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Abstract

The sensory-motor neuron synapse of Aplysia is an excellent model system for investigating the biochemical changes
underlying memory formation. In this system, training that is separated by rest periods (spaced training) leads to persistent
changes in synaptic strength that depend on biochemical pathways that are different from those that occur when the
training lacks rest periods (massed training). Recently, we have shown that in isolated sensory neurons, applications of
serotonin, the neurotransmitter implicated in inducing these synaptic changes during memory formation, lead to
desensitization of the PKC Apl II response, in a manner that depends on the method of application (spaced versus massed).
Here, we develop a mathematical model of this response in order to gain insight into how neurons sense these different
training protocols. The model was developed incrementally, and each component was experimentally validated, leading to
two novel findings: First, the increased desensitization due to PKA-mediated heterologous desensitization is coupled to a
faster recovery than the homologous desensitization that occurs in the absence of PKA activity. Second, the model suggests
that increased spacing leads to greater desensitization due to the short half-life of a hypothetical protein, whose production
prevents homologous desensitization. Thus, we predict that the effects of differential spacing are largely driven by the rates
of production and degradation of proteins. This prediction suggests a powerful mechanism by which information about
time is incorporated into neuronal processing.
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Introduction

Different patterns of training can lead to different types and

strengths of memories. For example, training distributed over time

(spaced training) is superior to the equivalent amount of training

with no interruptions (massed training) for generating long-term

memories for verbal tasks [1]. Spaced and massed training are

known to activate different molecular signaling pathways under-

lying memory formation [2]. Aplysia californica, a marine mollusk,

provides an ideal model system for examining the differences in

molecular signaling mediated by spaced and massed training [3].

One form of behavioral sensitization in Aplysia involves an

increase in defensive reflexes after a noxious stimulus. The

increase in defensive reflexes is caused in part by an increase, or

facilitation, of the strength of the synapse between the mechano-

receptor sensory neurons and withdrawal motor neurons [4].

Facilitation is mediated by release of serotonin (5HT) from

interneurons activated by the noxious stimulus [5,6]. Spaced

noxious stimuli are superior to massed stimuli at generating long-

term sensitization in the animal [3] and spaced applications of

5HT are superior to massed applications at generating long-term

facilitation (LTF) of cultured sensory-motor neuron synapses [7].

The ability to examine the difference between spaced and massed

training in cultured neurons allows the study of the differential

signaling events activated by spaced and massed training.

5HT acts through at least two distinct G protein coupled

receptors (GPCRs) in Aplysia to activate protein kinase A and

protein kinase C [8,9]. The two kinases are differentially activated

based on the type of training; spaced applications of 5HT lead to

the persistent activation of PKA in the sensory neuron [10,11],

while massed applications of 5HT instead activate both PKA and

the novel PKC Apl II in the sensory neuron (Figure 1) [10,12].

An important mechanism for the differential activation of PKC

during spaced and massed applications of 5HT involves

differential desensitization of PKC Apl II translocation to the

plasma membrane, where it is activated [13]. Spaced training

(565 min 5HT with 15 min wash periods in between) leads to

more desensitization than one massed 25 min application of 5HT

[13]. This differential desensitization is surprising, since spaced

applications of 5HT allow the neuron to recover in between

exposures; yet they cause a greatly increased amount of

desensitization when compared to the massed application of

5HT. This effect was shown to depend on both PKA-mediated

desensitization and the downstream effects of protein synthesis
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[13]. Importantly, protein synthesis inhibitors have opposite effects

depending on the training stimulus: massed training produces a

protein that prevents desensitization of PKC Apl II translocation

while spaced training produces a protein that promotes desensi-

tization of PKC Apl II translocation (Figure 1) [13]. Thus, another

important distinction between these two training paradigms is that

they activate distinct translational pathways.

While massed applications of 5HT are less effective than spaced

applications at generating LTF measured at 24 h [7], both spaced

and massed training lead to protein-synthesis dependent interme-

diate-term facilitation (ITF), measured 30 min to 2 hr after 5HT is

removed [11,14,15]. However, the mechanisms underlying ITF

induced by spaced or massed training are distinct; ITF induced by

spaced training require PKA but not PKC for induction [16,17],

while ITF induced by massed training, even a continuous stimulus

as short as 10 min, requires PKC but not PKA [14] (Figure 1).

Thus, the differential activation of PKC during massed and spaced

training appears critical for the different physiological effects of

these two training paradigms.

In order to better understand the signaling pathway mediating

the desensitization of PKC Apl II, we developed a model

consisting of a system of integro-differential equations describing

the differential desensitization of PKC Apl II activation during

massed and spaced training. The model provides predictions

about the molecular mechanisms responsible for the differences

between massed and spaced training. These predictions were

validated with new experiments. Together these results suggest

that the sensitivity of neurons to the time between training periods

is due to the rates of protein synthesis and degradation.

Results

Describing the model architecture
We have previously described PKC Apl II translocation and its

desensitization in response to 5HT application in the presence of

PKA and protein synthesis inhibitors [13,18,19]. We showed that

PKC translocation differentially desensitizes to spaced and massed

applications of 5HT, and that this differential desensitization was

dependent on protein translation and PKA activity. In order to

understand the molecular mechanisms underlying desensitization

of PKC Apl II translocation we designed a signaling network

Figure 1. Massed versus spaced application of 5HT. Spaced training activates PKA but not PKC and leads to PKA-dependent translation that
induces intermediate-term facilitation (ITF) and long-term facilitation (LTF) not dependent on PKC. PKA dependent translation also produces a protein
that increases PKC desensitization, which is required for spaced training not to activate PKC. Massed training activates both PKA and PKC and leads to
PKC-dependent translation that induces a distinct form of ITF not dependent on PKA. PKC-dependent translation also produces a protein that
prevents PKC desensitization, which is required for massed training to continually activate PKC.
doi:10.1371/journal.pcbi.1002324.g001

Author Summary

Memories are among an individual’s most cherished
possessions. One factor that has been shown to exert a
powerful influence on memory formation is the pattern of
training. Learning trials distributed over time have been
shown to consistently produce longer lasting memories
than trials distributed over short intervals, in every
organism in which this has been studied. This observation
has been investigated particularly well in the marine
mollusk Aplysia californica. The nervous system of Aplysia is
simple and well characterized, yet capable of forming
memories, making it an ideal system for the study of
learning and memory. Currently, we have a detailed
understanding of memory formation in Aplysia at the
cellular level. However, there remain many unanswered
questions at the molecular level, particularly concerning
how the effects of different patterns of learning are
mediated. We have developed a mathematical model of a
molecular signaling pathway known to underlie memory
formation in Aplysia. Our model suggests that the rates of
synthesis and degradation of proteins involved in memory
regulation are essential for neurons of Aplysia to respond
differentially to spaced and massed training. We were able
to experimentally validate these findings, thus providing
significant evidence for this model, which might underlie
memory formation in more complex animals.

