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Abstract

Sequence tagged microsatellite site (STMS) are useful PCR based DNA markers. Wide

genome coverage, high polymorphic index and co-dominant nature make STMS a preferred

choice for marker assisted selection (MAS), genetic diversity analysis, linkage mapping,

seed genetic purity analysis etc. Routine STMS analysis involving low-throughput, laborious

and time-consuming polyacrylamide/agarose gels often limit their full utility in crop breeding

experiments that involve large populations. Therefore, convenient, gel-less marker detec-

tion methods are highly desirable for STMS markers. The present study demonstrated the

utility of SYBR Green dye based melt-profiling as a simple and convenient gel-less

approach for detection of STMS markers (referred to as GLADS) in bread wheat and rice.

The method involves use of SYBR Green dye during PCR amplification (or post-PCR) of

STMS markers followed by generation of a melt-profile using controlled temperature ramp

rate. The STMS amplicons yielded characteristic melt-profiles with differences in melting

temperature (Tm) and profile shape. These characteristic features enabled melt-profile

based detection and differentiation of STMS markers/alleles in a gel-less manner. The melt-

profile approach allowed assessment of the specificity of the PCR assay unlike the end-

point signal detection assays. The method also allowed multiplexing of two STMS markers

with non-overlapping melt-profiles. In principle, the approach can be effectively used in any

crop for STMS marker analysis. This SYBR Green melt-profiling based GLADS approach

offers a convenient, low-cost (20–51%) and time-saving alternative for STMS marker detec-

tion that can reduce dependence on gel-based detection, and exposure to toxic chemicals.

Introduction

Conventional breeding utilizes various approaches for improvement of desired traits in crop

plants [1,2], which involve laborious and time-consuming manual screening of large
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experimental populations. In addition, these are not straight forward methods for introgres-

sion of complex traits/phenotypes governed by multiple genes [3]. DNA markers ascertains

linked traits (at any stage of plant) saves screening time, and hence are highly desirable for

crop breeding applications such as, marker assisted selection (MAS) or marker assisted back-

cross breeding (MABB) [4]. Polymerase chain reaction (PCR) has revolutionized the develop-

ment and use of a variety of DNA markers viz. Sequence Tagged Microsatellite Site (STMS),

Sequence-Tagged Site (STS), Sequence Characterized Amplified Region (SCAR), Randomly

Amplified Polymorphic DNA (RAPD), Arbitrary Primed-PCR (AP-PCR), Inter Simple

Sequence Repeat (ISSR), Amplified Fragment Length Polymorphism (AFLP), Retroposon-

Microsatellite Amplified Polymorphism (RE-MAP) [5]. Recent advances in genome sequenc-

ing has resulted in development of SNP markers for diverse applications including genome

wide association studies (GWAS), marker development, genomic selection, germplasm char-

acterization [6,7].

STMS markers due to their co-dominant nature, high polymorphism, high abundance, and

dispersed genomic distribution [8] are highly popular, and have been extensively used for high

density maps, tagging genes, map based cloning, gene pyramiding, species identification [9–

10] etc. For applications like MAS of a trait or MABB, STMS marker are more preferred owing

to their convenience in use and cost effectiveness [9,10–12]. Furthermore, STMS also exhibit

‘transferability’, a useful attribute that allow the markers developed in one species to be utilized

in related species [13,14]. For example, STMS markers from barley exhibit considerable trans-

ferability in wheat (~78%), rye (~75%) and rice (~42%) [15,16]. Despite advantages, STMS

markers have not been utilized to their full potential, partly due to the non-availability of

sequence of flanking regions (for locus specific primer designing) in several non-sequenced

genomes, and to a certain extent due to the complexities associated with gel-based detection

methods [17–19]. Availability of next generation sequencing (NGS) approaches have resulted

in development of large number of STMS or SSR markers (genomic/EST derived) in several

non-model crops having limited genomic information. These markers are important genetic

resources for linkage mapping, genetic diversity, MAS, DNA fingerprinting, and other applica-

tions for these crops [13,20,21].

PCR amplified amplicons (single- and multi-locus markers) are routinely scored on agarose

or polyacrylamide gels [17–19]. The gel-based methods are low-throughput, laborious, and

add additional cost, thereby limiting the utility of even single-band markers to their full poten-

tial, as needed in applications such as MAS [22]. Scoring STMS markers on long-format poly-

acrylamide/high-resolution agarose gels is cumbersome, time-consuming and not suitable for

high-throughput analysis [23]. Several gel-less approaches have been reported for DNA

marker detection [19 and references therein], however majority of them are technically inten-

sive. Hernández and co-workers reported a simplified assay involving addition of ethidium

bromide to detect amplified products directly in the PCR tubes [24]. Advent of real-time PCR

and sensitive fluorescent dyes [25] resulted in development of a diverse array of DNA detec-

tion methods based on hybridization probes, molecular beacons, TaqMan probes, scorpion

probes, SYBR Green and High-resolution melting or HRM [26]. Capillary electrophoresis and

use of fluorescently labelled primers were shown to automate the STMS marker scoring to a

certain extent [27–29]. Although, technical feasibility and utility of these approaches in STMS

analysis have been demonstrated [30–33] these are technologically intensive, expensive,

require specialized instrumentation, and not suitable for analysis of large breeding populations

[31,34,35]. In view of the above-mentioned concerns of different methods, simple, convenient

and low cost gel-less detection methods are desirable for STMS scoring. These will be impor-

tant for effective utilization of STMS in MAS programs that handles large experimental

populations.

