia vs. bacterial
pneumonia. Whereas, an accuracy of 93.48% was reached for the
multi-class problem: normal vs. COVID-19 pneumonia vs. viral
and bacterial pneumonia.

All the above mentioned studies used deep learning and raw
chest X-ray images for either binary (normal vs. COVID-19)
or 3-class (normal vs. pneumonia vs. COVID-19) classification
problems. These studies provided evidence that deep neural
networks can achieve impressively high performance when
applied to lung medical imaging without the need for explicitly
designed and extracted problem-oriented features to be fed into
the neural network. Therefore, these works confirm the idea
that deep-learning techniques have the potential to change the
design paradigm of the computer-aided diagnostics (CADx)
systems (Bian et al., 2017) and provide physicians with refined
interpretations of medical imaging (McBee et al., 2018).

Less attention has been given to the use of deep learning for
the automation of lung disease classification from raw ultrasound
images. Nonetheless, LUS has been shown to play an invaluable
role in the diagnosis, management, and prognosis of COVID-19
in all age groups (Bonadia et al., 2020; Buonsenso et al., 2020a;
Smith et al., 2020; Volpicelli et al., 2020, 2021) including children
(Musolino et al., 2021) and pregnant women (Buonsenso et al.,
2020b; Inchingolo et al., 2020). Remarkably, LUS has a diagnostic

accuracy similar to that of chest X-ray in COVID-19 patients
(Lieveld et al., 2020; Pare et al., 2020; Tung-Chen et al., 2020).

Only recently, Born et al. (2021) presented a VGG16-based
CNN, POCOVID-Net, pre-trained on ImageNet (Deng et al.,
2009), and then fine-tuned it by using their data set, the largest
publicly available LUS data set for COVID-19: 1,204 COVID-
19, 704 bacterial pneumonia, and 1,326 healthy images. Their
convolutional neural network was able to differentiate among
patients who were diagnosed with COVID-19, those who were
affected by bacterial pneumonia, and healthy individuals, thus
achieving an overall accuracy of 89%.

Inspired by the above research results on COVID-19,
obtained by applying deep-learning techniques to raw medical
imaging, we analyse the performance of different state-of-the-
art convolutional neural networks for the diagnosis of childhood
pulmonary disease. In this first study we included a large
set of LUS images from children with lower-respiratory-tract
infections; this represents a real practice scenario in the pediatrics
department, for children affected by themost important pediatric
respiratory conditions (pneumonia and bronchiolitis), as well as
healthy subjects.

In order to achieve automatic feature extraction, we applied
deep-learning techniques directly to raw LUS images. For this
purpose, we trained from scratch the following state-of-the-
art deep-learning models: VGG19, Xception, Inception-v3, and
Inception-ResNet-v2. In this work, we assess the performance
of one binary classification problem and one three-class
classification problem, including LUS images of healthy infants,
those with bronchiolitis, and those with bacterial pneumonia.

2. METHODS

2.1. Participants
For the purpose of this study, we considered three group of
patients enrolled in clinical studies at the Agostino Gemelli
University Hospital between the end of 2018 and the beginning
of 2019:

• Healthy: 33 healthy infants (18 males, 15 females; mean age:
2.83± 2.89 months)

• Bronchiolitis: 22 infants with bronchiolitis (13 males, 9
females; mean age: 2.78± 2.96 months)

• Bacterial pneumonia: 7 children with bacterial pneumonia (4
males, 3 females; mean age: 7 years± 6.85 years).

Healthy infants were defined as children completely healthy
without comorbidities.

Infants with bronchiolitis were diagnosed through an
integrated approach based on clinical (Seattle Children’s
Hospital, 2011) and ultrasound assessment (Buonsenso
et al., 2019b; Supino et al., 2019). Radiological evaluation
and laboratory tests (e.g., oxygen saturation) were also
performed, when necessary, as recommended by clinical practice
guidelines (Subcommittee on Diagnosis and Management of
Bronchiolitis, 2006; Ralston et al., 2014). All patients suspected
to have bronchiolitis underwent a routine clinical assessment
based on Seattle Children’s Hospital clinical scores (Seattle
Children’s Hospital, 2011). This is a clinical score created by
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Seattle Children’s Hospital in 2011, to evaluate children with
bronchiolitis and to distinguish those in need of hospitalization
from those who could be discharged. The score is based on the
consideration of

• respiratory rate
• retractions: subcostal, intercostal, or supraclavicular

retractions; nasal flaring; or bobbing of the head
• signs of dyspnea: reduction/suspension of feeding,

reduction/suspension of vocalization, agitation, drowsiness,
or confusion

• auscultation: inspiratory wheeze, expiratory wheeze, or
reduction of air penetration.

The clinical diagnosis of CAP was made in accordance with
the British Thoracic Society guidelines (Harris et al., 2011). At
the first evaluation, all children with suspected CAP underwent:
medical history, clinical evaluation, and blood tests, including
complete blood count (CBC) with white blood cell (WBC),
and C-reactive protein (CRP). Definitive diagnoses of bacterial
pneumonia were confirmed by both chest X-ray and lung
ultrasound.

Only the children that underwent complete LUS scanning
as described below, have been included in the analyses. Images
from each patient were collected during multiple sessions,
therefore they display a disease with different severity in the
same patient. Images and videos have been collected during the
study protocol “Utility of lung ultrasound in children with lower
respiratory tract infections”, approved by the Ethic Committee
of the Fondazione Policlinico Universitario A. Gemelli IRCCS,
Rome, Italy (prot 36173/19, ID 2729). Written informed consent
was obtained before data collection by the caregiver of the
study participants. All the private information of patients
was anonymized.

2.2. Lung Scanning Procedure
LUS imaging was performed with the ultrasound machine
ESAOTE MyLabTM 40 using a linear probe (12–6 MHz). Images
and clips were stored and archived. In order to guarantee
agreement in the methodology and acquisition, all LUS scanning
were performed by two physicians, Danilo Buonsenso and
Cristina De Rose, with more than 5 years of experience in
LUS clinical practice and teaching and already several papers
published together (Buonsenso et al., 2020c,d; Pata et al., 2020;
Rose et al., 2020). The scans were made by investigating the
anterior, lateral, and posterior regions of the thorax, according
to a protocol used by the Italian Academy of Thoracic Ultrasound
(ADET) and recently published in a COVID-19 protocol (Taccari
and Buonsenso, 2020).

The following lung ultrasound features were evaluated to
better define the prognosis of the infants with bronchiolitis and,
in particular, to identify those children who are in need of
supplementary oxygen (Basile et al., 2015; Taveira et al., 2018;
Buonsenso et al., 2019b; Supino et al., 2019):

• presence of an irregular pleural line;
• absence of pleural effusion;
• presence of short vertical artifacts;

• presence of long vertical artifacts: multiple, non-confluent,
and/or confluent, unevenly distributed, possibly involving
several lung areas, possibly bilaterally distributed, and with
“spared areas” in the single area involved;

• presence of area(s) of white-lung;
• presence of single or multiple subpleural consolidations

(even > 1 cm in size), associated with multiple long non-
confluent or confluent vertical perilesional artifacts.