Modeling Spaced vs Massed Training
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based on our previous experimental findings and biochemical

mechanisms known to underlie G protein-coupled receptor

(GPCR) desensitization. Our network consists of the translocation

of PKC, the cycling of a GPCR, the translation of two

hypothetical proteins, and activity of PKA. We have tried to

simplify the network whenever possible, including bundling

multiple biochemical reactions into one single rate in order to

simplify its architecture. The reasoning behind the network’s

architecture is given in this section and the model equations are

given in the Materials and Methods section.

The basic unit of the model is the 5HT GPCR (S) that once

activated leads to the production of diacylglycerol (DAG), which is

capable of activating and translocating PKC Apl II to the

membrane [20,21]. While this pathway consists of multiple steps,

such as G-protein activation of phospholipase C and phospholi-

pase D [18], these are not likely to be important for modeling of

desensitization, since in most systems the amount of the activatable

GPCR is the rate-limiting quantity that is decreased during

desensitization [22,23,24].

GPCRs can enter a number of different pathways, such that S

can exist in several different states, where the change in

concentration of each state with respect to time is modeled. The

base component of our model includes the activation and

inactivation of S without any desensitization dynamics. This

component corresponds to how quickly PKC Apl II translocates to

the membrane after 5HT application and how quickly it

dissociates from the membrane after 5HT is washed away. It is

known that application of 5HT results in a maximal translocation

of PKC Apl II within one minute, after which it remains at this

maximal level for at least five minutes [18,19]. Washing off 5HT

prompts the complete dissociation of PKC Apl II within one

minute [13,18,25]. To replicate these findings, we used a simple

network architecture, whereby in the presence of 5HT, SOFF

becomes SON, which then transforms to SIN1. SOFF represents the

inactivated receptor that can become activated by 5HT, turning

SOFF into SON, which then produces DAG allowing for the

translocation of PKC Apl II. SIN1 is an inactivated receptor that

needs to be recycled before it can become activated by 5HT again.

At a biochemical level, the transitions from SON to SIN1 to SOFF

involve multiple molecular steps including GPCR phosphorylation

by G protein receptor kinases, binding of beta arrestin, possible

internalization of the receptor, unbinding of the ligand, and then

recycling of the receptor back to its initial state [22,23,24]. For

simplicity, we have reduced these multiple steps into the two steps

(SON to SIN1 to SOFF) since (i) this is sufficient to capture the

behavior required to understand the questions we are addressing

(see below) and (ii) we have no specific knowledge concerning

regulation of these pathways in Aplysia. The major constraint from

the data is that PKC comes off the membrane in less than one

minute after 5HT is washed off. Thus SON to SIN1 must be fast

enough to account for this inactivation. However, in the first

5 min of 5HT activation, there is little desensitization of PKC Apl

II translocation. Thus, SIN1 to SOFF must be rapid enough to

prevent appreciable desensitization in the first five minutes. The

transitions between states of S were modeled using mass action

kinetics. These model parameters were fit to the previously

described PKC dynamics [13,18,25] (equations, parameter values,

and parameter estimation methods can be found in the Materials

and Methods section). Once an appropriate fit was found these

parameters were set and we were able to begin expanding the

model and modeling data related to PKC Apl II desensitization.

The complete model architecture is presented in Figure 2. The

model components (color coded) were developed sequentially, with

maroon and black first then blue, red, and finally green. The

maroon component represents only the translocation of PKC to

the plasma membrane and its subsequent dissociation from the

membrane. The black component represents the desensitization

pathway in the presence of a protein translation inhibitor and a

PKA inhibitor. In the presence of these inhibitors, PKC Apl II

translocation desensitizes during exposure to 5HT [13]. Thus,

there must be a protein translation-independent and PKA-

independent desensitization pathway, or a homologous desensiti-

zation pathway, which we model as an alternate recycling pathway

from SIN1 to SOFF, passing through SIN2 (Figure 2; black network

only, equations can be found in the Materials and Methods

section). Here SIN2 acts as a secondary inactivated state that

requires a longer processing time than SIN1 before recycling back

to SOFF. At the biochemical level, this represents the sorting of the

GPCR in the endocytic compartment from a rapid recycling

pathway into a slow recycling pathway or degradative pathway.

This architecture was chosen because of the abundant literature

supporting this mechanism for desensitization of GPCRs

[22,23,24].

PKA, which is activated by 5HT, has been shown to increase

desensitization of PKC Apl II translocation in the absence of

protein translation [13]. The condition where PKA is active and

protein translation is inhibited is modeled by the combination of

the black, maroon, and blue components. In order to model PKA-

mediated protein synthesis-independent desensitization, we in-

cluded a reduced and modified version of a previous model of

PKA activity [26]. Our modifications to this PKA model are

described in the next sections. Activity of PKA is capable of

converting SOFF directly into SPKA, where SON is not immediately

attainable and PKC Apl II cannot be activated (Figure 2; black

and blue networks, equations can be found in the Materials and

Methods section). At the biochemical level, this network would

represent phosphorylation of the receptor, or receptor-associated

protein, by PKA causing the endocytosis of the GPCR from the

Figure 2. Complete model network. The maroon network describes
the translocation of PKC to the plasma membrane and its subsequent
dissociation from the membrane. The module denoted in black
represents the homologous desensitization pathway. The blue network
defines the PKA mediated desensitization of PKC Apl II. The red network
illustrates the AD pathway responsible for the rescuing PKC from
desensitization. Finally the D pathway, which is antagonistic to the AD
pathway and causes the increase in desensitization, is specified by the
green network. In green are the additional roles of AD needed to
counteract D during massed training.
doi:10.1371/journal.pcbi.1002324.g002
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plasma membrane to an endocytic compartment distinct from

SIN1 and SIN2, probably representing a regulated recycling

endosome [27]. It is important to note that since PKA can

convert SOFF to SPKA, conversion to SPKA does not require S to go

through the active state, SON, such as the desensitization mediated

by SIN2. This network architecture is required to account for the

observation that PKA activity between pulses of 5HT, when S

would not be activated, is capable of desensitizing PKC Apl II

translocation [13] and is consistent with data on heterologous

desensitization of GPCRs in other systems [28]. This consideration

also removed the alternate topology where SPKA would represent

alternate sorting from SIN1, since the receptor is only in the SIN1

state when the receptor goes through the active state.