A gel-less approach for detection of STMS markers in wheat and rice
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SYBR Green, a low-cost DNA binding dye, is an ideal candidate for large scale analysis

[36]. Previously, we showed the utility of SYBR Green based melt-profiling as an effective

method for SCAR marker detection in a gel-less manner, [19]. The approach is based on exist-

ing primers and is cost-effective than other methods [19]. The present study explores the utility

of SYBR Green dye based melt-profiling as a gel-less approach for detection of STMS markers

(referred to as GLADS). This approach involves generation of specific melt-profiles of wheat

and rice STMS markers for their detection. The STMS markers/alleles were differentiated

based on the melting temperature (Tm) and profile characteristics. The approach also demon-

strated the feasibility of multiplexing that can further reduce the cost and time of analysis.

Overall, SYBR green melt-profiling based GLADS can serve as a convenient gel-less method

for detection of STMS markers linked to desirable traits. It is technologically less intensive,

saves time, cost-effective, and therefore suitable for rapid analysis of large number of experi-

mental samples as in MAS based crop breeding experiments.

Materials and methods

Plant material

A total of twelve bread wheat (Triticum aestivum L.) and twelve rice (Oryza sativa L.) geno-

types were used in the present study. Seeds of the genotypes were obtained from the following

Institutes: 1) Indian Agricultural Research Institute (IARI), New Delhi, India, 2) ICAR-IARI

Regional Station, Wellington, Tamil Nadu, India, 3) Punjab Agricultural University (PAU),

Ludhiana, India, 4) ICAR-Indian Institute of Wheat & Barley Research (IIWBR) Regional Sta-

tion, Flowerdale, Shimla, Himachal Pradesh, India, and 5) Indira Gandhi Krishi Vishwavidya-

laya (IGKV), Raipur, Chhattisgarh, India (Table 1). The wheat and rice plants were grown at

experimental field at Bhabha Atomic Research Centre (BARC), Mumbai, Maharashtra.

DNA isolation and quantification

Total genomic DNA was isolated from one-month old seedlings grown in experimental field

at BARC as per protocol detailed in Eswaran and co workers [37], with minor modifications.

Briefly, 200 mg leaf tissue was homogenized in 2.0 ml DNA extraction buffer (100 mM Tris, 20

mM EDTA, 0.5 M NaCl, 7 M Urea, 0.1% β-mercaptoethanol and 2% SDS), subjected to phe-

nol:chloroform:isoamyl alcohol extraction, and followed by precipitation of genomic DNA by

addition of sodium acetate (3 M, 0.1 volume) and isopropanol (0.7 volume). The DNA was

recovered by centrifugation, dissolved in TE buffer (Tris-Cl:10 mM, EDTA: 1 mM, pH: 8.0)

and treated with 50 μg of RNase (Roche Diagnostics, Mannheim, Germany) to remove the

residual RNA contamination. DNA preparation was assessed for quantity (A260 nm) and qual-

ity (A260 nm/A280 nm) on a spectrophotometer (UV-1800, Shimadzu, Tokyo, Japan), and the

integrity was assessed by electrophoresis on a 0.8% agarose gel (Sigma-Aldrich, St. Louis, MO,

USA). DNA samples with good quality and integrity were used for analysis.

Oligonucleotide primers for wheat and rice STMS loci

Oligonucleotide primer pairs for PCR amplification of STMS markers were synthesized from

Bangalore Genei Pvt. Ltd. (Bengaluru, India). Oligonucleotide primer-pairs for fifty-five wheat

and eighteen rice STMS marker loci were synthesized as per the sequences given in previous

publications [38,39]. General characteristics of wheat and rice STMS loci analyzed are listed in

S1 Table.

A gel-less approach for detection of STMS markers in wheat and rice
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Polymerase chain reaction: Optimization of amplification and

multiplexing

PCR amplification of STMS markers was performed on Mastercycler gradient PCR machine

(Eppendorf, Hamburg, Germany) using reaction components from Bangalore Genei Pvt. Ltd.

(Bengaluru, India). The PCR reaction mix (volume: 25 μl) contained genomic DNA (50–75

ng), dNTPs (250 μM each), 10X reaction buffer (15 mM Tris-Cl pH 9.0, 50 mM KCl, 0.01%

gelatin, 2.0–3.0 mM MgCl2), 3–5 pmol of each primer and 1.0 unit of Taq DNA polymerase.

