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Abstract: Whole genome sequencing (WGS) is rapidly approaching widespread clinical 

application. Technology advancements over the past decade, since the first human genome 

was decoded, have made it feasible to use WGS for clinical care. Future advancements will 

likely drive down the price to the point wherein WGS is routinely available for care. 

However, were this to happen today, most of the genetic information available to guide 

clinical care would go unused due to the complexity of genetics, limited physician 

proficiency in genetics, and lack of genetics professionals in the clinical workforce. 

Furthermore, these limitations are unlikely to change in the future. As such, the use of clinical 

decision support (CDS) to guide genome-guided clinical decision-making is imperative. In this 

manuscript, we describe the barriers to widespread clinical application of WGS information, 

describe how CDS can be an important tool for overcoming these barriers, and provide clinical 

examples of how genome-enabled CDS can be used in the clinical setting.  
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1. Introduction 

Whole genome sequencing (WGS) is on the cusp of revolutionizing medicine. In the decade since 

the completion of the Human Genome Project, advancements in sequencing technology have made it 

feasible to sequence a patient‘s entire genome for clinical uses [1,2]. Indeed, many patients have 

already had their genome sequenced for direct clinical application to date [3–6]. While most of these 

cases have been for rare, undiagnosed diseases, or in the context of clinical research, it will not be long 

before WGS information is available for routine medical care on a widespread scale. This will further 

enable the practice of personalized medicine, which has the potential to reduce costs and improve the 

quality of care [7,8]. 

The WGS information can be used to support clinical diagnosis, direct preventative efforts, and 

guide therapeutic decisions in the clinic. Indeed, the clinical use of WGS information may hold several 

advantages over current genetic testing practices:  

 There are nearly 3,000 diseases for which individual genetic tests are available [9]. As 

clinicians pursue a clinical diagnosis today, they sometimes must order several single gene tests 

until a particular diagnosis is either confirmed or rejected. This process may take a significant 

amount of time and money as individual genetic tests can cost anywhere between hundreds to 

thousands of dollars. However, with the ability of WGS to ascertain the results for thousands of 

available genetic tests at once, it may become financially beneficial and more efficient for 

clinicians and payers to recommend WGS in lieu of single gene tests, as the diagnostic odyssey 

and associated costs could be reduced [10]. 

 Genetic tests are often ordered today as a result of a clinical indication; examples of clinical 

indications include particular phenotypes, family history, or preliminary diagnosis [11]. This 

approach is also reinforced by some health insurance providers who require clinical indication 

and prior authorization in order for certain genetic tests to be reimbursed [12]. However, such 

an approach can hinder the effective use of genetic information for decision-making, 

particularly for preemptive and preventative care where clear clinical indications may not always 

be present [13]. Indeed, if a clinical indication is not present at the time of assessment or 

clinicians are unaware that a particular genetic test is available, they may miss an opportunity 

to order the genetic test at a time that can add value to a clinical scenario. Nevertheless, with a 

patient‘s WGS information available and readily accessible throughout a patient‘s life,  

genetic information can be leveraged for preemptive and preventative care to a larger extent than 

it is currently. 

As WGS is not widely used in the clinical setting at this point, these examples represent theoretical 

advantages over current genetic testing practices. Until clinical and outcomes research studies on WGS 

can confirm or reject the validity of these scenarios, these examples will continue to remain theoretical. 

Nevertheless, to be most effective, WGS will almost certainly require the effective use of clinical 

decision support (CDS) integrated into the clinical workflow. However, a systematic review by the 

authors on the use of CDS for genetically-guided personalized medicine found a significant lack of 

system descriptions or research studies on the use of CDS to support the clinical use of WGS 

information [14]. A number of studies identified in the systematic review, as well as several recent 
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papers and research efforts have described CDS systems that integrate genetics information with CDS. 

However, these solutions are generally limited in scope with regards to the genetic information used 

(generally not necessarily WGS), are not integrated within the electronic health record (EHR), or are 

implemented using CDS approaches that are difficult to scale [15–18]. Indeed, research on CDS 

solutions for WGS information in particular is still very nascent [18]. While some principles from 

these efforts can be translated to scalable WGS CDS approaches, additional capabilities will be 

necessary for the consistent and widespread adoption of CDS capabilities for WGS information [19]. 