The recycling of SPKA back into SOFF is inhibited by PKA. This

inhibition was not initially part of the architecture, but it was not

possible to replicate both the massed training and spaced training

data sets without including the PKA inhibition of SPKA recycling

(see results below). At a biochemical level, this suggests that PKA

activity is not only required to induce sorting of the receptor to the

regulated recycling endosome but its retention in this compart-

ment as well.

The reverse situation, with PKA activity inhibited but protein

translation allowed to function is modeled by the combination of

the black, maroon, and red components. Protein translation in the

absence of PKA activity leads to a reduction in the desensitization

of PKC Apl II translocation only during massed 5HT application

and not spaced [13]. This observation requires that a protein,

which protects PKC Apl II translocation from the constitutive

desensitization pathway be translated during massed training. We

name this hypothetical protein Anti-Desensitizer (AD) and its

effects on the network are represented by the black, maroon and

red components combined. We modeled the mechanism of AD

mediating this protection by having AD convert SOFF into SAD, a

form of S preserved from the desensitization pathways leading to

SIN2 or SPKA, but similar to SOFF in its ability to become activated

by 5HT and cause the translocation of PKC Apl II (Figure 2,

black, maroon and red pathway; equations can be found in the

Materials and Methods section). At the biochemical level, this

would represent the AD protein binding to the receptor, or

receptor associated protein, preventing its inactivation and

internalization [29,30,31,32]. Since a protein-synthesis dependent

protection from desensitization is seen in massed, but not spaced,

training protocols, we would expect AD to be synthesized only

after massed training. In order for this differential synthesis to

occur, we made production of AD proportional to the mathemat-

ical integration of the level of active PKC Apl II. PKC Apl II is

constantly active during massed training, but not during spaced

training; thus, integrating PKC activity allows for selective

activation of AD during massed training. PKC is known to

regulate the translational machinery in many systems [33,34]

including Aplysia [35,36], but the exact mechanism by which PKC

regulates translation in this case is not known and is not explicitly

modeled here.

Finally, allowing both protein translation and PKA activity to

proceed normally results in an increase in the desensitization of

PKC Apl II translocation during spaced training [13]. This

increase in desensitization was observable only when both PKA

activity and protein translation are allowed to proceed, meaning a

translated protein is mediating this increase in desensitization, and

its rate of translation is dependent on PKA activity. We name this

hypothetical protein Desensitizer (D), and we model its mechanism

of action similarly to that of PKA by transforming SOFF into SPKA

and inhibiting its recycling back to SOFF (Figure 2, complete

network; equations can be found in the Materials and Methods

section). Another possible architecture would have been to

generate another state of S (SD), but there was not a good

biochemical rationale for this and the model worked well (see

below) without this additional state. At the biochemical level, D

would be a protein that promotes endocytosis [29], particularly to

the PKA-dependent pathway. The rate of translation of D is

dependent on the amount of PKA activity, similar to the

dependence of AD translation on PKC Apl II activity. One

difference between the translation of D and AD is that D’s

production is delayed by 10 min after its induction. The use of a

delay was necessary to account for the observation that

desensitization of PKC Apl II translocation after a 5 min pulse

of 5HT did not begin until after a 10 min wash [13]. At a

biochemical level, there may be many reasons for a delay, ranging

from requirements for post-translational modification, cellular

trafficking, or delay in the activation of proteins synthesis. Finally,

while trying to model the data we found that for D to cause

enough desensitization during spaced training resulted in too

powerful an inhibition during massed training. This over-

inhibition resulted from the fact that unlike AD, D is synthesized

during both spaced and massed training since PKA is active in

both scenarios [10]. To diminish the role of D during massed

training, we introduced two additional effects of the AD protein.

First, AD inhibited the transition from SOFF to SPKA, and second,

it could transform not only SOFF to SAD but also SPKA to SAD

(Figure 2; complete network). At a biochemical level, this

corresponds to the ability of the AD protein to prevent endocytosis

to the PKA-dependent pathway, and moreover, to bind to the

GPCR in the regulated recycling endosome and enhance its

recycling, similar to the mechanism by which decreased PKA

activity enhanced recycling from this compartment. We also

attempted to model the system with AD preventing the translation

of D as opposed to opposing its actions, but were unable to achieve

a good fit to the data with this architecture.

For simplicity, we made the assumption that during the time

course of our experiments an insignificant amount of new S is

created. This assumption was also made partially because for S to

enter the SOFF state, the GPCR would not only have to be

synthesized, but processed through the endoplasmic reticulum,

Golgi apparatus, and transported back to the membrane, so new S

could only contribute to the later parts of the experimental

paradigm. We do not have a term for destruction of S, however, as

described below, the SIN2 pathway may be equivalent to a

degradation pathway, where the GPCR enters late endosomes and

lysosomes.

Modeling the homologous desensitization pathway finds
slow rate of recovery from desensitization

PKC Apl II translocation still desensitizes during exposure to

5HT even when both protein translation and PKA have been

inhibited [13]. Thus, there must be a homologous desensitization

pathway (Figure 3A; black network only, equations can be found

in the Materials and Methods section). Parameter values were

estimated by fitting the model to PKC Apl II translocation

measurements taken during a continuous 90 min application of

5HT in the presence of the protein translation inhibitor

anisomycin and the PKA inhibitor KT5720 [13]. Several

parameter estimation methods were used, and surprisingly, all of

them yielded recycling rates of SIN2 back to SOFF (kA5) that were

near zero (parameter values can be found in Table 1), resulting in

an excellent fit to the data as can be seen in Figure 3C (R2.0.99).