Following thermal cycling conditions were used for PCR amplification: initial denaturation at

94 ˚C (5 min), 40 cycles of denaturation (94 ˚C, 30 sec), annealing (62 ˚C, 45 sec), extension

(72 ˚C, 40 sec), and final extension at 72 ˚C (7 min). Annealing temperature for PCR amplifi-

cation was optimized by gradient PCR. Multiplex PCR analysis was attempted for different

combinations of STMS markers using the same conditions described above.

Agarose gel electrophoresis

The amplification of PCR products was verified by electrophoresis at 8–10 V cm-1 in 1X TBE

buffer, on 2.0% agarose gel (Sigma-Aldrich, St. Louis, MO, USA). The DNA fragments were

stained with ethidium bromide and, photographed under UV light on a gel-documentation

Table 1. List of wheat (W1 –W12) and rice (R1 –R21) genotypes used for analysis.

S. No. Genotypes Source

W1 Kalyansona-1 (KS-1) ICAR-IARI, New Delhi, India

W2 Sonalika

W3 C-306

W4 TWS BARC, Trombay, Mumbai, India

W5 Vaishali ICAR-IARI, New Delhi, India

W6 Kite ICAR-IIWBR Regional Station, Shimla, Himachal Pradesh, India

W7 Flinder

W8 HW-2021 ICAR-IARI Regional station Wellington, Tamil Nadu, India

W9 NIAW-917

W10 PBW-343 PAU, Ludhiana, India

W11 Chinese Spring ICAR IARI Regional station Wellington, Tamil Nadu, India

W12 LWH

R1 Jonyaphool IGKV, Raipur, Chhattisgarh, India

R2 Tulsimongra

R3 Sihar

R4 Bhusu

R5 Badshahbhog-2

R6 Bhajna

R7 Pangudi Goindi

R8 Khetganga

R9 Baigani Dhan

R10 Jhunuprash

R11 Karhani

R12 Alsenga

Note: ICAR: Indian Council of Agricultural Research, IARI: Indian Agricultural Research Institute, PAU: Punjab

Agricultural University, IIWR: Indian Institute of Wheat and Barley Research, BARC: Bhabha Atomic Research

Centre, IGKV: Indira Gandhi Krishi Vishwavidyalaya. TWS: Trombay Wheat Selection, LWH: Local Wheat Hango.

https://doi.org/10.1371/journal.pone.0224572.t001
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system from Syngene (Syngene, Cambridge, UK), and the sizes were estimated by GeneTools

software (Syngene, Cambridge, UK).

SYBR Green dye-based melt-profiling of microsatellite amplicons

For in-tube and gel-less detection of STMS markers, SYBR Green (S9430, Sigma-Aldrich,

St. Louis, MO, USA), a non-specific DNA binding fluorescent dye, was included in the PCR

reaction mix (described above) at 1X final concentration. PCR assays were carried out on Mas-

tercycler ep Realplex4 (Eppendorf, Hamburg, Germany) and LightCycler 480 II (Roche,

Mannheim, Germany) PCR instruments, as detailed above. After the PCR, melt-profile analy-

sis was carried out by measuring the fluorescence intensity of the amplicons in continuous

mode (temperature range: 60 ˚C to 95 ˚C). Different temperature ramp rates (1.75 ˚C min-1,

3.5 ˚C min-1 and 7.0 ˚C min-1) were used to optimize the melt-profile analysis. The raw melt-

profile data was transformed into the negative first derivative data (as a function of tempera-

ture) to identify maximum intensity changes (represented as peak curves) using the Eppendorf

Mastercycler ep realplex software (version 2.2) or LightCycler1 480 Software (version 1.5) for

assays carried out on LC 480 II instrument. For uniformity in data presentation, the fluores-

cence intensity was plotted as percent values versus temperature. Melt-profile analysis was also

performed for STMS amplicons amplified by multiplex PCR assay, by using the optimized

temperature ramp conditions as described above. In an alternative strategy, the PCR amplifi-

cation of STMS markers was carried using normal PCR assay, SYBR Green dye was added

post-PCR followed by melt-profiling on a real-time instrument as mentioned above. The

STMS melt-profiling experiments were carried out using two independent DNA preparations

and repeated at least two times, and appropriate controls were included for each set of

analysis.

Results

Optimization of conditions for PCR amplification of STMS markers

Optimization of PCR conditions is necessary to minimize non-specific amplification products

and primer-dimers, particularly when sensitive dyes such as SYBR Green are used in the assay.

Using representative wheat and rice genotypes, amount of genomic DNA, primer concentra-

tion and annealing temperature were optimized for STMS PCR amplification. Use of 50–75 ng

genomic DNA and 3–5 pmol primer resulted in optimum amplification with minimum non-

specific signal. Gradient PCR assay (annealing temperature range: 58˚C to 62˚C) was carried

out to find optimum annealing temperature for amplification. Annealing temperature of 62˚C

enhanced specificity and minimized non-specific products in PCR amplification of most

STMS (S1 Fig). Using optimized conditions, the STMS markers specific to A-, B- and

D-genomes of wheat yielded clean profiles on PCR amplification from a representative geno-

type (Fig 1A, 1B and 1C). Under optimized PCR conditions the rice STMS markers also

yielded clean PCR amplification profiles (Fig 1D).