Thus, in order to help establish a foundation for future research and development of scalable CDS for 

WGS information, this manuscript makes the case for CDS for the WGS. To begin making this case, 

we start by outlining the many barriers to the effective clinical application of WGS information. 

2. Barriers to Effective Clinical Application of WGS Information 

Significant barriers exist for the effective and efficient application of WGS information in routine 

clinical care. These barriers, which will each be described in further detail, include current laboratory 

reporting methods, the complexity of genetics, the limited physician proficiency in genetics, and the 

lack of genetics experts. While these barriers have contributed to the slow and inconsistent clinical 

adoption of genetics [20], we believe that the increased clinical demands as a result of WGS 

information will make these problems worse. 

2.1. Static Laboratory Reports Intended for Human Consumption 

Typically, genome sequencing, annotation, and variant classification are performed in Clinical 

Laboratory Improvement Amendments (CLIA)-approved diagnostic laboratories. If these laboratories 

follow current standard workflow [21], they will send a static test report by mail, fax, or PDF to the 

treating clinician. While this workflow has met the needs of current pathology and many genetic tests 

to date, there are several shortcomings to this approach for WGS information. First, there are roughly 

three million variants (i.e., mutations) per human genome, and this number is too large to be managed 

on a single static report. Second, as the genome variant knowledge base continues to grow and change, 

the need to reclassify variants and notify treating clinicians will become necessary. It is recommended 

that laboratories take responsibility for updating clinicians to changes in variant interpretation [22]; 

however, this represents a significant, uncompensated workload upon the laboratory if managed 

manually. For instance, every individual has hundreds of thousands of variants of unknown 

significance (VUS), which are variants yet to be associated with a phenotype or ruled out as benign [5]. 

Over a seven year period, one study found that 14.5% of reported variants had to be reclassified,  

27% of which were initially VUS [23]. Third, a static genome report document does not support the 

automatic provision of CDS at the point of care. Ideally, data should be represented in a discrete, 

standardized, and digital form accessible to computer interpretation. This is not the case in static 

laboratory reports. As a result, current laboratory reports require a clinician to manually assess and 

interpret the reports. At the scale of WGS information, such an approach will likely render most of the 

information ineffective due to massive information overload [24].  
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2.2. Complexity of Genetics 

Genetics research has brought to light the tremendous complexity of genomic interactions on 

phenotypes [25]. Within a gene, there can be variants such as point mutations, deletions, insertions, 

tandem repeats, and splice site mutations, which can all affect the protein product and associated 

phenotypes. There can be hundreds of possible variants within a specific gene or pathway of genes that 

contribute to a particular disease etiology. Furthermore, as mentioned previously, not all variants are 

known to be pathogenic; some are benign while others are VUS [26]. Additionally, gene variants 

cannot be interpreted in isolation; gene regulatory regions, post-transcriptional modification, 

transcriptional expression, copy number variations, epistasis, pleiotropy, gene-environment interactions, 

and other epigenetic influences are additional factors that can modify and impact phenotypes [27]. 

Relying on a clinician to know all possible genes, variations, and interactions for a particular disease 

and then to apply that information appropriately at the point of care without assistance is a futile 

proposition. This is particularly important for common diseases such as heart disease, diabetes, and 

cancer, which may involve tens to hundreds of contributing genetic, epigenetic, and environmental 

influences [28]. The interpretation of genetics in the clinic is a complicated endeavor involving 

numerous genomic interactions and associations which must all be managed accurately for appropriate 

clinical interpretation. 

2.3. Limited Physician Proficiency in Genetics 

As stated earlier, there are nearly 3,000 diseases for which an individual genetic test is available [9]. 