Note that throughout the paper, data presented in blue represents

data obtained from Farah et al. (2009) used to train the model,

while data presented in red represents experiments performed to

Modeling Spaced vs Massed Training
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confirm predictions of the model. The model predicted very little

recycling of the signaling complex from SIN2 during massed

training in the absence of protein translation and PKA activity

(Figure 3C, D). This was unexpected, since our earlier experiments

showed that the desensitization seen after a 5 min pulse of 5HT

recovered completely within 45 min, suggesting efficient recycling

of the signaling complex [13]. However, these experiments were

not done in the presence of a PKA inhibitor.

To test the prediction of the model that desensitization seen in

the absence of PKA activity was not reversible, we conducted a

new experiment. The rate of SIN2 recycling was predicted to be

slow enough that a wash period after massed training with

anisomycin and KT5720 would result in little recovery of

translocation to initial values. Thus, in a simulation of a 90 min

exposure to 5HT followed by a 45 min wash and then a 5 min

pulse of 5HT, all in the presence of anisomycin and KT5720, the

5 min pulse of 5HT should only cause a small amount of PKC Apl

II translocation, since a majority of S is held in the inactivated

state SIN2 (Figure 3C, D). To test this prediction of the model, we

used this protocol in a new imaging experiment using Aplysia

sensory neurons expressing eGFP-PKC Apl II. The initial massed

training caused a similar amount of translocation to that

previously observed by Farah et al. (2009) (Figure 3B, C).

Furthermore, the amount of desensitization after the 5 min pulse

of 5HT matched the modeling prediction extremely well,

demonstrating that recovery from desensitization under these

conditions was indeed very slow (Figure 3B, C).

This protocol required that the neurons be imaged for a total of

140 min. To ensure that the lengthy exposure to room

temperature (20–23uC) and the drugs anisomycin and KT5720

had no effect on the health of the neurons, or their ability to

translocate PKC Apl II, two 5 min pulses of 5HT were applied

with a 130 min wash in between, all in the presence of both drugs.

Recovery from a 5 min pulse of 5HT occurs after 45 min [13], so

we expect that a 130 min wash should result in complete recovery

and that any depression in PKC Apl II translocation would be

caused by injury to the neurons due to prolonged exposure to

room temperature and drugs. There was no significant difference

in the amount of PKC Apl II translocation between the first and

second pulse of 5HT (mean+/2sem; 1.08+/20.18, n = 5). Thus

the persistent desensitization observed in the previous experiment

is due only to accumulation of S in SIN2, as predicted by the model

and not due to injury to the neurons.

Modeling desensitization induced by PKA confirms rapid
rate of recovery

PKA, which is activated by 5HT, has been shown to increase

desensitization of PKC Apl II translocation during both massed

and spaced training [13]. In order to model PKA mediated

desensitization, we included a reduced and modified version of a

previous model of PKA activity [26]. We reduced the complexity

of this model to only include only the dynamics of cAMP

production and the association and dissociation of the subunits of

PKA. This simplification was done since our experiments and

simulations do not occur over long enough time periods for us to

expect a contribution from the persistent activity of PKA, which

was a major feature of their model. We modified the Pettigrew et

al. model by altering the basal level of cAMP and the association

rate of the PKA subunits to refine PKA dynamics to better match

published data demonstrating PKA activity persisting for a small

period after washout of 5HT [10,37,38]. This revision was

necessary since PKA activity during the wash period is required

for desensitization [13]. The new PKA dynamics to massed and

spaced training can be seen in Figure 4A–C. Furthermore, we

removed any synthesis or degradation of PKA subunits since,

similar to PKC Apl II, we do not expect a significant change in the

amount of protein during the time course of our experiments [10].

The black and blue networks (Figure 3A) make use of the

previously described PKA activity model to affect the desensiti-

zation of PKC translocation. Two data sets were used to estimate

the parameters of the blue component of the model: one

continuous 90 min application of 5HT in the presence of

anisomycin and five pulses of 5HT each lasting 5 min with

15 min washes in between, all in the presence of anisomycin [13].

The parameters were estimated to fit both data sets. The

conversion of SOFF into SPKA is modeled using mass action

kinetics. The recycling of SPKA back into SOFF is inhibited by PKA

and is modeled using a combination of mass action kinetics and an

inhibitory Hill function (see Materials and Methods section). This

network architecture resulted in an excellent fit to both data sets

(R2 = 0.99 for massed training and 0.88 for spaced training)

(Figures 4D, 5B). It was not possible to replicate both the massed

training and spaced training data sets without including the PKA

inhibition of SPKA recycling. Without this inhibition, fitting the

massed training data set caused too much desensitization during

spaced training and fitting the spaced training data set caused

insufficient desensitization during massed training.

Massed training in the absence of protein synthesis leads to

more desensitization of PKC Apl II translocation when PKA is

active [13]. However, the model predicts that soon after 5HT is

washed away, PKA becomes inactive and SPKA can recycle back

to SOFF. This recycling suggests that unlike SIN2 mediated

desensitization, PKA induced desensitization recovers quickly.

Thus, when we simulate a 90 min exposure to 5HT followed by a

45 min wash and then a 5 min pulse of 5HT (as above, but in the

absence of a PKA inhibitor), the model predicts a considerable

recovery of PKC translocation (Figure 5B, C). This recovery

happens because during the 90 min stimulation, the majority of S

is held in SPKA, and during the wash most of SPKA recycles back to

SOFF. This recycling allows for a greater amount of PKC

translocation compared to when PKA was inhibited and the

majority of S is found in SIN1 (Figure 3C). To test this prediction of

the model, we conducted a new imaging experiment, measuring

the translocation of eGFP-PKC Apl II during the application of

the above protocol (Figure 5A). The translocation of PKC Apl II

caused by the 5 min pulse of 5HT after the 45 min wash is in

agreement with the modeling prediction, thus validating this

component of the model (Figure 5B). The amount of desensitiza-

tion of PKC Apl II translocation during the massed training is

equivalent to that observed by Farah et al. (2009) and, as in that

study, PKA increases the amount of desensitization during massed

Figure 3. Modeling and experimental validation of homologous desensitization pathway. A, Model network pathways of homologous
desensitization pathway (black) and PKA-mediated desensitization pathway (black and blue). B, Representative confocal fluorescence images of
sensory neurons expressing eGFP-PKC Apl II during a 90 min exposure to 5HT followed by a 45 min wash and then a 5 min 5HT application, all in the
presence of anisomycin and KT5720. C, Quantification of PKC Apl II translocation (bars) and modeling output (line). Blue bars are data used from
Farah et al. (2009) to fit the model parameters. Red bars are data from the present study (n = 8 cells). Error bars are SEM. D, Modeling of S dynamics in
response to experimental protocol from B. Black line represents the ratio of SOFF and SON to total S and the red line the ratio of SIN2 to total S. The
times of addition of 5HT and pharmacological agents are indicated below the figure.
doi:10.1371/journal.pcbi.1002324.g003
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Table 1. Model parameters.