SYBR Green dye at 1X concentration was optimum (good fluorescence signal and negligi-

ble effect on PCR) for STMS melt-profile analysis. The melt-curve analysis was carried out

using different ramping rates (1.75˚C min-1, 3.5˚C min-1 and 7.0˚C min-1). Ramp rate of 3.5˚C

min-1 was found to be optimal for melt-profiling as it yielded low background signal and few

non-specific signal spikes. The melt-profiling approach also showed enhanced specificity at

higher annealing temperature in PCR, as shown for two wheat STMS markers (S2A and S2B

Fig). However, certain STMS markers that showed a doublet on agarose gel yielded two peaks

on SYBR Green melt-profile analysis despite increase in annealing temperature (S2C Fig).

A gel-less approach for detection of STMS markers in wheat and rice
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SYBR Green melt-profiling yielded STMS marker specific profiles

The STMS markers that yielded clean amplification on agarose gel were included for SYBR

Green melt-profiling analysis. SYBR Green melting curve analysis was carried for thirty-seven

STMS marker loci from A-, B- and D-genomes of wheat, and for seven STMS loci from rice

(Table 2), as detailed in materials and methods. The SYBR Green melt-profiling approach

yielded characteristic profiles of STMS markers of wheat and rice. As an example, Fig 2A–2C

show melt-profiles of three STMS markers specific to A-genome, B-genome, D-genome of

wheat, and Fig 2D shows melt-profiles of three rice STMS markers. In general, the melting

temperature (Tm) of the STMS profiles ranged from ~75 ˚C to ~95 ˚C (Fig 2).

Results show that the melt-profiles can be useful to differentiate several STMS markers

from one another. Several pairs of wheat STMS markers could be differentiated based on the

melt-profiles such as: Xgwm 459–6A (77.7 ˚C) and Xgwm 160–4A (83 ˚C), Xgwm 459–6A

(77.7 ˚C) and Xgwm 304–5A (90.5 ˚C), Xgwm 459–6A (77.7 ˚C) and Xgwm 155–3A (84.5 ˚C),

Xgwm 459–6A (77.7 ˚C) and Xgwm 135–1A (87.5 ˚C), Xgwm 459–6A (77.7 ˚C) and Xgwm

356–2A (92.5 ˚C), Xgwm 264–1B (80.8 ˚C) and Xgwm 165–4B (88.5 ˚C), Xgwm 368–4B (75.5

˚C) and Xgwm 66–4B (88.5 ˚C), Xgwm 368–1B (75.5 ˚C) and Xgwm 210–2B (85.5 ˚C), Xgwm

320–2D (82.5 ˚C) and Xgwm 111–7D (89.5 ˚C), Xgwm 320–2D (82.5 ˚C) and Xgwm 174–5D

(90.5 ˚C), Xgwm 320–2D (82.5 ˚C) and Xgwm 232–1D (91.5 ˚C), Xgwm 469–6D (82.8 ˚C)

and Xgwm 232–1D (91.5 ˚C) (Fig 2). These results show that the SYBR Green melt-profiles

can be used for gel-less detection of STMS markers, and based on their specific Tm values and

melt-curve characteristics many of these can be easily distinguished from one another.

SYBR Green melt-profiling for detecting STMS allele polymorphism

The SYBR Green melt-profiling approach was further evaluated for differentiation between

alleles of STMS markers in both wheat and rice, using multiple genotypes (Table 1). Several

Fig 1. Analysis of PCR amplified STMS markers on 2% agarose gel. A) wheat A-genome STMS markers, B) wheat B-genome

STMS markers, C) wheat D-genome STMS markers, and D) rice STMS markers. Designations of the STMS markers are indicated on

the top of the lanes. Lane ‘M’ indicates 100 bp ladder.

https://doi.org/10.1371/journal.pone.0224572.g001
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Table 2. List of wheat A, B, and D-genome, and rice STMS marker loci analyzed in the present study.