Lung ultrasound features considered for the aetiological
diagnosis of bacterial pneumonia were as follows (Berce et al.,
2019; Buonsenso et al., 2021):

• irregular pleural line;
• subpleural pulmonary parenchymal lesion (consolidation and

atelectasis; > 2 cm, and in particular > 4 cm);
• presence of bronchograms, its characteristics (air or fluid),

morphology (arboriform or dot-like/linear), position (deep
if > 2 cm far from the pleura or superficial if close to
the pleura), dynamicity during breath (fix, poorly dynamic,
or clearly dynamic);

• presence and type of pleural effusion: simple (anechogenic
and dependent on gravity) or complex (presence of septa,
hyperechogenic spot, following the lung through the apex and
not dependent on gravity, requiring drainage).

We also report the lung ultrasound features that were evaluated
for healthy infants, especially in the first 3 months of life
(Buonsenso et al., 2020d):

• absence of irregularities of the pleural line;
• absence of pleural effusion;
• absence of subpleural consolidations;
• presence of short vertical artifacts;
• presence of long vertical artifacts single and/or multiple, non-

confluent and/or confluent, with possible uneven distribution
and/or involving multiple lung areas with a prevalence of the
right and/or left hemithorax, depending on the gestational age
and the current age of the patient.

2.3. Data Acquisition
The set of available lung ultrasound images were ordered by
the patients and manually categorized by medical operators
into three different diagnoses: healthy infants, infants with
bronchiolitis, and children with bacterial pneumonia. The
resulting data set of all available images is organized as follows:

1. Healthy: 5,907 images: 5,193 bmp images validated by human
raters and 714 bmp images automatically extracted from
videos and validated by human raters.

2. Bronchiolitis: 3,286 images: 2,516 bmp images validated by
human raters and 770 automatically extracted from videos and
validated by human raters.

3. Bacterial pneumonia: 4,769 images: 206 bmp images validated
by human raters and 4,563 automatically extracted from
videos and validated by human raters.

Every patient contributes to multiple ultrasound images (mean
= 226.1 ± 287.4), with a minimum of 43 images, collectively
taken from different sessions. To estimate the accuracy of the
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classifiers, we used four-fold cross-validation stratified by the
number of samples per class. In order to avoid the unbalanced
data problem, we sampled images from the original data set of
available images as follows. Data were split on a patient level,
hence we organized the folds in such a way that all the images
belonging to a particular subject were assigned to only one-fold
and, consequently to only one of the following subsets: training
set, validation set, test set (i.e., there was no overlap patient-
wise among the training, validation, and test data sets). Where
possible, the subset of patients was matched by age and gender,
and it was distributed randomly between the folds as per the
above mentioned constraints. Each of the four final data sets used
for four-fold cross-validation is organized as follows:

1. Healthy: 2,000 images: 1,000 bmp images for the training set,
500 images for the validation set and 500 images for the test
set.

2. Bronchiolitis: 2,000 images: 1,000 bmp images for the training
set, 500 images for the validation set and 500 images for the
test set.

3. Bacterial pneumonia: 2,000 images: 1,000 bmp images for the
training set, 500 images for the validation set and 500 images
for the test set.

2.4. Convolutional Neural Networks
Deep learning constitutes the state-of-the-art set of applied
machine-learning techniques and frameworks currently
used both in the research and industry fields to perform
automated tasks such as signal classification, regression, image
segmentation. Such frameworks are also currently used in the
medical domain to draw meaningful results from medical data:
for instance, the automated classification or segmentation of
magnetic resonance imaging (MRI), computed tomography
(CT), and X-ray images.

One fundamental class of deep neural networks, applied
mostly in analyzing visual imagery, is represented by
convolutional neural networks (CNNs). In fact, CNNs are
able to process data expressed as tensors, called feature maps, i.e.,
three-dimensional arrays. For instance, an RGB image is a 3D
tensor with two spatial axes (height and width), as well as three
depth axes (also called the channels axis). Each depth channel
accounts for a single color component: red, green, or blue.

The typical CNN architecture is structured as a series of stages.
The fundamental data structure being the layer: a data processing
module that takes one or more tensors as input and returns
one or more tensors as outputs. Most of deep learning consists
of chaining together simple layers that will implement a form
of progressive information distillation over the input data: a
succession of increasingly refined data filters are applied by going
deeper in the CNNs. These layers can either be stateless or have a
state; the weights are the state of the layers. Weights are tensors
learned with stochastic gradient descent and, collectively, they
constitute the knowledge of a neural network. CNNs are usually
constructed making use of different types of layers: convolutional
layers, pooling layers, fully connected layers, and others.

The feature extraction process takes place in both
convolutional and pooling layers, whereas the classification

process occurs in the fully connected layer. It is important to
note that the topology of a neural network defines a hypothesis
space for the target distribution, i.e., the distribution over which
the final system performance must be trained. In fact, machine
learning (hence deep learning) accomplishes the task of looking
for useful representations of some desired distribution of data,
within a predefined space of possibilities, by using a feedback
signal as search guidance, i.e., backpropagating gradients through
the CNNs. Every time a network topology is chosen, the space
of possible hypotheses is constrained in some way: specifically
a series of tensor operations are chosen to be used for mapping
input data to output data. Training a neural network means
finding a good set of values for the weight tensors involved in the
tensor operations that map inputs into outputs thus enabling a
single model (or hypothesis) for the target data distribution to
be selected.

2.4.1. Convolutional Layer
The convolutional layer is the base layer of a CNN. In a
convolutional layer, during the inference process, patches from
the layer input feature map are extracted and transformed
into output feature map (response map) by applying the same
convolution operation to each patch.

The output feature map is a 3D tensor with the width,
height, and an arbitrary number of depth channels. Every channel
in the depth axis stands for a filter and the response map
is a 2D tensor that indicates the response of the filter over
the input. Filters encode specific aspects of the input data,
i.e., features. As the activation map is obtained by performing
convolution between the filter and the input, the filter parameters
are spatially invariant. Therefore, CNNs are particularly efficient
when processing images: as the visual world translation is
invariant, only a limited amount of training data is needed to
learn representations with great generalization ability. CNNs can
also learn spatial hierarchies of patterns: the first convolutional
layer will learn small local patterns such as edges; a second
convolutional layer will learn larger patterns with features of the
first layers as building blocks, and so on.

2.4.2. Pooling Layer
Usually, a pooling layer follows a convolutional layer. The
pooling layer is applied to reduce the spatial dependency of the
computed features maps, hence to increase robustness to changes
in the position of the feature in the image and to better exploit the
resulting feature hierarchy. This is achieved by downsampling the
feature maps in order to keep them reasonable in number.