Parameter Value Sensitivity (Spaced) Sensitivity (Massed) Notes (Found in Equation(s))

kA2* 1 High High SON into SIN1 (2,4)

kS1a 6 High High Half saturation of Hill function synthesizing AD (10)

kD3b 0.3372 High High Hill coefficient of Hill function inhibiting SOFF into SPKA (via AD)
(3,6)

kDAGp* 200 High High DAG synthesis rate constant (1)

kDAGd* 102 High High DAG degradation rate constant (1)

kA1* 105 High Medium SOFF into SON (2,3)

kS1b 4 High Medium Hill coefficient of Hill function synthesizing AD (11)

kS3 0.4483 High Medium D synthesis rate constant (13)

kA3* 3 Medium High SIN1 to SOFF (3,4)

kA4* 0.2371 Medium High SIN1 to SIN2 (4,5)

kS3a 6 Medium High Half saturation of Hill function synthesizing D (13)

delayD 10 Medium High PKA delay in D synthesis (14)

intPKA 15 Medium High PKA integration window (14)

kD3 0.0764 Medium Medium SPKA into SAD (6,15)

kD3b 0.1385 Medium Medium Hill coefficient of Hill function activating SPKA into SAD (6,15)

kS1 0.026 Medium Medium AD synthesis rate constant (11)

kS2 0.2 Medium Medium AD degradation rate constant (12)

kC1 2 Medium Medium SOFF into SAD (3,15)

kC2 0.1 Medium Medium SAD into SOFF (3,15)

kS4 0.2847 Medium Medium D degradation rate constant (13)

kD1 8.0441 Medium Medium SOFF into SPKA (via D) (3,6)

kD1a 5.33*1028 Medium Medium Half saturation of Hill function inhibiting SOFF into SPKA (via AD)
(3,6)

Vm 3.6 Medium Medium cAMP synthesis rate constant (7)

Kfpka 105 Medium Medium PKA subunit dissociation rate constant (8,9,10)

intPKC 15 Medium Medium PKC integration window (12)

kA5 0.003 Low Medium SIN2 to SOFF (3,5)

kB2a 0.5 Low Medium Half saturation of Hill function inhibiting SPKA into SOFF (via PKA)
(3,6)

kB2b 6 Low Medium Hill coefficient of Hill function inhibiting SPKA into SOFF (via PKA)
(3,6)

kC2b 1 Low Medium Hill coefficient of Hill function inhibiting SAD into SOFF (3,15)

kB2 0.2 Medium Low SPKA into SOFF (3,6)

kD2b 0.4187 Medium Low Hill coefficient of Hill function inhibiting SPKA into SOFF (via D)
(3,6)

K5HT 14*1026 Medium Low Half saturation of Hill function synthesizing cAMP (7)

Kbpka 3 Medium Low PKA subunit reassociation rate constant (8,9,10)

kB1 0.1276 Low Low SOFF into SPKA (via PKA) (3,6)

kD3a 1.6*104 Low Low Half saturation of Hill function transforming SPKA into SAD (6,15)

kC2a 1 Low Low Half saturation of Hill function inhibiting SAD into SOFF (3,15)

kB2a 53.1 Low Low Half saturation of Hill function inhibiting SPKA into SOFF (via D)
(3,6)

cAMPbasal 0.005 Low Low Basal concentration of cAMP (7)

kS3b 4 Low Low Hill coefficient of Hill function synthesizing D (13)

Parameter sensitivity analysis. Model parameters and their values. Sensitivity was determined by varying individual parameters by +/25% and +/250% while holding
the other parameters at their defined values. The sensitivity of a parameter was classified as High if either a +/25% change in its value caused a change in the fit of the
data of over 25%. Similarly, the sensitivity of a parameter was Medium if either a +/250% change in value caused a change in the fit of the data of over 25%, and Low if
the +/250% change in value did not change the fit by more than 25%. Two data sets were used to conduct this analysis: 90 min 5HT and 565 min 5HT with 15 min
washes. List ordered by sensitivity to 565 min 5HT. Parameters indicted with a * were replaced with the following in an alternate model: kA2 = 2, kDAGp = 2, kDAGd = 200,
kA1 = 200,000, kA3 = 2, and kA4 = 0.08.
doi:10.1371/journal.pcbi.1002324.t001
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Figure 4. PKA dynamics. A, Model network pathway of PKA dynamics. R and C represent the regulatory subunit and catalytic subunit of PKA,
respectively, where the amount of PKA activity is considered identical to C activity. B, C, PKA activity in response to a 90 min 5HT application (B) or
565 min 5HT application (C). Black line represents the amount of cAMP activity; blue line represents C, and red line RC. R is not shown, as it is
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training. However, despite this increased desensitization in the

presence of PKA, active PKA increases the recovery from

desensitization, as predicted by the model. The large difference

between the recovery in the presence or absence of the PKA

inhibitor, KT5720, is illustrated in Figure 5D.

Rescue from desensitization by Anti-Desensitizer (AD)
protein

The rescue from desensitization by the AD protein is modeled

using the black and red network components in combination

(Figure 6A, red pathway). Two data sets were used to estimate the

parameters of this component of the model: 90 min application of

5HT in the presence of KT5720 and five 5 min pulses of 5HT

with 15 min washes in between, all in the presence of KT5720

[13]. The model produced an excellent fit to both data sets

(R2 = 0.95 for spaced training and 0.99 for massed training)

(Figure 6B, D). One of the unexpected predictions of the model

was both a fast degradation of AD, (with a half-life of ,5 min) and

a slow rate of the SADRSOFF recycling.