S. No. STMS marker Species/Genome Repeat Motif No of Alleles �Amplicon size range (bp)

1 Xgwm 136–1A Wheat A-Genome (CT)58 04 320–400

2 Xgwm 357–1A (GA)18 03 120–140

3 Xgwm 135–1A (GA)20 05 96–180

4 Xgwm 99–1A (CA)21 05 96–156

5 Xgwm 265–2A (GT)23 04 174–250

6 Xgwm 448–2A (GA)29 03 220–252

7 Xgwm 155–3A (CT)19 04 108–140

8 Xgwm 162–3A (CA)14AA(CA)4 04 Null, 220–240

9 Xgwm 160–4A (GA)21 03 170–230

10 Xgwm 156–5A (GT)14 03 280–330

11 Xgwm 304–5A (CT)22 05 180–232

12 Xgwm 459–6A (GA)>28 03 110–130

13 Xgwm 570–6A (CT)14(GT)18 03 100–140

14 Xgwm 169–6A (GA)23 05 Null, 200–250

15 Xgwm 282–7A (GA)38 05 Null, 190–267

16 Xgwm 140–1B Wheat B-Genome (CT)42 04 205–232

17 Xgwm 264–1B (CA)9A(CA)24 03 Null, 145–210

18 Xgwm 257–2B (GT)30 02 176–182

19 Xgwm 114–3B (GA)53 05 Null, 103–147

20 Xgwm 547–3B (CA)12 02 167–171

21 Xgwm538–4B (GT)6(T)(GT)10 02 139–180

22 Xgwm 368–4B (AT)25 05 Null, 202–242

23 Xgwm 68–5B (GA)3(G)3(GA)25 01 116

24 Xgwm 46–7B (GA)2GC(GA)33 05 120–150

25 Xgwm 337–1D Wheat D-Genome (CT)5(CACT)6(CA)43 03 Null, 200–210

26 Xgwm 232–1D (GA)19 03 Null, 150

27 Xgwm 642–1D (GT)14 02 200

28 Xgwm 320–4D (GT)9(GA)15 03 Null, 175–275

29 Xgwm 645–3D (CT)23imp 03 Null, 160–150

30 Xgwm 52–3D (GT)4AT(GT)20 03 Null, 150–160

31 Xgwm 608–4D (GA)16 02 Null, 175

32 Xgwm 182–5D (CT)18 02 Null, 175

33 Xgwm 174–5D (CT)22 03 Null, 400–450

34 Xgwm 192–5D (CT)46 02 Null, 150

35 Xgwm 190–5D (CT)22 02 Null, 225

36 Xgwm 55–6D (TC)3(T)3(CT)17 01 100

37 Xgwm 111–7D (CT)32(GT)17 03 Null, 100–120

38 RM 55 Rice (GA)17 04 Null, 170–190

39 RM 154 (GA)21 04 180–190

40 RM 413 (AG)11 03 70–90

41 RM 431 (AG)16 02 250–260

42 RM 259 (CT)17 03 160–190

43 RM 447 (CTT)8 03 100–140

44 RM 514 AC(12) 02 240–260

�Sizes of STMS amplicons were estimated by ‘GeneTools’ software (Syngene, UK)

https://doi.org/10.1371/journal.pone.0224572.t002
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Fig 2. SYBR Green melt-profiles specific to different STMS markers. A) melt-profiles of three STMS markers specific to

wheat A-genome, B) melt-profiles of three STMS markers specific to wheat B-genome, C) melt-profiles of three STMS

markers specific to wheat D-genome, and D) melt-profiles of three rice STMS markers. The STMS markers were amplified

using a representative genotype. Designation of STMS is indicated on upper left corner of each plot and the Tm is indicated by

vertical dashed line.

https://doi.org/10.1371/journal.pone.0224572.g002

A gel-less approach for detection of STMS markers in wheat and rice
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STMS amplicons exhibited length polymorphism among the wheat (Fig 3A–3H, Table 2) and

rice genotypes (Fig 3I and 3J, Table 2).

In addition, both wheat and rice STMS showed few cases of monomorphic alleles (Xgwm

135–1A, Xgwm 357–1A) or null alleles (Xgwm 162–3A, Xgwm 169–6A, Xgwm 264–1B, Xgwm

368–4B) (Fig 3, S3 Fig, Table 2). Alleles of sixteen wheat STMS and seven rice STMS markers

were subjected to SYBR Green melt-profiling to assess its utility in differentiating them. The

melt-profiles were compared for variation in Tm, profile shape or both. Among the twelve

wheat genotypes Xgwm 162–3A, showed single type allele or null allele (Fig 4A), while Xgwm

304–5A showed two distinct allelic profiles with minor difference in Tm (Fig 4B). Similarly,

STMS maker Xgwm 169–6A showed three profiles and a null allele, (Fig 4C), Xgwm 282–7A

showed four profiles and a null allele (Fig 4D), and Xgwm 448–2A showed four profiles with

variable features (Fig 4E). Multiple allele specific melt-profiles were also obtained for of STMS

RM 447 among twelve rice genotypes (Fig 4F).

Fig 3. Analysis of allelic polymorphism of STMS marker. Allelic polymorphism of STMS markers among multiple wheat (A-H)

and rice (I, J) genotypes on agarose gels: A) Xgwm 282–7A, B) Xgwm 162–3A, C) Xgwm 304–5A, D) Xgwm 169–6A, E) Xgwm 99–

1A, F) Xgwm 136–1A, G) Xgwm 135–1A, H) Xgwm 155–3A, I) RM 259, and J) RM 447. Numbers on the top indicates the wheat

(A-H) and rice (I, J) genotypes as mentioned in the Table 1. Lane ‘M’ indicates 100 bp DNA ladder.

https://doi.org/10.1371/journal.pone.0224572.g003
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Fig 4. STMS allele differentiation by SYBR Green melt-profiling. SYBR Green melt-profiles of alleles of STMS markers

among twelve wheat (A-E) and rice (F) genotypes: A) wheat STMS Xgwm 162–3A, B) wheat STMS Xgwm 304–5A, C)

wheat STMS Xgwm 169–6A, D) wheat STMS Xgwm 282–7A, E) wheat STMS Xgwm 448–2A, and F) rice STMS RM 447.