It is beyond the capacity of any human to know and manage all known genetic tests, pertinent genetic 

contributions, disease-causing variants, and relevant family history associations without computerized 

support [24,29]. To illustrate, there are almost 1,200 known variants within the adenomatous polyposis 

coli (APC) gene, which is associated with a rare, inherited form of colon cancer [30]. Similarly, almost 

2,000 variants in the CFTR gene are associated with cystic fibrosis [31]. It is impossible for a clinician 

to know all possible variants and related variant classifications within a single gene, let alone every 

variant in the approximately 20,000 genes in the entire human genome. Moreover, genetics is a rapidly 

growing and evolving field of research; clinicians today do not have the capacity to stay up to date on 

the current and ever expanding genetics knowledge base [32]. It has been found that it can take 15 or 

more years for ―traditional‖ medical discoveries to be translated from bench to bedside [33]. Due to the 

exceeding complexity and breadth of genomics, we expect genetics discoveries to take significantly 

longer to translate to clinical care with much lower success without additional support. 

Furthermore, most clinicians received little to no formal training on the application of genetics to 

clinical practice [34–36]. Any training they may have received was likely relatively basic, primarily 

focused on monogenetic diseases with simple inheritance patterns [37,38]. The training required to 

analyze the complexities of genomics is beyond the scope of most medical school curricula, which are 

already burdened with numerous competing demands [39]. Accordingly, physicians rate their 

knowledge of genetics as ‗fair to poor‘ [40,41], with a number of studies confirming their poor 

knowledge and clinical interpretation of genetics [42,43]. Even education programs specifically 

designed to teach genetics to clinicians only produce modest results, with substantial gaps in clinician 
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knowledge on how to appropriately apply genetics at the point of care [43,44]. Expecting clinicians to 

properly manage a patient‘s WGS information on their own, even after targeted education, is a 

daunting proposition. 

2.4. Lack of Genetics Professionals 

In recent decades, medical genetics and genetic counseling are two specialties that have arisen to 

provide in-depth knowledge and to help manage the complexity of clinical genetics. Medical 

geneticists are physicians trained to evaluate patients and assess and manage the genetic contribution 

to diseases [45]. Genetic counselors are masters-level health professionals who work with physicians 

to help assess genetic risk and communicate genetic information, such as test results, to patients and 

their families [46]. While these specialties attempt to fill the need, there are only 1,200 medical 

geneticists and 3,000 certified genetic counselors who are unequally and insufficiently distributed 

across the United States today [47,48]. Today, a genetic professional typically spends seven hours 

preparing for and meeting with new patients [49]. With only one medical geneticist per 262,000 U.S. 

citizens and one genetic counselor per 105,000 U.S. citizens, each genetic professional would have to 

work for over 239 years if every person in the U.S. had their genome sequenced today [50]. The 

insufficient supply of genetics experts is unlikely to change in the foreseeable future, as aspiring 

clinicians are not entering the genetics profession at the rate needed for growth [51]. Furthermore, with 

the potential for genetics to impact so many clinical decisions [52], and the labor intensive nature of 

genetic interpretation and counseling [49], it will be inadequate, inefficient, and cost-prohibitive to 

have a genetics professional available every time genetic information is used at the point of care [53]. 

3. CDS as a Solution 

Clearly, significant barriers exist which will hinder the effective and efficient application of 

genetics at the point of care. Nevertheless, a number of thought leaders and researchers have 

recognized this problem and have identified EHRs incorporating CDS as a practicable solution to help 

clinicians manage the complexities of genetics at the point of care [53–57]. CDS entails providing 

clinicians, patients, and other healthcare stakeholders with pertinent knowledge and/or person-specific 

information, intelligently filtered or presented at appropriate times, to enhance health and healthcare [58]. 

Examples of CDS include medication dosing support, order facilitators, point of care alerts and 

reminders, relevant information display, expert systems, and workflow support [59]. Research on CDS 

has been conducted for decades and is a proven solution for assisting clinicians in providing 

appropriate care and reducing errors in many clinical use cases [60–63]. Furthermore, CDS has the 

ability to translate knowledge from bench to bedside much more efficiently than traditional methods [54]. 