To validate this component of the model, we designed a

protocol that would be sensitive to the fast degradation rate of AD.

This protocol consisted of exposure to 25 min of 5HT in the

presence of KT5720 then 65 min of 5HT in the presence of both

KT5720 and anisomycin, with no wash in between. This protocol

allows for the indirect observation of the degradation of AD and

the recycling of SAD back into SOFF. The addition of anisomycin

will terminate the translation of AD. During these last 65 min, the

model predicts that AD will decay and thus be less effective at

transforming SOFF into SAD (Figure 6C). The model further

predicts that the absence of AD will cause the remaining SAD to

recycle back into SOFF, where it will lose its protection from the

homologous desensitization pathway, which will manifest in

decreased PKC Apl II translocation. Thus, by observing the

increased amount of desensitization of this protocol in comparison

to when AD translation is present throughout, we can validate the

model’s predicted rate of AD degradation and rate of SAD

recycling back into SOFF. To test these predictions of the model, a

new imaging experiment was performed by applying this protocol

to Aplysia sensory neurons expressing eGFP-PKC Apl II. As

expected, the amount of PKC translocation observed in these

neurons during the first 25 min of 5HT was equivalent to that

observed during the 25 min of massed training in the presence of

KT5720, carried out by Farah et al. (2009) (Figure 6A, B).

However, the final 65 min of this protocol, where both KT5720

and anisomycin are present, caused a lower amount of PKC Apl II

translocation compared to that caused by massed training in the

presence of only KT5720, in agreement with the model prediction

(R2 = 0.99) confirming the fast degradation rate of AD and the

slow rate of SAD to SOFF (Figure 7C).

Modeling increase in desensitization by Desensitizer (D)
protein

During spaced training, the desensitization of PKC Apl II

translocation was increased in control cells in comparison to

when protein translation was inhibited. This increase in

desensitization was observable only when both PKA activity

and protein translation are allowed to proceed, meaning a

translated protein is mediating this increase and its rate of

translation is dependent on PKA activity. We name this

hypothetical protein Desensitizer (D), and its effects on PKC

Apl II translocation are modeled by the green component of the

network (Figure 2). Seven data sets were used to estimate the

parameters of this component of the model: one continuous

90 min application of 5HT, five pulses of 5HT each lasting 5 min

with 15 min washes in between, and five experiments, each with

two pulses of 5HT each lasting 5 min but with a different wash

period length (5 min, 10 min, 15 min, 30 min, 45 min,) in

between the pulses [13] (Figure 8A, C, E). The resulting model

formed an excellent fit to the data (R2 = 0.99 for massed training,

0.99 for spaced training, and 0.75 for two pulses of 5HT with

varying wash intervals). One exception is the 5 min pulse

followed by a 5 min wash, where there is an increase in PKC

Apl II translocation compared to the initial translocation, while

our model shows no increase in translocation. We believe fitting

this increase would require a more detailed dissection of the

pathway between the GPCR and its downstream targets and is

beyond the scope of this study.

Model successfully predicts the response to new spacing
protocols

As one of the rationales for generating this model was to gain

insight into the role of spacing, our final confirmation of the

model tested an alternate spacing protocol. We designed an

experiment that would require the functioning of all the model

components and that made a specific prediction that was not

obvious and could be tested. Interestingly, we found that if

15 min pulses of 5HT were used, the model predicted that longer

washes would lead to increased desensitization. While 15 min

pulses produce both D and AD, the model predicts that longer

washes will reduce the levels of AD compared to D and thus

predicts greater desensitization by longer washes (Figure 9B and

E). In particular note that the model predicts that with the shorter

spacing (Figure 9C), the amount of S complex in SAD is larger

than in SPKA immediately before the second pulse, while with

longer spacing (Figure 9F), the model predicts that there is more

S complex in SPKA, than in SAD. Thus, the second pulse of

serotonin during the protocol with longer spacing should be less

able to translocate PKC Apl II because of the conversion of SAD

to SPKA. To test this prediction, we performed a new imaging

experiment where sensory neurons were exposed to three 15 min

pulses of 5HT with either 15 min or 25 min washes in between

the 5HT pulses. The results of this protocol are also sensitive to

the delay and rate of D translation (parameters that had not yet

been validated in a separate experiment). Both protocols were

applied to Aplysia sensory neurons expressing eGFP-PKC Apl II.

The amount of PKC translocation during both protocols

matched the modeling prediction (R2.0.99) (Figure 9A, B, D,

and E) and thus validates this component of the model as well as

the functioning of the completed model. In particular, to

highlight the effect of the wash, we calculated the amount of

desensitization during the 15 min or 25 min wash (e.g. the

amount of translocation at the beginning of pulse 2 compared to

the end of pulse 1, or the beginning of pulse 3 compared to the

end of pulse 2). The model predicted more desensitization during

the longer wash and this was confirmed by the imaging

experiment (Figure 10).

identical to C. (Model adapted from [70]). D, PKC Apl II translocation in response to 565 min application of 5HT with 15 min washes in between and
anisomycin present throughout from Farah et al. (2009) (bars) and modeling output (line). E, Modeling of S dynamics in response to experimental
protocol from D. Black line represents the ratio of SOFF and SON to total S, the red line the ratio of SIN2 to total S, and the blue line represents ratio of
SPKA to total S.
doi:10.1371/journal.pcbi.1002324.g004
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Sensitivity analysis
A parameter sensitivity analysis was performed on the

completed model to investigate which parameters were most

important in driving the results of the model. Each parameter was

varied between +/25% and +/250% while holding the other

parameters at their defined values. The model was then simulated

using a 90 min application of 5HT and its resulting PKC Apl II

translocation compared to that observed by Farah et al. (2009),

which was initially used to fit the model. The sensitivity of a

parameter was classified as High if either a +/25% change in its

value caused a change in the fit of the data of over 25%. Similarly,

the sensitivity of a parameter was Medium if either a +/250%

change in value caused a change in the fit of the data of over 25%,

and Low if the +/250% change in value did not change the fit by

more than 25%. This was then repeated using a spaced

application of 5HT (565 min 5HT with 15 min washes). The

complete sensitivity analysis is summarized in Table 1.