The downsampling can be performed through the use
of different techniques such as max-pooling and average
pooling. Themax-pooling operation, similarly to the convolution
operation, extracts local patches from the input feature maps and
outputs the maximum value of each channel in the original visual
patch. The average pooling, instead, outputs the average value of
each channel over the patch.Max-pooling tends to perform better
than average pooling, as the maximal presence of specific features
are more informative than their average presence.
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2.4.3. Fully Connected Layer
Fully connected layers are final layers in a CNN where each
neuron is completely connected to other neurons. These layers
are responsible for the final classification results. In a fully
connected layer, the rectified linear unit (ReLU) activation
function is commonly used:

ReLU(x) =

{

0, x < 0

x, x ≥ 0
(1)

Softmax activation function is usually utilized to predict output
images in the very last fully connected layer:

Softmax(xi) =
exi

∑m
y=1 e

xy
(2)

where xi and m represent input data and the number of classes,
respectively.

2.4.4. Hyper-Parameter Optimization
Deep-neural-network performance depends on a wide range
of hyper-parameter choices, subject to fine tuning during
the training process and include, among others, the CNN
architecture, an optimization process, and regularization (Hutter
et al., 2019).

A CNN optimization configuration involves selecting the
optimizer to be used to update the network weights through
stochastic gradient descent. The learning rate of the optimizer
defines the magnitude of the modifications to the model weights
in response to the estimated error. By applying a learning rate that
changes during training (i.e., adaptive learning rate), increased
performance and a faster convergence can often be achieved. For
instance, a learning-rate decay formula might be used to reduce
the learning rate at each iteration i (e.g., end of each mini-batch)
as follows:

learning_ratei = learning_ratei−1 ∗ (
1

1+ decay ∗ (i− 1)
) (3)

Regularization is a design principle for augmenting a primary
optimization objective (e.g., how well a learned model fits its
training data) by taking into account a secondary objective:
a penalization term with respect to those representations that
are less desirable due to less compact. In weight regularization,
for example, a cost is associated with the loss function of
the network in order to constrain the CNN weight values to
be small and the distribution of weight values to be regular.
The cost might be proportional to either the absolute value
of the weight coefficients (L1-regularization) or to the squared
value of the weight coefficients (L2-regularization). The dropout
regularization technique consists of introducing noise in the
output values of a layer by randomly setting a fraction of them to
zero, i.e., dropping them out, during the training phase. The idea
behind this is to prevent the CNN from retaining the patterns
that are less significant.

2.5. Experimented CNN Architectures
CNN architectures are crafted by stacking different types of
layers and can result in networks that have very deep structures.
We here present an overview of some of the most relevant, in
literature, existing CNN architectures that have been trained and
tested in this experimental investigation.

2.5.1. VGG19
The VGG19 CNN architecture (Simonyan and Zisserman, 2015)
was introduced in 2014, as an improvement of the well-known
VGG16. The main contribution resulted in an increased depth
of the network and by the replacement of the 11 × 11 and 5 ×

5 with small 3 × 3 convolutional filters. The network consists
of 19 layers (16 convolutional layers, 3 fully connected layers, 5
max-pooling layers and 1 Softmax layer). The default input image
size of VGG19 is 224 × 224 pixels. VGG19 showed a significant
improvement on classification tasks with respect to the ImageNet
Challenge 2014 and compared to other popular networks such as
AlexNet and GoogleNet.

2.5.2. Inception-v3
Inception CNN was introduced by Szegedy et al. (2016) at
Google in 2013–2014. This is a popular CNN architecture,
aimed at reaching performance efficiency by utilizing suitably
factorized convolutions and aggressive regularization (see
section 2.4.4). Factorized convolutions are effectively applied
in CNN convolutional layers to simultaneously perform spatial
convolution in each channel and linear projection across
channels. These and other techniques can effectively preserve the
spatial information and maintain the accuracy with significantly
less computation (Wang et al., 2017). The default input image
size of Inception-v3 is 299 × 299 pixels. The network input is
processed by several parallel convolutional branches that work
independently and whose outputs are then merged back into a
single tensor. The most basic form of an Inception module has
three to four branches that start with a 1 × 1 convolution, are
followed by a 3× 3 convolution, and end with the concatenation
of the resulting features. This structure enables the network to
learn, separately rather than jointly, spatial features and channel-
wise features. The rationale behind this approach is the fact that
each channel might be highly autocorrelated across space, but
might not be highly correlated with other channels.

2.5.3. Xception
Xception (Chollet, 2017) is a CNN architecture roughly inspired
by Inception. Xception stands for extreme Inception. In fact,
it adopts an extreme form of an Inception module: the
process of learning channel-wise features is fully separated
from that of learning spatial features. Moreover, the Xception
network substitutes Inception modules with depth wise separable
convolutions. They are depth wise convolutions (a spatial
convolution where every input channel is handled separately)
followed by a point-wise convolution (a 1 × 1 convolution).
Xception and Inception-v3 have approximately the same number
of parameters and the same default image size. However,
Xception makes a more efficient use of model parameters
with respect to Inception; therefore, it shows better runtime
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performance and higher accuracy large-scale data sets such as
on ImageNet.

2.5.4. Inception-ResNet-v2
Inception-ResNet-v2 (Szegedy et al., 2017) is a CNN architecture
that belongs to the Inception CNN family and incorporates
residual connection as a replacement of the filter concatenation
stage of the Inception architecture. A residual connection resides
in reintroducing previous representations by skipping one or
more layers (through the so-called “shortcut connections”) and
by summing by a past output tensor to a later output tensor.
This helps to prevent information loss along the data-processing
flow. The authors reported, on the one hand, a significant
improvement of the recognition performance but, on the other, a
substantial increase of the training speed compared to standard
for the Inception architectures. The default input size for this
model is 299× 299 pixels.

2.6. Data Pre-processing
All ultrasound images were read into an RGB format to
ensure that the model input shape is compatible with the used
CNN models. Images containing artifacts, such as calipers,
text, lines, and tick marks, were not considered in the current
analysis. In fact, such patterns are detrimental for accurate image
classification. Therefore, we used a simple template-matching
module to detect and discard, prior to feeding the data set
into the learning architecture, the ultrasound images that have
these structures. The remaining images were cropped to remove
uninformative data, such as dark borders and text, thus resulting
in images with a resolution that span between 546× 410 and 175
× 409 pixels. All images were then resized to the default input size
of the used neural network (224 × 224 pixels for VGG19; 299 ×
299 pixels for Inception-v3, Xception, and Inception-ResNet-v2)
and were normalized to ensure every pixel value is between −1
and 1.

2.7. Data Augmentation
In order to avoid overfitting, we applied the technique of
data augmentation (Perez and Wang, 2017) on the three-class
classification problem. Data augmentation consists of artificially
increasing the number of existing samples, by applying a
number of random transformations: this yields close-to-real
biomedical images that are likely to well represent the target data
distribution.