Multiple melt-profiles of STMS marker alleles (indicative of variation in Tm and curve shape difference) are indicated by

number (1–4) while null alleles (if any) are indicated by arrows.

https://doi.org/10.1371/journal.pone.0224572.g004
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Allelic differentiation capability of SYBR Green melt-profiling was evaluated for six STMS

markers that show low/no length polymorphism (allelic homoplasy) on agarose gel (S3 Fig).

The SYBR Green melt-profiles could differentiate (on basis of Tm or curve shape or both)

STMS alleles of certain markers with low or no allelic variability on gels, in wheat (Fig 5A and

5B) and rice (Fig 5C and 5D). Collectively, these results show the feasibility of differentiation

Fig 5. SYBR Green melt-profiles of STMS with low length polymorphism. SYBR Green melt-profiles of STMS

marker alleles that showed low/no length polymorphism among twelve wheat genotypes: A) Xgwm 357–1A and B)

Xgwm 232–1D. SYBR Green melt-profiles of STMS marker alleles that showed low/no length polymorphism among

twelve rice genotypes: C) RM 154 and D) RM 431. Numbers indicate the profiles obtained for each STMS along with

the corresponding Tm values.

https://doi.org/10.1371/journal.pone.0224572.g005
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of STMS alleles by melt-profiling, where a null allele can be differentiated in a straightforward

manner, while others can be differentiated on the basis of Tm, melt-profile characteristics or

both.

SYBR Green melt-profiling based multiplexing of STMS markers

Feasibility of SYBR Green melt-profiling for multiplex analysis was evaluated for STMS

marker pairs that showed non-overlapping melt-profiles with melting temperature difference

(ΔTm) of> 5 ˚C. Several such wheat STMS marker pairs were optimized for multiplex PCR

(S4 Fig). The multiplexed STMS products when subjected to SYBR Green melt-profiling

yielded distinct signal peaks specific to individual STMS that were included in the multiplex

assay. SYBR Green multiplex melt-profiles of three pairs of wheat STMS markers with

ΔTm > 5 ˚C (Xgwm 162–3A+Xgwm 155–3A, Xgwm 160–4A+Xgwm 356–2A, Xgwm 160–4A

+Xgwm 304–5A) are shown in Fig 6A. Multiplex analysis was also carried out for six rice

STMS pairs, of which three with ΔTm > 5 ˚C (RM 259+RM 154, RM 413+RM 154, RM4 31

+RM 154) are shown in Fig 6B. Results showed that STMS marker pairs with ΔTm of� 5 ˚C

can yield well resolved peaks. Furthermore, STMS marker pairs (RM 431+RM 447, RM 447

+RM 514, RM 447+ RM 413) with ΔTm value < 5 ˚C also showed STMS marker specific

peaks but not completely resolved (Fig 6C). This demonstrates the feasibility of SYBR Green

melt-profiling for STMS multiplex assay, thereby extending the utility of GLADS approach.

However, multiplexing was not feasible for markers with overlapping melt-profiles or low

ΔTm value.

Discussion

This study shows the utility of SYBR Green dye based melt-profiling as a simple, convenient

and low-cost gel-less approach for detection of STMS markers (referred to as GLADS). Crop-

breeding involves multiple experiments (executed in parallel and involve large populations)

that are routinely carried out using laborious and time-consuming conventional methodolo-

gies. DNA maker assisted selection (MAS) allow rapid screening of linked desirable traits and

reduce overall breeding time [17], Among the PCR markers, STMS are preferable in breeding

experiments due to their co-dominant nature, high abundance, wide genome coverage, and

transferability [14–15,18]. At present, most STMS studies primarily rely on low-throughput,

laborious, and time-consuming agarose or polyacrylamide gels [40–43]. This is an important

concern while handling large crop populations [17,44], thereby limiting the full potential of

the STMS based MAS.

Several gel-free STMS detection methods have been reported, however many of these are

either technically intensive or rely on specialized consumables/hardware/software that makes

these expensive for large scale analysis as in crop breeding (S2 Table). The marker screening

approach need to be technically simple, convenient, breeder friendly and cost effective for

analysis of large experimental populations [4,45]. SYBR Green based GLADS approach

reported here addresses such these concerns for easy STMS analysis. Many previously reported

STMS detection methods are often technically intensive and economically not viable for large

scale usage. For example, STMS analysis using fluorescently labeled primers automate the

scoring but high cost of labeling, expensive detection systems comprise major negative factors

[28,29]. Similarly, capillary electrophoresis for automated and high-throughput analysis [27]

also need specialized instrumentation and consumables resulting in high running cost (S2

Table). Sensitive approaches like TaqMan assays, molecular beacons, scorpions probes are

more appropriate for small scale studies, and some of these require primers to be redesigned

for effective detection [6,46–48]. Similarly, utility of HRM has also been shown for diverse
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applications including STMS analysis [12,32,49–53]. it uses expensive dyes, may require

primer resigning, and rely on specific real-time hardware/software that might have limited its

widespread usage [34]. The present GLADS approach, on the other hand simplifies the detec-

tion using a convenient, user friendly and relatively simple setup using already available

primers.