Of the 41 parameters, 5 were classified as High, 12 as Medium,

and 6 as Low in both massed and spaced training sensitivity

analysis. Interestingly, the majority of the parameters (3/5) with

high sensitivity for both types of training were those associated

with the initial component of the model responsible for activating

PKC Apl II. The remaining two parameters involved how AD

works (the synthesis rate and its ability to stop S from going into

SPKA). It is not surprising that changing parameters that affect the

initial translocation of PKC Apl II by 5HT and its decay after

5HT is removed would have a large effect on the model output,

since the model was built around this core. However, these

parameters were chosen in a somewhat arbitrary fashion to fit the

initial data since the actual rates of DAG synthesis and decay are

not known in this system. To ensure that the set of values we chose

for these parameters are not critical for the working of the model,

we found another parameter set that could fit the initial

translocation data (see Table 1). Reassuringly, the rest of the

model still worked, suggesting that the model was not dependent

on the actual values for these initial parameters, just the ability of

the model to replicate the known rate of PKC Apl II translocation

and dissociation by 5HT.

The remaining 18 parameters had sensitivities dependent on the

type of 5HT application profile. Interestingly, about the same

number of parameters had specific high sensitivity for massed (5)

vs spaced (4). For spaced, two of these are again from the initial

model and the others concern the synthesis rate of D and AD.

Similarly, for massed, two of these are for the initial model and the

others concern the synthesis rate for D. The sensitivity analysis

suggests, similar to the experiments, that the critical parameters

that determine the model are involved in the synthesis of D and

AD.

Discussion

We have successfully modeled the differences in desensitization

of the PKC Apl II response to spaced and massed applications of

serotonin. Two major insights were achieved by this modeling.

The first was that despite the greater desensitization present with

PKA activity present, PKA activity actually protected the ability of

5HT to translocate PKC Apl II at later times due to placing the

signaling complex into a state where it could recover. The second

insight is that the major determinant of how the system responds

to spacing is the production and degradation rate of proteins,

suggesting that the production of proteins with short half-lives is a

powerful mechanism for cells to be able to sense a time domain in

the order of minutes to hours. While this model is probably not

unique, its proven ability to predict the results of new experiments

suggests that it has captured the essential elements of the biological

process it models.

Biological plausibility of the model
The architecture of our model is based on the fact that

desensitization and resensitization of GPCRs is due to endocytosis

followed by exocytosis, the simplest biological substantiation of the

states of S are distinct endocytic recycling pathways of the receptor

or distinct states of the receptor after association with GPCR

binding-proteins [29,39]. Below we review these processes and the

plausibility of the parameters we have assigned to these steps. We

also review other aspects of the model and whether the parameters

and architecture are biologically plausible.

SIN1, SIN2. SIN1 would represent a fast recycling pool, whereas

SIN2 would represent sorting to lysosomes or other slowly cycling

pools (i.e. back to the trans-Golgi network) [40,41]. The rate of

SON to SIN1 is less than a minute and similar rates have been seen

for internalization of GPCRs using live imaging, suggesting all the

steps in this process, including phosphorylation, arrestin binding

and endocytosis can occur in less than one minute [22,42]. The

back rate SIN1 to SOFF is also very fast, less than one minute and

this is faster than most measurements for resensitization of

GPCRs, where this usually takes minutes [22]; however there

are fast recycling pathways from endosomes that do occur in this

time range and thus this transition is still plausible [43]. It should

also be noted that both SON to SIN1 and SIN1 to SOFF rates are part

of the initial parameter set, for which we have already found

multiple parameter sets that could match the data without

changing the overall functioning of the model. SIN1 to SIN2 has

a rate of minutes, which is reasonable for sorting into a late

endosome [22,24]. It should be noted that there are multiple steps

after the initial sorting event prior to degradation in lysosomes,

and actual degradation usually is not seen until hours after

internalization [22,24]. The very slow return rate from SIN2 is

consistent either with slow recycling or degradation [22,24] and

we would need to examine much longer recovery times to resolve

this issue.

SPKA. SPKA would represent localization to a regulated

recycling pool [24]. The rate of heterologous desensitization

(SOFF to SPKA - minutes) is consistent with rates observed for

heterologous desensitization of other GPCRs [44]. It is known that

phosphorylation of receptors or associated proteins can regulate

the pool that they are found in [39] and thus the ability of PKA

phosphorylation to put the signaling complex into a specific

endocytic pool is plausible. Why PKA activity is required for

inhibition of the recycling pathway is less obvious. One could

envision a receptor binding protein important for recycling whose

Figure 5. Modeling and experimental validation of desensitization mediated by PKA pathway. A, Representative confocal fluorescence
images of sensory neurons expressing eGFP-PKC Apl II during a 90 min exposure to 5HT followed by a 45 min wash and then a 5 min 5HT
application, all in the presence of anisomycin. B, Quantification of PKC Apl II translocation (bars) and modeling output (line). Blue bars are data used
from Farah et al. (2009) to fit the model parameters. Red bars are from the present study (n = 10 cells). C, Modeling of S dynamics in response to
experimental protocol. Black line represents the ratio of SOFF and SON to total S, the red line the ratio of SIN2 to total S, and the blue line represents
ratio of SPKA to total S. D, Comparing PKC translocation at 135 min after the second 5HT pulse with PKA inactive (anisomycin and KT5720) and PKA
active (anisomycin). Student’s unpaired two-tailed T test conducted and statistical significance of p,0.01 illustrated by *.
doi:10.1371/journal.pcbi.1002324.g005
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Figure 6. Modeling the rescue from desensitization by Anti-Desensitizer (AD) protein. A, Model network pathways of AD desensitization
protection pathway (red network designates AD pathway). B, PKC Apl II translocation in response to 565 min application of 5HT with 15 min washes
in between and KT5720 present throughout from Farah et al. (2009) (bars) and modeling output (line). C, Top panel represents S dynamics in
response to experimental protocol from B. Black line represents the ratio of SOFF and SON to total S and the red line the ratio of SIN2 to total S, and
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ability to bind is blocked by continuous PKA phosphorylation.

Alternatively, PKA may regulate vesicular trafficking proteins that

regulate the fusion of a storage vesicle with the membrane.