The performance of different affine transformations
were evaluated: flips (horizontal, vertical), angle rotations,
translational pixel shifts, regional zoom, random Gaussian noise,
and blurring by various amounts.

We found that the best performances are achieved by
using a horizontal flip and width shift range of 10%. In fact,
these transformations provide realistic lung ultrasound images.
Horizontal flip produces horizontally-mirrored images of the
lung, which might represent the occurrence of the clinical
condition displayed in the original image but in the opposite
lung. Similarly, a width shift range of 10% can represent a lung
from a slightly older patient. The images were expanded from
3,000 lung ultrasound images to 100,000 artificial images. It

should be noted that augmentation was only done for the training
data set; the validation and the testing data sets were not touched.

2.8. Experimental Setup
Keras (Chollet, 2015), a compact, high-level and easy-to-learn
Python library for deep learning, coupled with TensorFlow
backend (Abadi et al., 2016) in Python 3.7 was used to train the
deep-learning models from scratch.

Several python libraries [Qt (Nokia Corp., 2012), OpenCV
(Bradski, 2000), Sklearn (Buitinck et al., 2013)] were used for the
statistical analysis and the software implementation, including
the development of a software system that uses the learned model
for classifying images of healthy children and those with either
bronchiolitis or pneumonia.

All experiments were performed on a workstation Intelr

Xenonr CPU E5-2680 @ 2.70 GHz (2 processors) withWindows
10 operating system using GeForce RTXTM 2080 Ti GPU
graphics card.

2.9. Model Selection
In this section, we provide a brief description of the CNNs
employed for LUS images classification. All CNN models
(VGG19, Xception, Inception-v3 and Inception-ResNet-v2) were
trained from scratch with random initialization weights. The
default densely connected classifier (from ImageNet) on top of
the network, for all Keras models, were replaced with new fully-
connected layers having the correct number of output classes.

The trained neural networks share some common hyper-
parameters. More specifically, all CNNs were compiled using the
optimization method called RMSProp, a momentum (Sutskever
et al., 2013) with a decay of 0.9; and all the convolutional layers
were activated by the rectified linear unit (ReLU). In all our
experiments, we trained all the CNNs with batch sizes of 20 for
50 epochs, except for Inception-ResNet-v2 that was trained with
a batch size of 10.

As for the three-class classification problems, we performed a
hyper-parameter optimization (see section 2.4.4) with respect the
following parameters:

• the learning rate was experimentally iterated between the value
1e-3 and value 1e-7: 1e-6 was selected;

• the dropout regularization was set to 0.5 in all experiments;
• l2-regularization: the following values have been iteratively

evaluated 5e-4, 4e-5, 1e-5, 0: 0 was selected;
• exponential learning rate decay was set to either 0.94 or 0: 0

was selected.

2.10. Performance Metrics
Five criteria were used for evaluating the performances of deep-
learning models.

Accuracy = (TN + TP)/(TN + TP + FN + FP) (4)

Accuracy is the ratio of the number of true samples to the total
number of samples.

Sensitivity = TP/(TP + FN) (5)
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Sensitivity, also known as true positive rate (TPR) or recall, is
the probability that a patient with a certain condition is correctly
diagnosed.

Specificity = TN/(TN + FP) (6)

Specificity is the probability that people without a certain
diagnosis are not erroneously diagnosed as suffering from that
disease. It can however analogously be called true-negative rate.
Precision, also known as true positive accuracy (TPA), is defined
in (7):

Precision = TP/(TP + FP) (7)

Precision denotes the proportion of positive predicted values
(PPV) that are correctly real positives.

F1− Score = 2 ∗ ((Precision ∗ Recall)/(Precision+ Recall)) (8)

The F1-Score is a measure of the accuracy of a model on a data
set. This is defined as the harmonic mean of precision and recall.
TP, FP, TN, and FN given in Equations (4–8) represent the
number of true-positives, false-positives, true-negatives, and
false-negatives, respectively.

The terms positive and negative are used to refer to
the presence or absence of a condition of interest: bacterial
pneumonia, bronchiolitis, or being healthy. True-positives (TP)
are the number of examples correctly labeled as positives.
False-positives (FP) refer to the number of samples incorrectly
labeled as positive. False-positives (FP) refer to negative examples
incorrectly labeled as positive. True-negatives (TN) correspond
to negatives correctly labeled as negative. Finally, false-negatives
(FN) refer to positive examples incorrectly labeled as negative.

3. RESULTS

3.1. Experimental Results
In this paper, we performed one binary classification (healthy
vs. bronchiolitis) and one three-class classification (healthy vs.
bronchiolitis vs. bacterial pneumonia) out of three classes. The
four-fold cross-validation method was used with four state-of-
the-art deep learning models (Inception-v3, Inception-ResNet-
v2, Xception, VGG19) trained from scratch. Fifty percent of the
data is reserved for the training set, 25% of the data is allocated
to the validation set, and the remaining 25% is reserved for the
testing test. The experiments were repeated four times, until each
25%-part of the original data set was tested.

The results of all the experiments are listed in Table 1: it
shows a detailed comparison of all trained models in terms of
precision, sensitivity, F1-scores, specificity, and accuracy for each
fold; the average classification performances of the model were
also calculated.

For experiments classifying healthy vs bronchiolitis we found
that the Inception-ResNet-v2 model provided the best results
with a sensitivity of 97.75%, an accuracy of 97.75%, and a
precision of 98.25%. Inception-v3 and Xception had similar
performances. VGG19 was the worst and achieved accuracy of
only 92.25%, a sensitivity of 91%, and a precision of 91.75%.

TABLE 1 | Classification metrics.