As a result of this success, the Office of the National Coordinator for Health IT (ONC) has announced 

that CDS will be a key component of proposed Meaningful Use Stage 3 criteria, which are expected to 

be proposed in 2014 [64]. 
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3.1. Overcoming WGS Barriers 

CDS has been identified as a potential solution for supporting WGS information in the clinic 

because of its ability to overcome many of the barriers to effective use of WGS information described 

above. CDS has the capacity to process complex, disparate clinical data and present actionable, 

evidence-based recommendations in a way that is usable by a clinician at the point of care [63]. This 

capability will be essential for CDS for WGS information because certain clinical use cases may 

require the combination of several genetic loci as well as the patient‘s health history, family history, 

and environmental influences to develop accurate clinical assessments and recommendations. Furthermore, 

CDS is able to automate the application of complex decision logic and provide clinically actionable 

information to the treating clinician. As such, CDS allows clinicians to focus on caring for patients 

rather than interpreting complex WGS information, for which they are not traditionally trained to do. 

Likewise, CDS that provides clear, clinically actionable recommendations derived from WGS 

information will allow clinicians, even those with minimal training in genetics, to harness WGS 

information and improve the care of their patients. Moreover, when widespread use of WGS has 

outpaced the capacity of available genetics professionals, CDS will be able to meet such demands on a 

widespread scale [19]. This is not to say that genetic professionals will be replaced by CDS, but rather 

that CDS can manage the common, routine applications of WGS information while allowing genetics 

professionals to focus their expertise and effort on novel clinical applications of WGS information. 

3.2. CDS Best Practices 

While CDS offers a potential solution to overcome the clinical barriers to WGS adoptions, it is 

important to consider that not all CDS interventions are successful. Indeed, a systematic review 

showed that CDS interventions only improved clinical performance about two-thirds of the time [65]. 

Through practical experience and systematic reviews, researchers have identified important features 

that contribute to a CDS system being effective. Bates et al. summarized their experiences 

implementing CDS with ‗Ten Commandments for Effective Clinical Decision Support,‘ summarized 

in Table 1 [66]. Kawamoto et al. found that computer-generated CDS interventions which are provided 

automatically during clinical workflow, at the time and location of care, and as care recommendations 

rather than assessments, are successful more than 90% of the time. This same study found that if any 

of those key factors were missing, the CDS intervention was successful less than 50% of the time [67]. 

When developing CDS for WGS, it will be necessary to adhere to these best practices so that the 

developed CDS solutions have the greatest chance of being successful. Indeed, if such features are not 

incorporated into CDS interventions for WGS, it will run the risk of failing simply because basic best 

practices for CDS implementations are not adhered to. 

3.3. CDS for WGS 

CDS for WGS will need to integrate into the clinical workflow and seamlessly provide support at 

the location and time of decision making, in a manner consistent with best practices. Ideally, CDS 

would be provided automatically at the time of care within the workflow of the clinician‘s EHR or 

other primary health information systems, such as computerized provider order entry (CPOE) systems. 
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Indeed, clinicians should not be required to use a separate CDS application for WGS information nor 

even have to initiate the CDS within their primary clinical information system [68]. Moreover, the 

automatic CDS recommendations could be provided in such a way that the clinician end user would 

not even need to know that WGS information was being used to generate the recommendation. 

Preferably, CDS capabilities developed for WGS would not be separate from non-WGS CDS. Rather, 

WGS information should just be another source of information available for CDS. 

Table 1. Ten Commandments for effective clinical decision support by Bates et al. [66]. 

1. Speed is Everything 

2. Anticipate Needs and Deliver in Real Time 

3. Fit into the User‘s Workflow 

4. Little Things Can Make a Big Difference 

5. Recognize that Physicians Will Strongly Resist Stopping 

6. Changing Direction is Easier than Stopping 

7. Simple Interventions Work Best 

8. Ask for Additional Information Only When You Really Need It 

9. Monitor Impact, Get Feedback, and Respond 

10. Manage and Maintain Your Knowledge-based Systems 

4. Potential Clinical Applications of CDS for WGS Information 

Genetic information can have many applications in health care. Here, to further make the case for 

CDS for WGS information, we describe several clinical use cases in which genomic information can 

be used to guide care. In each example, we propose how automatic CDS leveraging WGS information 

might be integrated within the clinical workflow. While this is not a comprehensive list, it illustrates 

various examples of genome-enabled CDS applications at the point of care. 