For two major aspects of DNA marker work (development of new and use of available

markers), convenience and cost-effectiveness of an approach ensure its easy adoption and

widespread use. For example, in several MAS experiments, tightly linked STMS (to a trait) are

often ascertained on gel-based methods for several generations [38,54–57]. In such cases, the

Fig 6. Multiplex STMS analysis. SYBR Green melt-profiles generated in multiplex PCR of STMS marker pairs in wheat and rice:

A) multiplex analysis of three pair of wheat STMS markers with ΔTm> 5 ˚C, B) multiplex analysis of three pair of rice STMS

markers with ΔTm> 5 ˚C, C) multiplex analysis of three pair of rice STMS markers with ΔTm< 5 ˚C. ΔTm is ‘melting temperature

difference’. Designation of STMS used in multiplex assays are shown in each melt-profile plot and arrows indicate the STMS specific

peaks.

https://doi.org/10.1371/journal.pone.0224572.g006
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GLADS approach offer a simple, convenient gel-less STMS detection alternative. It can be

effective in utilization of available STMS markers linked to important traits in wheat (http://

maswheat.ucdavis.edu/protocols/index.htm), rice (http://www.ricebase.org/ http://www.

gramene.org) and other crops. This SYBR Green based approach ascertains the presence/

absence of STMS and differentiates STMS markers/alleles solely by melting-profiles, in a gel-

free manner.

DNA binding dyes (ethidium bromide, SYBR Green, LC Green etc.) can be utilized for

STMS detection in a post-PCR end-point assay. Hernández and coworkers demonstrated in-

tube detection of STMS by addition of ethidium bromide directly in the PCR tubes [31]. How-

ever, the end-pint assays cannot differentiate the specific signal (due to an amplicon) from

false non-specific signal (due to primer-dimers, unused primers and template). Additionally,

ethidium bromide has lower sensitivity, inhibits PCR and is carcinogenic in nature. The pres-

ent two-step approach first optimized the use of SYBR Green (more sensitive and safe dye

than ethidium bromide) in the PCR step, followed by a melt-profiling step to ascertain the sig-

nal specificity. The melt-profiling allows differentiation of amplicon specific and non-specific

signal [19,46,58], which is not feasible in an end-point method [24]. The SYBR Green based

GLADS is flexible in execution: the dye can be included in the PCR assay mix and the samples

can be subjected to post-PCR melt-profiling, with complete analysis on a real-time PCR or

alternatively the PCR can be performed on a regular machine followed by addition of dye and

melt-profiling on a real-time PCR instrument.

Real time PCR assays for gene expression analysis carry out melt-profiling to assess ampli-

con specificity [34,59,60], while GLADS uses it for STMS analysis. Unlike a gel that analyzes

amplicons for length polymorphism, the melt-profiles reflect variation due to a combination

of length, %GC, secondary structures [61], and generate marker-specific profiles useful for gel-

less analysis. It is a sensitive and useful assay but needs to be optimized to minimize non-spe-

cific interference due to certain parameters. The non-specific binding of SYBR Green is

affected by salt concentration, and DNA composition [61,62]. It may also show inhibitory

effect on PCR [63]. Optimized melt-profiling assay show lower problems due to non-specific

peaks and spikes [59], as also seen in the present study. The SYBR Green melt-profiling for

STMS detection was also helpful for allele differentiation, which is important in cases where a

particular allele is linked to a desirable trait [11,12]. The assay differentiated between a STMS

allele (signal peak) and a null allele (no signal peak) in a straightforward manner and showed

capability to detect polymorphism among STMS alleles. However, discrimination was not fea-

sible between alleles with overlapping melt curves.

Present approach is cost-effective and saves time as evident from the comparison of several

approaches for STMS analysis (S2 Table). For example, analysis of 96–384 samples (on a

Roche LC 480 II or other high-throughput systems) can be completed in 30 minutes which is

considerably faster than traditional gel based methods. It is economical (20–51% lower cost)

than several other gel and non-gel based methods (S2 Table). For analysis of large number of

markers/experimental samples cost of analysis is a critical factor. The economy of the SYBR

Green melt-profiling is enhanced by multiplexing that further reduces the cost, time and

efforts [present study, 19,56]. Multiplex PCR often require re-designed primers, however in

the present study it was successfully carried out for STMS marker pairs showing non-overlap-

ping melt-profiles (ΔTm> 3.0 ˚C), using existing primer combinations.