Healthy vs. Bronchiolitis

Precision Sensitivity F1-score Specificity Accuracy

Inception-v3

Fold 1 92 91 91 100 91

Fold 2 95 95 95 95.4 95

Fold 3 99 99 99 97.2 99

Fold 4 91 89 89 79.2 89

Average 94.25 93.5 92.95 92.95 93.5

Inception-ResNet-v2

Fold 1 99 99 99 99.2 99

Fold 2 98 97 97 97.2 97

Fold 3 99 99 99 99 99

Fold 4 97 96 96 92.6 96

Average 98.25 97.75 97.75 97 97.75

Xception

Fold 1 92 91 91 100 91

Fold 2 97 97 97 100 97

Fold 3 99 99 99 100 99

Fold 4 95 94 94 94 94

Average 95.75 95.25 95.25 98.5 95.25

VGG19

Fold 1 90 89 88 89 94

Fold 2 92 92 92 95.2 92

Fold 3 96 96 96 95 96

Fold 4 89 87 87 74.8 87

Average 91.75 91 90.75 88.5 92.25

Healthy vs. Bronchiolitis vs. Bacterial Pneumonia

Precision Sensitivity F1-score Specificity Accuracy

Inception-v3

Fold 1 92 92 92 88.68 92

Fold 2 92 91 91 99.75 91

Fold 3 94 92 92 99.79 92

Fold 4 92 91 91 95.26 91

Average 92.5 91.5 91.5 95.86 91.5

Inception-ResNet-v2

Fold 1 96 96 96 98.01 96

Fold 2 90 87 87 99.69 87

Fold 3 88 82 81 100 82

Fold 4 88 82 81 100 82

Average 90.5 86.75 86.25 99.42 86.75

Xception

Fold 1 96 96 96 93.97 96

Fold 2 89 83 82 100 83

Fold 3 82 68 61 100 68

Fold 4 95 95 95 95.45 95

Average 90.5 85.5 83.5 97.35 85.5

VGG19

Fold 1 91 90 90 81.11 90

Fold 2 90 89 89 94.01 89

Fold 3 96 96 96 93.49 96

Fold 4 89 87 87 87.79 87

Average 91.5 90.5 90.5 89.1 90.5
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FIGURE 1 | Confusion matrices: healthy vs. bronchiolitis, respectively for (A) fold 1, (B) fold 2, (C) fold 3, and (D) fold 4.

FIGURE 2 | Confusion matrices: healthy vs. bacterial pneumonia vs. bronchiolitis, respectively for (A) fold 1, (B) fold 2, (C) fold 3, and (D) fold 4.

For experiments classifying healthy vs bronchiolitis vs
bacterial pneumonia, we found that the Inception-v3 model
provided the best results with a sensitivity of 91.5%, a precision
of 92.5%, and an accuracy of 91.5%.

The confusion matrices in Figures 1, 2 report the number of
TP, TN, FP, and FN results of our experiments for each fold.
We can observe that, for the comparison between healthy and
bronchiolitis, the number of false-negative predictions (FN) and
the number of false-positive predictions (FP) are very low.

In the medical context, and in particular for the diagnosis of
bronchiolitis, the minimization of false-negative predictions is
crucial because not identifying the disease could lead to treatment
delay, hence to the aggravation of symptoms, and poor medical
outcomes.

We see that for the comparison healthy vs bronchiolitis vs.
bacterial pneumonia, false-positive predictions (FP) are higher
for the groups of healthy infants and those with bronchiolitis.
This is probably due to the fact that infants show artifactual
patterns that are similar to those patterns usually observed in
pulmonary diseases.

We can notice from the matrices that there are cases in
which LUS images correctly classified in the binary classification
problem were then attributed to the incorrect class in the three-
class classification problem by the best performance model,
Inception-v3.

3.2. Statistical Results
In order to analyse statistically significant differences among ages
of the different diagnostic groups, we performed Kruskal-Wallis
H-tests. According to the result of the Kruskal-Wallis H-test, age
does not statistically differ between the group of infants with
bronchiolitis and the healthy infants (chi-squared = 0.28869, df =

1, p-value = 0.5911 > 0.05). Instead, the age of the children with
bacterial pneumonia differs significantly from the age of children
in the other two groups: healthy and bronchiolitis (chi-squared =
20.559, df = 2, p-value = 3.433e-05 < 0.05).

3.3. EXplainable Artificial Intelligence
Results
EXplainable Artificial Intelligence (XAI) is a newly emerging
discipline of AI (Doran et al., 2017) that seeks to develop a series
of ML techniques that enable non-expert audiences to better
understand and manage results obtained by artificial intelligence
(Holzinger et al., 2017). In fact, deep-learning models are usually
perceived as “black boxes,” they receive an input and learn
representations that are in general difficult to extract and to
present in a human-intelligible form. Although this concept is
partially valid for certain types of deep-learning models, this is
definitely not true for CNNs. Indeed, CNNs learn representations
of visual concepts hence are highly responsive to visualization.
We present a visualization study performed by using the best
performance model (Inception-v3) that classifies images as
belonging to three different diagnostic groups (i.e., bronchiolitis,
pneumonia, and healthy). We applied three state-of-the-art
eXplainable Artificial Intelligence approaches that are specifically
tailored for convolutional neural networks: visualization of CNN
filters, visualization of activation maps, and visualization of
gradient-weighted class activation mapping (Grad-CAM).

3.3.1. Visualizing CNN Filters
We can describe a deep network as a multistage information-
distillation operation (see section 2.4): the information goes
through successive layers, it becomes increasingly purified over
successive filtering operations and is finally more informative

Frontiers in Physiology | www.frontiersin.org 9 August 2021 | Volume 12 | Article 693448

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Magrelli et al. Lung Ultrasonography and Deep Learning

FIGURE 3 | Visualization of (A) the first 24 filters from the first convolutional layer, (B) the first 24 filters from the third convolutional layer, and (C) the first 24 filters from

the fifth convolutional layer of the best performance model (Inception-v3) on the three-class classification problem. Filters act as collections of edge detectors, detect

background, contours, and texture-like patterns.
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for the task at hand. In fact, deep convolutional models learn a
collection of filters that are increasingly refined and complex, the
deeper the layers become. Specifically, each layer in a CNN learns
a collection of filters such that their inputs can be expressed as a
combination of the filters.

Visualizing CNN filters enables us to understand precisely
which visual patterns or concepts each filter in a CNN is receptive
to, therefore it permits us to observe how CNN layers see the
world.

The filters from the first convolutional layers learned by
the best performance model (Inception-v3) for the three-class
classification problem are displayed in Figure 3. These filters
encode colors, simple directional edges and, in some cases,
colored edges that can be found in ultrasound images of lungs;
the texture-like patterns of the filters become more complex, the
deeper the layer becomes.

As a CNN is a hierarchical-modular network of convolutional
filters that are probabilistically combined together, the way

it works differs from the nature of human vision, which
is not purely convolutional and it is organized in more
sophisticated functionalities that involve motor control (Bressler,
1995). Nonetheless, colors, simple directional edges, and
texture-like patterns extracted by a deep-learning model can
provide useful insights that could help physicians diagnose
lung diseases.

3.3.2. Visualizing Intermediate Activations
Visualizing intermediate activations (i.e., intermediate output of
the activation function) consists of displaying, given a certain
input, the feature maps that are output by various convolutions
and by pooling layers in a network. Intermediate CNN outputs
enable us to visualize the result of applying individual CNN
filters to an input image, thus enabling us to visualize how an
input is decomposed into the different filters learned by the
network. In fact, feature maps are presence maps of learned
visual concepts over a picture. Given as input an ultrasound

FIGURE 4 | Visualization of the activation maps from (A) the first, (B) the third, and (C) the fourth convolutional layer of the best performance model (Inception-v3) on

the three-class classification problem, when fed with an image of a lung with bronchiolitis. Filters act as collections of edge detectors, detect background, contours,

and texture-like patterns. When going deeper in the layers, the filters enhance differently vertical artifacts and small consolidation-like patterns that are typical of

bronchiolitis.
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image of a lung with bronchiolitis, in order to gain further
insight into its performance and learned behavior, we show
some visualizations of the activations from intermediate layers

of the best performance model (Inception-v3) for the three-class
classification problem. We observe in Figure 4, that different
filters in the first convolutional layers activate distinct parts of