4.1. Clinical Diagnosis 

Genetic testing is traditionally used to confirm or rule out a diagnosis during the differential 

diagnosis process [69]. Often, however, clinicians may not know a relevant genetic test is available to 

support their decision making process. Indeed, some patients often wait months to years to receive an 

accurate diagnosis, even after seeing several specialists [70]. With a patient‘s WGS information readily 

available, an accurate diagnosis can be reached faster [71,72]. However, for this to happen, it is 

important to make relevant genetic information easily accessible and reviewable to clinicians at the 

point of care. While working up a diagnosis, a clinician may not know or be aware of all known genes 

associated with particular symptoms. At the very least, clinicians should have a simple list of genes 

containing known pathogenic or likely-pathogenic variants, disease names, and associated phenotypes 

which the clinician can refer to during the differential diagnosis process. Based upon our current 

understanding of the human genome, the list of clinically relevant variants will be relatively short 

(hundreds) [73]. Thus, clinicians could review this information and match it to the patient‘s 

phenotypes; the list should also have the option to view genes containing VUS. Furthermore,  

disease-causing variants could be automatically added to the EHR‘s problem list. 
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Medical geneticists often search a genetics knowledge base like Online Mendelian Inheritance in 

Man (OMIM) using phenotypes to identify potentially disease-causing genes for which they could 

order a genetic test to assess the genotype [74]. Ideally, with the patient‘s genome readily available, 

CDS capabilities integrated with the EHR could automatically perform an ‗OMIM-like‘ search on the 

patient‘s genome for candidate gene variants based on phenotypes documented in the EHR. For 

example, for a child presenting at a pediatric clinic with deafness and heterochromia, which is recorded 

in the EHR problem list, a CDS system could automatically search the patient‘s genome (assuming it is 

already available) for potential pathogenic variants in genes associated with the presented phenotypes. 

In this case, if a pathogenic mutation was identified in the patient‘s PAX3 gene, a recommendation can 

be provided to add Waardenburg Syndrome, a rare genetic disorder, to the problem list [75]. 

Furthermore, the CDS system could generate a referral to a clinical expert specializing in hereditary 

deafness who is also covered by the patient‘s insurance. While these capabilities could be available in 

stand-alone genome management products, to be clinically effective they must be integrated within the 

EHR and clinical workflow. 

4.2. Disease Risk Assessment 

Diseases can be associated with a number of risk factors. Thus, using genetic testing to estimate 

disease risk is an important aspect of predictive medicine. A gene variant‘s influence on disease can 

range from a slight increase in disease risk to a certainty of future disease onset. With genetic 

information available, the risk for certain diseases can be deduced, which can then lead to preventative 

and risk-reducing actions for the patient. To illustrate, women with mutations in the BRCA1 or BRCA2 

genes have a 50%–80% chance of developing breast cancer in their lifetimes [76]. Knowing this 

information beforehand can allow women to take risk-reducing actions such as increased screening and 

prophylactic mastectomy. Unfortunately, as a result of the shortcomings of single gene tests [13], it is 

estimated that only 5% of women with BRCA mutations have been identified with genetic testing [77]. 

With WGS information readily available, a genome-enabled CDS system could systematically 

assess the patient‘s WGS and clinical information and provide disease risk estimations and risk-reducing 

recommendations. Such a capability would alleviate the need for clinicians to estimate disease risk on 

their own. For example, the presence of a pathogenic variant in the BRCA1 gene (or other genes 

associated with breast cancer) in a pre-menopausal woman not desiring to have a prophylactic 

mastectomy could trigger a CDS system to pre-populate an order for more frequent mammograms and 

to prescribe a selective estrogen receptor modulator, such as tamoxifen. Also, as described above, 

elevated risk for a disease could automatically be populated on the EHRs problem list. There are a 

number of stand-alone CDS solutions that provide risk assessment and recommendations for BRCA 

gene mutations [78,79]. However, an ideal scenario would be for such solutions to automatically 

leverage WGS information and be tightly integrated with the EHR so recommendations are provided 

within the clinical workflow. 

4.3. Reproductive Carrier Screening 

Related to one‘s own disease risk assessment is reproductive carrier screening. Hundreds of 

congenital disorders are caused by the inheritance of gene variants by one or both parents. Carrier 
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screening is a genetic test that can identify the presence of a disease-causing genetic variant in one or 

both parents. With this knowledge, it is possible to estimate the risk of having a child affected with a 

genetic disease, allowing parents to make more informed reproductive decisions. For example, cystic 

fibrosis is a recessive newborn genetic disorder affecting one in 3,500 births in the U.S. [80]. If both 

parents are discovered to be carriers for CFTR mutations, they can opt for adoption or preimplantation 

genetic diagnosis to reduce their chances of having a child affected with cystic fibrosis. 