Due to simple and low cost, the SYBR Green melt-profiling assays have been utilized in var-

ious studies viz. pathogen identification [64], analysis of ISBP (insertion site-based polymor-

phism) markers [36], SCAR marker detection [19], and SNP marker analysis [65,66]. Present

study further extends the scope of simple SYBR Green melt-profiling approach for gel-less

detection of STMS markers. The usage of real-time PCR based marker analysis is limited to
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small numbber of crop breeding studies viz. hybridization probes based analysis [67], oleic

acid content linked maker analysis [8], HRM analysis [68,69], primarily due to high cost asso-

ciated with the consumables used. Simplified approaches like SYBR Green based GLADS can

enhance the usage of real-time PCR based analysis in crop breeding experiments for markers

like STMS (this study) and SCARs [19], which is otherwise mostly restricted to analysis of

gene expression [34] and ascertaining transgene copy number [70].

Overall, use of GLADS for STMS analysis is more advantageous than cumbersome long-

format polyacrylamide or high-resolution agarose gels. It is more convenient, economical and

breeder friendly than alternative technologically intensive or expensive methods for crop

breeding applications. GLADS can be used as a stand lone approach or it can be a part of an

integrated STMS analysis scheme. It can be employed initially to assess the STMS suitable for

melt-profiling analysis. Such markers can be directly analyzed by GLADS approach, while

remaining can be scored by alternative approaches or a combination of methods. The

approach will be useful in specialized applications such as, MAS (use single trait-linked STMS

marker) and MABB (involve scoring of several STMS markers for background and foreground

selection), in wheat, rice and other crops.

Conclusions

The GLADS approach combined the simplicity of PCR, sensitivity of SYBR Green, and infor-

mativeness of melt-profiles for a simple, rapid and effective assay for various types of STMS

analysis viz. detection/scoring, differentiation, allelic polymorphism, and multiplex analysis. It

is relatively economical (20–51% lower cost than other approaches) and can be performed on

a routine real-time PCR and without any specialized consumables/hardware/software require-

ments. The efficacy of GLADS can be assessed during initial phase of STMS analysis, and it

can be integrated with existing methods. GLADS based STMS analysis seems a promising

approach to reduce the dependence on cumbersome gel-based detection approaches in wheat,

rice as well as other crops.

Supporting information

S1 Fig. Gradient PCR assay. Optimization of PCR amplification of some wheat STMS

markers by gradient PCR: A) Xgwm 337–1D, B) Xgwm 136–1A, C) Xgwm 261–2D, D)

Xgwm 264–1B, E) Xgwm 182–5D, F) Xgwm 33–1B, G) Xgwm 190–5D, H) Xgwm 114–3B, I)

Xgwm 356–2A, J) Xgwm 174–5D. The PCR amplified products were analysed on agarose gel.

The numbers on the top of the lanes indicate the annealing temperature used in the gradient

PCR.

(TIF)

S2 Fig. Effect of annealing temperature on SYBR Green melt-profiles. SYBR Green melt-

profiles of three wheat STMS markers subjected to gradient PCR analysis: A) Xgwm 155–3A,

B) Xgwm 369–3A, C) Xgwm 512–2A. Gradient PCR was carried from 56˚C to 62˚C as indi-

cated by different coloured profiles. The first two markers (A, B) showed enhanced specificity

at higher annealing temperature, while the third marker (C) showed a doublet profile at all

temperatures.

(TIF)

S3 Fig. Analysis of STMS alleles on agarose gel. Agarose gel profiles of PCR amplified STMS

markers that did not show well resolved alleles. Top panel: Wheat STMS markers among 12

genotypes, A) Xgwm 357–1A, B) Xgwm 135–1A, C) Xgwm 337–1D, D) Xgwm 232–1D.
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Bottom panel: Rice STMS markers among 12 genotypes, E) RM 431, F) RM 154. Lane M: 100

bp DNA ladder.

(TIF)

S4 Fig. STMS multiplex analysis. Analysis of some wheat STMS markers amplified by multi-

plex PCR assay on agarose gel: lane 1: Xgwm 459–6A+Xgwm 369–3A, lane 2: Xgwm 160–4A

+Xgwm 356–2A, lane 3: Xgwm 160–4A+Xgwm 304–5A, lane 4: Xgwm 261–2D+Xgwm 232–

1D, lane 5: Xgwm 190–5D+Xgwm 232–1D, lane 6: Xgwm 102–2D+Xgwm 111–7D, lane 7:

Xgwm 261–2D+Xgwm 117–7D, lane 8: Xgwm 190–5D+Xgwm 117–7D, lane 9: Xgwm 261–

2D+ Xgwm 608–4D, lane M: 100 bp DNA ladder. Arrows indicate the position of two STMS

markers in each lane.

(TIF)

S1 Table. List of STMS markers specific to wheat (A, B, and D-genome) and rice analyzed

in the present study.

(DOCX)

S2 Table. Comparison of approximate cost (in USD), time of analysis, and other important

aspects of SYBR Green based approach and few other techniques for STMS marker detec-

tion.

(DOCX)
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