FIGURE 5 | Example of lung ultrasound images correctly predicted by the best performance model (Inception-v3) as bacterial pneumonia. Left: original LUS image;

middle: Grad-CAM visualization; right: the class activation mapping transparently overlaid on the original LUS image. Note that red and orange regions correspond to

high scores for the predicted class and correctly highlight diagnostic-relevant features: (A) severe consolidations with fluid bronchogram and dynamic air

bronchogram, (B) severe consolidations with fluid bronchogram and dynamic air bronchogram, complicated pleural effusions, (C) fibrinous pleural effusions with

pulmonary atelectasis.
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the ultrasound image. Some filters act as collections of edge
detectors; some other filters detect the background, and others
detect the contours and texture-like patterns. It is evident how
the activations have almost entirely preserved and split the
information present in the original image. When going deeper
in the layers, filters enhance in different ways the B-lines and
small consolidation-like patterns that are typical of bronchiolitis.
At the same time, the images become a little blurry, due to the
max-pooling operations. As more and more pooling layers are
introduced, the extracted features become increasingly abstract
the deeper the layers become: this is an important and universal
characteristic of the representations learned by deep neural
networks. As explained in section 2.4, the deep neural network
acts as an information distillation pipeline, where activations
of the higher layers carry less information about the specific
input being seen, and more information about the target (i.e., the
class being learned: bronchiolitis, pneumonia, or healthy lung),
thus helping the complete network to finally classify the image
properly but without providing us with much visual information.
The sparsity of the activations increases together with the depth
of the network: in the last layers, many feature maps are blank,
meaning that the pattern encoded by the filters is not present
in the input image. The representation learned by the filter at
this stage is much more abstract and not directly present in the
original image. This resembles human perception: after observing
a scene for a few seconds, humans remember which particular
categories of objects were present in their field of view but
cannot recall the exact appearance of those objects. Although
these visual concepts might be different from how a human
interprets images, they might be useful in helping physicians
make diagnoses.

3.3.3. Visualizing Class-Activation Mapping
This visualization technique can be used to shed light on
the reason a CNN model decides that an ultrasound image
belongs to a certain class of diagnosis. Class-activation mapping
highlights the parts of an image that are identified by means
of the learned model, thus, they show where in the picture
the features that characterize a diagnosis are located. In
our examples, the red/orange areas are considered by the
model to output the class prediction: the brighter the red
color is, the higher the probability of the predicted class of
diagnosis is.

In particular, we used the specific implementation that
is described in “Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization” (Selvaraju et al.,
2017). We produced Grad-CAM visualizations for all LUS
images belonging to the testing set and a set of corresponding
images, each showing (1) the ultrasound images used as
input to the optimal model, for the three-class classification
problem, (2) the GRAD-Cam visualization, and (3) the
overlapping of the lung ultrasound image and the class
activation mapping. Examples of resulting images are shown in
Figures 5–7.

The resulting images, together with the origin class and the
predicted class by the optimal model, were qualitatively evaluated

by a pediatrician expert in lung ultrasound. His comments are
reported in section 4.

4. DISCUSSION

4.1. Summary of Findings
To the best of our knowledge, this is the first study using deep-
learning techniques and raw lung ultrasound images (LUS) for
the purpose of diagnosing bronchiolitis and bacterial pneumonia
in children. We trained from scratch state-of-the-art deep
neural networks on a large data set - a training-set size of
2,000 LUS images for the binary classification problem. An
initial training-set size of 3,000 LUS images was expanded
with data augmentation to contain 100,000 artificially-created
images for the three-class classification problem. We carried out
comparisons with results from four different CNN networks
trained using four-fold cross-validation: VGG19, Xception,
Inception-v3, and Inception-ResNet-v2. The optimization of the
supervised classifier was performed jointly with the optimization
of the neural network.

We provide strong evidence that the automatic detection from
lung ultrasound imaging, of pulmonary diseases in children,
is a promising future research direction to be investigated. In
particular, as shown in Table 1, we obtained high performance
for the three-class classification problem involving healthy
infants and those with cases of bronchiolitis and bacterial
pneumonia: an average accuracy, sensitivity, and F1-score of
91.5%, and with precision and specificity, respectively, of 92.5
and 95.86%.

4.2. Clinical Significance
It is important to note that no hand-crafted features were
considered in our algorithm pipeline. Nonetheless, biologically
relevant features were automatically selected and extracted
from the LUS images by the optimal deep-learning model.
The Grad-CAM (see section 3.3.3), enables us to understand
which areas in an image are mostly considered by the model
to make its decision about the diagnosis. Dr. Buonsenso, a
pediatrician expert in lung ultrasound, with more than 5 years
of experience in LUS diagnosis and teaching, analyzed both
the results of the classification by the optimal deep-learning
model and the Grad-CAM visualizations. The purpose was
to evaluate whether diagnostically relevant visual features in
pulmonary diseases were highlighted by the Grad-CAM hence
taken into consideration by the optimal deep-learning model for
predicting the diagnosis. The model correctly identified almost
all the images belonging to the group of children with bacterial
pneumonia. The majority of the Grad-CAM also localized
the domain-specific features that are taken into account by
physicians when formulating a diagnosis of bacterial pneumonia:
for example, larger consolidations with air and/or liquid
bronchograms and pleural effusions, either simple (anaecogenic
fluid) or complex (with fibrinae and septae, see Figure 5).
Similarly, the model achieved high accuracy in classifying images
belonging to infants with bronchiolitis. Consistently, the Grad-
CAM detected diagnostically-relevant features (see Figure 6). In
particular, in the case of bronchiolitis, the Grad-CAM often and
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FIGURE 6 | Example of lung ultrasound images correctly predicted by the best performance model (Inception-v3) as bronchiolitis. Left: original LUS image; middle:

class activation mapping produced by the Grad-CAM visualization; right: the class activation mapping overlaid transparently on the original LUS image. Note that red

and orange regions correspond to high scores for the predicted class and correctly highlight diagnostic-relevant features: (A) irregular short vertical artifacts; (B)

irregular pleural line, subpleural consolidation > 2 cm, confluent short and long vertical artifacts; (C) irregular subpleural line, microconsolidations, short vertical

artifacts; and (D) white-lung.

suitably pointed out areas of short and long artifacts (either
isolated or confluent), pleural line irregularities (with or without
pleural effusions), large consolidations with air bronchograms,
and small subpleural consolidations. The model showed the
best performance when distinguishing larger consolidations and

vertical artifacts, especially when they were long and confluent.
Finally, the model showed great performance also in recognizing
LUS images of healthy infants, even in presence of long vertical
artifacts that might be characteristic of different conditions, see
Figure 7.
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FIGURE 7 | Examples of lung ultrasound images (A–D) from healthy infants correctly predicted by the best performance model (Inception-v3). Left: original LUS

image; middle: class activation mapping produced by the Grad-CAM visualization; right: the class activation mapping overlaid transparently on the original LUS

image. Note that red and orange regions correspond to high scores for the predicted class and correctly highlight diagnostic-relevant features: regular pleural lines;

presence of short vertical artifacts; presence of long vertical artifacts single and/or multiple, non-confluent and/or confluent, with possible uneven distribution and/or

involving multiple lung areas with a prevalence of the right and/or left hemithorax, depending on the gestational age and the current age of the patient.