Again, CDS could provide support by automatically assessing the patient‘s genome to assess their 

genetic carrier status, and referring the patient to a reproductive specialist or genetic counselor if he or 

she is considering reproduction. Of note, with autosomal recessive genetic diseases, one parent‘s 

genome is typically only ‗half the equation‘; both parental genomes are required to accurately predict 

disease risks. One could therefore envision an inheritance risk assessment CDS application within the 

EHR that is able to access both parental genomes and provide recommendations only when a risk of 

having an affected child is present. Similar features are available from commercial laboratory prenatal 

genetic testing companies such as Counsyl [81]. However, with WGS information readily available for 

point-of-care CDS, such capabilities could be managed directly by CDS and results presented within 

the EHR, without the need for another genetic test. 

4.4. Pharmacogenomics 

After a diagnosis has been made, genomic information can be used to guide appropriate therapy and 

accurate drug dosing. A commonly used example for pharmacogenomics is the use of the 

anticoagulant warfarin (Coumadin) to prevent thrombosis. Warfarin is metabolized by enzymes 

derived from the VKORC1 and CYP2C9 genes [82]. Variants in these genes can cause patients to be 

rapid metabolizers of the drug, thereby causing standard dosing regimens to be ineffective. 

Alternatively, variants can cause patients to be slow metabolizers of the drug, resulting in the drug 

persisting in the blood longer than expected and accumulating to toxic levels when standard 

therapeutic doses are administered. By assessing for such gene variants prior to drug therapy, the 

clinician can reach an optimal therapeutic dose faster while also avoiding adverse events or ineffective 

treatment regimens, saving lives and unnecessary costs. 

Already widely deployed within clinical workflows are drug-drug, drug-allergy, and drug-condition 

interaction checking within CPOE systems to prevent adverse drug events. These existing CDS 

capabilities could potentially be extended with WGS information to support drug-gene interaction 

checking. When a drug like warfarin is prescribed, in addition to checking patient-specific information 

such as age, weight, and other medications, the CDS rule could also automatically assess the patient‘s 

genome for variants in related genes, such as VKORC1 and CYP2C9, and alert the ordering clinician to 

any potential complications. Ideally, such a CDS system will not just check for adverse interactions but 

also provide an optimized drug dose recommendation to the prescribing clinician based on available 

genetic information and pertinent clinical information [83]. For CDS to be most effective in guiding 

pharmacogenomics, it needs to be provided within the workflow of the clinician, ideally at the point of 

order entry. It cannot be expected that a clinician will manually review a patient‘s genome for relevant 

genes variants and then use a stand-alone CDS application, like www.WarfarinDosing.org, every time 

a drug is prescribed [84]. Some EHR-integrated pharmacogenomics CDS capabilities have been 
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implemented and investigated by researchers at Vanderbilt and St. Jude Children‘s Hospital [17,85].  

A future step in this research would be to enable the CDS to leverage WGS information and to use 

CDS capabilities that can be scaled to other institutions. 

4.5. Nutritional Genomics 

The same enzymes that are involved with drug metabolism are also involved in nutrient 

metabolism. In fact, these enzymes originally evolved for diet; it is only recently in our evolutionary 

history that clinical medicine has leveraged these enzymes for therapeutics. As such, like 

pharmacogenomics, nutritional considerations can be personalized based on genetics information. 

Given that nutrition impacts health, it is essential that clinicians manage nutritional variability caused 

by genetics. For example, choline, an essential nutrient, is known to be affected by a common variant 

in the MTHFD1 gene [86]. People with this variant, particularly pregnant women, need to eat foods 

rich in choline to avoid adverse consequences of choline deficiency such as neural tube defects in 

unborn fetuses [87]. Like previous examples, genome-enabled CDS can assess a patient‘s genome for 

such variants and notify the clinician and/or the patient of this risk and make recommendations on how 

to maintain a diet high in choline. 

5. Future Direction 

A 2012 systematic review [14], as well as more recent manuscripts published after the search period 

covered by the review describe CDS systems that leverage genetic information [17,18]. With only a 

few exceptions, these systems primarily leverage a single or a few genes and are typically not 

automatically integrated within the clinical workflow of the EHR. Nevertheless, these examples 

represent necessary and important steps toward an ideal CDS solution for WGS information. However, 

for CDS capabilities to fully meet the demands of WGS information, a number of challenges must be 

addressed. As such, these challenges will require new CDS approaches that are able to support the 

unique demands of WGS information. Indeed, a significant amount of work need to be done before 

WGS information is efficiently incorporated into busy clinical settings through CDS [88,89]. 

5.1. Challenges to Overcome 

Several challenges will need to be addressed for the vision of CDS for WGS information to be 

realized. For example, our understanding of the human genome and its implication on health is still 

relatively nascent. Research into the genetic contribution to disease has been limited by our ability to 

leverage a sufficient amount of genetic information and high-quality phenotypic information [90]. The 

combination of falling genome sequencing costs and EHRs becoming better at representing structured 

phenotypic information will improve researchers‘ ability to identify disease-causing genetic variants 

on a large scale [91]. These new discoveries are anticipated to lead to many important, clinically 

relevant recommendations that can be used to improve clinical care. Furthermore, as the genomics 

knowledge base continues to grow, recommendations will continue to change and evolve with new 

knowledge. Thus, it is important that CDS be a conduit through which such discoveries can be 

efficiently translated into clinical care on a widespread scale.  
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In addition to the changing clinical knowledge base, an important challenge to WGS-based CDS is 

the need to maintain a constantly growing and evolving genome variant knowledge base [23]. As 

described earlier, every patient has many variants in genes associated with diseases. Currently, it is the 

task of clinical genetic testing laboratories to assign a clinical interpretation (e.g., pathogenic, benign) 

to the variants detected. Often, however, many interpretations are variants of unknown significance 

(VUS) because not enough information is known about the variant identified. Although it is the 

responsibility of the laboratory to notify clinicians to changes in variant interpretation, this can become 

a daunting and uncompensated task for laboratories to manage because a significant portion of  

variant interpretations will need to be changed over time. Furthermore, testing laboratories often use 

their own proprietary repository of variant interpretations and/or many independently-managed gene or 

disease-specific variant knowledge bases to help make variant interpretations. These variant 

knowledge bases may only represent a subset of all known variants. Indeed, a centrally-managed gene 

variant knowledge base would provide great value to improving genome variant interpretation. It is 

important to note that two large federally-funded efforts, ClinVar and ClinGen, seek to create large 

publically-available gene and variant knowledge bases to help facilitate gene variant interpretation in 

the future [92]. However, as these initiatives have just started, it may still be a few years before the full 

potential of these resources are realized for CDS [93]. 

Beyond the challenges related to the genome are challenges related to health IT infrastructures that 

CDS capabilities will be dependent upon. Traditionally, it has been difficult to integrate EHR systems 

with most third-party CDS applications [94]. While Meaningful Use requirements are making it 

possible to do more with EHRs, these systems are still challenging to change or to integrate external 

applications. Therefore, it will be important for CDS capabilities for WGS information to leverage the 

available features of EHRs, many of which are being made available as a result of Meaningful Use. 

Furthermore, many CDS capabilities currently available within EHRs are not scalable beyond the 

institutions at which they are created [95]. Given the time and effort needed to create CDS rules and 

the potentially extensive list of CDS interventions that could leverage WGS information, the limited 

scalability of CDS solutions currently available in EHRs will not be sufficient for meeting the full 

potential of WGS-based CDS. Indeed, current efforts are underway to develop Meaningful Use 

requirements for EHRs to support service-based CDS capabilities [96]. Without these new CDS 

service capabilities enabled for EHRs, it will be challenging to support CDS for the WGS on a 

widespread scale with current CDS capabilities [62,97]. 