4.3. Comparison With Other Studies
Few studies, for the purpose of assisting medical doctors
make their diagnoses, have been dedicated to the investigation
of lung diseases by applying deep-learning techniques to

raw LUS images. For instance, Born et al. (2021) crafted
a VGG16-based convolutional neural network pre-trained on
ImageNet and successfully performed three-class classification
problems involving cases of COVID-19 patients with bacterial
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pneumonia and healthy individuals. Following a different
approach, we did not modify the structure of the original
CNNs, except for the classifier. We also used random weights
instead of those trained on ImageNet: lung ultrasound images
are fundamentally different from those contained in the
ImageNet data set, likely characterized by features that diverge
from those identified with the use of the ImageNet data
set.

Similar deep-learning approaches were extensively validated
on CT scans and chest X-ray for COVID-19 diagnoses and were
previously applied to pediatric pulmonary diseases by using chest
X-ray images.

Ozturk et al. (2020) presented a deep neural network based
on a DarkNet model for the automatic COVID-19 detection
using chest X-ray images. They implemented 17 convolutional
layers with LeakyReLU as activation function and introduced
different filtering on each layer. The model achieved an
accuracy of 98.08% for binary classes (normal vs. COVID-19)
and 87.02% for multi-class cases (COVID-19 vs. no-findings
vs. pneumonia). In work more comparable to our study,
Narin et al. (2021) conducted experiments with three binary
classification problems by using transfer learning on five pre-
trained convolutional neural-network-based models (ResNet-50,
ResNet-101, ResNet-152, Inception-v3, and Inception-ResNet-
v2), and they tested their performance with five-fold cross-
validation. They found that the pre-trained ResNet-50 model
provides the highest classification performance (96.1% accuracy
for normal vs. COVID-19, 99.5% accuracy for COVID-19
vs. viral pneumonia, and 99.7% accuracy for COVID-19 vs.
bacterial pneumonia).

In the field of pediatric pulmonary imaging, an interesting
study by Liang and Zheng (2020) proposed a deep-learning
network that combines residual structures and dilated
convolution with the purpose of diagnosing pneumonia by
using raw chest X-ray images from children from 1 to 5 years
of age. Their data set involved a total of 6,090 chest X-ray
images, 4,117 images from children with pneumonia, and 1,973
images from healthy infants. Their method obtained an accuracy
of 90%, a recall rate of 96.7%, and the F1-score of 92.7% on
pneumonia classification tasks. A similar approach, developed
by Saraiva. et al. (2019), obtained an average accuracy of over
95% on a binary classification problem for detecting pneumonia
cases from chest X-ray images. Our results are competitive
when compared to those obtained by using both X-ray and LUS
imaging modalities, both in pediatric studies regarding cases of
pneumonia (Liang and Zheng, 2020) and in recent investigations
involving patients with different kinds of pneumonia (i.e.,
COVID-19 and bacterial pneumonia). In fact, our Inception-
ResNet-v2 model achieves 97.75% accuracy, 97.75% sensitivity,
and 97% specificity for healthy vs. bronchiolitis, whereas
the Inception-v3 model provides the best results with 91.5%
accuracy, 91.5% sensitivity, and 95.86% specificity for healthy vs.
bronchiolitis vs. bacterial pneumonia.

Interestingly, a study from Correa et al. (2018) examined
brightness profiles of pleural lines in children younger than 5
years of age; they were associated with three possible diagnoses:
pneumonia, healthy, and bone. The authors used a feed-forward

neural network composed of three layers and sigmoid as an
activation function. Their approach achieves a sensitivity of
90.9% and a specificity of 100% in detecting vectors associated
with pneumonia consolidation. The results of their study support
our findings that filters of the first convolutional layers learned
by the optimal model respond mainly to color features (see
section 3.3.1), with brightness being expressible as a linear
combination of RGB color components. Furthermore, when
inspecting the convolutional filters (Figure 3), and activation
maps (Figure 4) of the first convolutional layers, we can see
that they also responded to edges and texture-like patterns (see
sections 3.3.1 and 3.3.2). This observation, when considered
together with the fact that the Grad-CAM highlights areas of
medical interest, suggests that, when taking its decision over the
classification outcome, the network looks predominantly at those
specific patterns.

A fair amount of research is devoted to the use of deep-
learning approaches for analysing LUS images by focusing on
training deep neural networks on isolated, hand-crafted features
that are considered diagnostically valid, i.e., A-lines, vertical
artifacts, pleural lines (Carrer et al., 2020), pleural effusions, and
also consolidations, with vertical artifact (i.e., B-lines) detection
the most common task (Kulhare et al., 2018; Wang et al., 2019;
van Sloun and Demi, 2020). See McDermott et al. (2021), for
a review. Conversely, we opted for applying deep neural
networks to raw images, because this usually permits avoiding
the introduction of typical errors caused by inaccurate results
of image pre-processing steps (e.g., image segmentation and
decomposition) and cognitive biases or confidence in spatial
relationships between pixels and could lead to the discovery of
unexpected associations that would remain otherwise undetected
(Poplin et al., 2018). Furthermore, feeding the deep neural
network with raw images enables us to take better advantage
of deep-learning potential: (1) the automatic detection of the
appropriate predictive visual features from the training data
enables the feature extraction without requiring features to
be hand-engineered; (2) feature interaction and hierarchy can
be exploited jointly within the intrinsic deep architecture of
a neural network; (3) the three steps of feature selection,
feature extraction and supervised classification, can be realized
within the optimization of the same deep architecture, and the
performance can be tuned more easily in a systematic fashion.
As a result, the models achieved very high performances in
both classification tasks. We can also observe that the optimal
model appears to be able to distinguish the specific appearance
of visual features (such as B-lines, consolidations etc.) in different
diagnoses, rather than merely being able to look for the presence
or absence of them. In fact, growing evidence indicates that
artifacts can have a different semeiotic, according to each disease
(Soldati et al., 2016, 2019).