5.2. Proposed Solution 

Given the possibility of leveraging service-based CDS capabilities enabled by Meaningful Use, a 

standards-based and scalable CDS solution could be developed for WGS information [19]. Given the 

breadth and complexity of the human genome and the rapidly growing knowledge base, it is unlikely 

that any single EHR vendor or health care organization will be able to fully manage genomic 

capabilities on its own. Thus, achieving effective CDS for WGS information will likely require the 

coordination of several independent services or entities managing specific tasks. See Figure 1. 

Independent services components that would need to be coordinated could include the EHR, a genome 

database, variant knowledge base, a CDS knowledge base, and a CDS controller. 
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Figure 1. A graphical representation of a proposed scalable clinical decision support (CDS) 

architecture that can leverage whole genome sequencing (WGS) information. 

 

In such a scenario, when a CDS service request for WGS information is initiated by an EHR, the 

request with standardized, structured clinical information document, such as the Health Level 7 Virtual 

Medical Record (vMR) or Consolidated Clinical Document Architecture (C-CDA), could be sent to 

the CDS controller which parses the received clinical document into the data required for the rule 

evaluation that is being requested. The CDS controller would also identify which genetic information 

is required and submit a query to a genome database for the patient‘s genetic information and variant 

interpretation at a particular loci. The genome database, which stores patients‘ genetic information and 

interpretations, could have its variant interpretations updated and maintained by a separate genome 

variant knowledge base such as ClinVar. With the most up-to-date clinical interpretation and genetic 

information returned to the CDS controller, the full set of patient information needed for the CDS 

evaluation can be sent to and processed by the CDS knowledge base. The WGS-enabled CDS result is 

then returned to the EHR for presentation within the clinical workflow at the point and time of care.  

Such a solution could allow CDS for WGS to be implemented on a widespread scale with the most 

accurate and up-to-date information available at any given time. Moreover, as rules could be 

developed and used by many organizations, the economies of scale to implement new CDS 

recommendations for WGS information is much lower than if each organization attempted to develop 

and deploy the same capabilities on their own. Importantly, this approach is aligned with current and 

future EHR capabilities to support service-based CDS, as anticipated by Meaningful Use Stage 3 
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requirements. While this infrastructure is largely theoretical construct at this point, efforts are currently 

underway to develop and validate this proposed CDS architecture approach for WGS information. 

Nevertheless, before such as architecture can be implemented in a clinical setting on a widespread 

scale, several considerations need to be resolved. For example: What genetic information is sufficient 

and necessary for CDS? Who manages and controls each component of the proposed architecture? 

How can several independent components be coordinated to promote efficiency? Furthermore, it 

should also be noted that it is yet to be determined if this proposed architecture can meet all needs of 

WGS information. Indeed, there may be scenarios where a different architecture would be better for 

certain use cases. This will be determined through continued research and development on CDS 

capabilities for WGS information. 

Finally, clinicians and health IT vendors need to be aware of the coming deluge of genomic 

information to the clinic so they can be prepared to respond accordingly. Researchers already grapple 

with overwhelming amounts of genetic information. It is well known by genetics experts that the WGS 

technologies currently being used in research settings will soon be available to everyday clinicians. 

Health care organizations and health IT vendors need to be proactive in developing clinical 

information systems that have the capacity to leverage the WGS in an effective manner. It will likely 

be impossible for any single health care organization or health IT vendor to manage and support all 

aspects of genome interpretation and CDS capabilities. As such, health care organizations may need to 

leverage third party CDS providers, and EHRs need the capacity to support distributed computing 

architectures, like the one just described, that are capable of integrating external CDS capabilities.  

6. Conclusions 

We anticipate that WGS capabilities will eventually be routinely available for clinical care. 

However, without appropriate support, WGS information will likely overwhelm clinicians because of 

current laboratory reporting methods, the complexity of genetic information, the limited proficiency in 

genetics by most physicians, and the lack of genetics professionals. However, CDS capabilities can 

overcome these barriers and increase the likelihood that WGS information can be used effectively for 

clinical care. Nevertheless, it will be essential that CDS be provided within the clinical workflow and 

at the point of care in the EHR according to established CDS best practices. We described several 

clinical use cases using WGS information and described how CDS could be provided within the EHR 

to support these clinical use cases. Key next steps will be to design and develop a scalable CDS 

framework capable of leveraging complex WGS information on a widespread scale. 
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