4.4. Limitations
Although our data set contains a large number of images, it
suffers from a limitation due to the relatively small number of
individuals, particularly children with pneumonia. It is important
to observe that only two out of three groups of children were
matched by age: healthy infants (age: 2.83 ± 2.89 months) and
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FIGURE 8 | Example of lung ultrasound image of a healthy lung incorrectly classified as bronchiolitis by the best performance model (Inception-v3). (Left) Original

LUS image; (Middle) Class activation mapping produced by the Grad-CAM visualization; (Right) The class activation mapping overlaid transparently on the original

LUS image. Note that red and orange regions correspond to high scores for the predicted class and highlight multiple, confluent long vertical artifacts. These visual

features are typical of bronchiolitis but can also be observed in very young healthy infants (∼ 6 months of life). Therefore, the optimal model “mistake” results in the

recognition of multiple long vertical artifacts.

infants with bronchiolitis (age: 2.50 ± 2.67 months). The age
of children suffering from bacterial pneumonia (age: 6.17 ±

6.77 years) is statistically different from that of the subjects in
the other two groups. The patient populations of our study
reflect real-life clinical situations, i.e., bronchiolitis tends to
affect younger infants with respect to bacterial pneumonia.
Although the obtained results are promising, they might not
be generalizable to patients of all ages. The main features
of lung pathology (e.g., consolidations, pleural effusions, and
bronchograms) were demonstrated to be the same across all
age groups, from newborns to adults, the only exception being
vertical artifacts. Although vertical artifacts are traditionally
considered as a sign of interstitial disease, rather than one of a
healthy lung, they can be morphologically different in a healthy
lung, in a pathological lung and in the case of diverse diseases
(Soldati et al., 2016, 2019). For instance, we recently showed
that the healthy younger infants (∼6 months of life) can have
a lung ultrasound pattern characterized by multiple vertical
lung artifacts (Buonsenso et al., 2020d). This is probably due
to the immature development of the lung in the first months
of life. In line with these results, our models, misinterpreted
some cases of healthy infants, whose images were characterized
by the presence of multiple, often confluent, vertical artifacts
(see Figure 8, for an example), such as with bronchiolitis. In a
real-life scenario the “age-effect” should have no impact on the
interpretation of LUS features. However, from a methodological
point of view, further studies should address this issue and,
in order to achieve better classification performance, should
therefore focus on training deep neural networks, by using
more diverse examples of LUS images that contain vertical
artifacts from both healthy infants and patients with interstitial
disease. In fact, the correct diagnosis of bronchiolitis and,
in particular, the possibility of making a distinction between
acute bronchiolitis and pneumonia are crucial in young infants
because this age group bears the highest global mortality rate
for both bronchiolitis and pneumonia. As these two conditions
require different management (antibiotics are needed only in case
of pneumonia), the differentiation of these two conditions by

point-of-care lung ultrasound, particularly in poor settings, could
be particularly relevant from a global health perspective.

Another limitation of our study is certainly related to data
acquisition.We did not set up a standard procedure for obtaining
images from the ultrasound probe, i.e., zoom, gain, mechanical
index, and focus positioning were perhaps not always the same
in every patient. When those images were either oversaturated
or extremely dark, the model made a few objective mistakes
by misinterpreting some images of healthy lungs as images
that displayed lungs with bacterial pneumonia (Figure 9): input
perturbations might have been confused with consolidations by
the model. The ability to set the proper settings depends on the
experience of the sonographer, and different settings can lead to
different lung ultrasound patterns, even when scanning the very
same areas. Establishing standard settings is probably one of the
main challenges of using lung ultrasound imaging. Only recently,
and much later with respect to the time of our data acquisition,
researchers of the Italian Academy of Thoracic Ultrasound
proposed a standardization with respect to the use of LUS in
the management of COVID-19 patients by specifying imaging
and device settings, among the other procedures, with the aim
of reaching a more globally unified approach for comparisons
between different human- and computer-aided studies; hence
a better understanding of the role of LUS in the diagnosis of
COVID-19 (Soldati et al., 2020).

4.5. Applications and Future Directions
At present, we have implemented a simple decision support
tool (computer aided diagnosis system or CADx) that can assist
medical doctors in formulating their diagnoses: given as input a
sequence of LUS images, our system is able to suggest a diagnosis
on the basis of the majority of the CNN classification votes
obtained over all images belonging to a patient. The diagnosis
spans over the three above-mentioned diagnostic groups: healthy
subjects and patients with bacterial pneumonia or bronchiolitis.
The final decision of the diagnosis is eventually taken by the
medical personnel, with the help of the Grad-CAM that is
displayed for each LUS image belonging to a specific patient.
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FIGURE 9 | Example of lung ultrasound image of a healthy lung incorrectly classified as bacterial pneumonia by the best performance model (Inception-v3). (Left)

Original LUS image; (Middle) Class activation mapping produced by the Grad-CAM visualization; (Right) The class activation mapping overlaid transparently on the

original LUS image. Note that red and orange regions corresponds to high scores for the predicted class and highlight what might be confused with consolidations,

being the image really dark. This mistake helps us to better understand how the training set should be balanced with a more comprehensive inclusion of the different

visual features.

The explainable method gives quantitative feedback (in terms
of probability) on the rationale behind the decision taken by
the model hence might also be useful for instructional purposes
(Muse and Topol, 2020).

When validated adequately, the method we propose could
help to simplify and accelerate the diagnosis of pulmonary
diseases, and if extended, in the future, might enable the
differentiation among different types of bacterial and viral
pneumonia (including COVID-19). Considering the fact that
deep learning usually performs better when the available data
points represent well the distribution at end, our future works
will be to collect ultrasound image sets that are greater and
better balanced, with respect to age groups, ethnicity and device
settings, despite the fact that methodical data collection is time-
consuming and challenging due to the paucity of data. Particular
attention could be given to the anomaly detection problem
(Chandola et al., 2009). In most classification tasks the presence
of one or more negative (alien or abnormal) classes constitutes a
challenge, especially considering the lack of data of these classes
and the openness of the problem. A typical solution to overcome
this problem is to use supervised anomaly detection thus build a
predictive model for normal vs. anomaly classes that might then

contain data belonging to other illnesses not contemplated by
the actual classification. Different techniques have been used to

address the anomaly detection problem and could be adopted
in future works: generative adversarial networks for anomaly

detection (Schlegl et al., 2019) and the methods based on one

class classification (Ruff et al., 2018). Many other approaches
could be investigated to refine our results: careful choices for the

topology of a neural network, extensive use of transfer learning

in compatible domains, exploring other deep-learning methods,
for example, with the objective of emphasizing robustness and
explainability (Roberts and Tsiligkaridis, 2020). Additionally,
our approach might be combined with the classification of
disease severity (Supino et al., 2019) or with LUS image quality
assessment module (Baum et al., 2021).

5. CONCLUSIONS

In conclusion, our study represents a first step for the
development of a CADx system that is able to assess and
classify pediatric LUS images as belonging to different pulmonary
diseases. When extensively validated, such a system could reduce
the daily burden of clinicians, could assist them in making
more accurate diagnoses, and could enable better comparisons
of images obtained during follow-up. Moreover, CADx systems
could provide a second opinion to expert radiologists and
remote training assistance, which could be particularly useful
in remote geographic areas with a limited availability of
diagnostic tools.
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