SAD. The AD protein must prevent inactivation, prevent

endocytosis and promote faster recycling. It presumably does this

by binding to the GPCR. This binding can occur either to SOFF or

SPKA and in either case transforms S into SAD. In the model, the

requirement for the AD protein to recover the signaling complex

from SPKA suggests that the binding is dominant over the PKA site

and may be equivalent to the increased recycling seen when PKA

is turned off. Presumably the binding of AD would compete with

the speculated receptor binding protein important for retaining the

signaling complex in a PKA sensitive pool as well as prevent

cycling into SIN2. A number of proteins have been identified that

can both retain GPCRs on the membrane and speed recycling of

GPCRs, mostly PDZ proteins that bind to the carboxy-terminus of

receptors, and these would be candidates for AD [39,45].

Interestingly PDZ proteins such as PSD-95 have been shown to

be targets of fast synthesis and degradation [46,47].

Our model makes strong predictions concerning AD that will be

useful to ascertain the true identity of the AD protein. We predict

that over expression of the protein would be sufficient to prevent

desensitization. Furthermore, we predict that the protein should

bind directly to the GPCR that is responsible for PKC activation.

In the future, it will be interesting to test orthologues of these PDZ

proteins in Aplysia to identify binding partners to the GPCR that

have these properties.

The slow rate of SAD to SOFF is surprising, as one would expect

this rate to be fast once AD is degraded. It is possible that the AD

bound to the receptor degrades more slowly than the free pool of

AD. If AD was a PDZ domain-containing protein, the off rate of

PDZ proteins can be quite slow [48]. It should also be noted that

the SPKA to SAD rate is slower than the SOFF to SAD rate. Since

both rates may involve binding of AD to the receptor, one might

expect them to be the same. However, since SOFF and SPKA may

represent separate compartments, the availability of AD could be

different. It is also possible that AD is slower to bind the

phosphorylated receptor than the non-phosphorylated receptor.

D. The D protein promotes the movement of the complex

into the regulated recycling compartment. One protein that would

be a candidate for this would be the clathrin light chain that is

known to be translationally produced downstream of PKA in

sensory neurons [49] and is associated with target-specific clathrin-

mediated endocytosis events [50,51]. Since D mainly increases the

ability of PKA to move S into SPKA, it would be consistent for D to

be PKA itself or a protein involved in increasing activation of

PKA. However, while there is a protein-synthesis dependent

activation of PKA after spaced training [10], this is not observed

until after 4 or 5 pulses of 5HT, while D has a major effect after a

single pulse of 5HT. The amount of PKA activation is not

different after the second or third pulse compared to the first pulse

[10].

Speed of protein synthesis and degradation. The model

predicts that proteins are produced and degraded quite quickly, in

a time scale of minutes. The fast rate of protein production for

proteins involved in plasticity is becoming more widely accepted.

In mGLUR-LTD in hippocampal neurons, levels of Arc are

significantly increased 5 min after treatment [52]. In Aplysia,

protein synthesis is required for plasticity after 5HT as soon as

5 minutes after training or 5HT application [53,54]. The

degradation rates of the proteins are also fast, but not

inconsistent with other plasticity related proteins such as Arc

whose half-life appears to be on the order of minutes [55,56]. The

delay in production of D could be biologically caused by a number

of different models. One possibility is in the delayed activation of

the translation factors required for initiation. A larger protein will

have a longer lag between initiation and production of protein.

There may be a cascade of factors involved and perhaps

translation of an additional protein is required to initiate

translation of D. While the model puts the lag in the production

of D, it may be that after production D requires time to act, either

due to a requirement for posttranslational modification, or

transport to an important site. This would lead to an equivalent

delay.

Integrals, thresholds, and Hill functions. It was

important to allow AD protein to be synthesized during massed,

but not spaced, applications of 5HT, as discussed above. This

required us to differentiate the amount of time that PKC Apl II

was activated (longer in massed, than in spaced). We accomplished

this by integrating PKC Apl II activity over time and then

applying a Hill function in order to generate a threshold of PKC

Apl II activity that would lead to AD synthesis. We also used Hill

functions in a number of other steps (D synthesis and transforming

or inhibiting the transformation of S into its different states) as they

are well-behaved mathematical functions that are widely used in

biological modeling, especially when a nonlinear saturating

dynamic is desired and there is limited biological information on

the actual mechanisms underlying step or when multiple reactions

are modeled in one step [57].

Comparison to other models that explain timing during
plasticity

Spaced vs. massed training occurs in a number of different time

scales, thus molecular mechanisms are required that act in

different time domains. For example, induction of LTP by spaced

stimuli requires PKA, but not when massed stimulation is used

[58], and the spaced stimuli were required to recruit protein

synthesis-dependent mechanism [59]. A recent model explains this

finding based on the differential effects of calcium on PKA and

CAMKII. This model depends on inter-trial intervals that range

between seconds and 5 minutes [60]. The frequency dependent

activation of CAMKII is sensitive to timing intervals in this period

and is proposed to be the mechanism for sensing the spacing

between stimuli [61]. In mice object recognition was enhanced by

spacing of 15 min, compared to 5 min or massed training [62]. In

mice that lacked Protein Phosphatase 1 (PP1), 5 min spacing was

sufficient for learning. In this case the rate-limiting step for

learning was activation of CREB, and spacing was required in

order for PP1 to be deactivated before the next training trial

allowing for CREB activation [62]. CREB activation is also the

proposed difference between spaced and massed learning in

Drosophila odor avoidance [63]. In Drosophila, spacing is regulated

by waves of MAP kinase activation where both the activation and

decay kinetics appear critical for the spacing interval [64]. In

Aplysia, it has recently been demonstrated that for long-term

facilitation, only two spaced trials are required, 45 minutes apart,

but neither 30 nor 60 minute spacing is adequate [65]. Again, in

this case the spacing corresponds to a wave of MAP kinase

green line represents the ratio of SAD and SADON to total S. Bottom panel represents the amount of AD over time. D, PKC Apl II translocation in
response to 90 min application of 5HT and KT5720 present throughout from Farah et al. (2009) (bars) and modeling output (line). E, Top panel
represents S dynamics in response to experimental protocol from D. Line colours similar to in C.
doi:10.1371/journal.pcbi.1002324.g006
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Figure 7. Experimental validation of AD dynamics. A, Representative confocal fluorescence images of sensory neurons expressing eGFP-PKC
Apl II during a 90 min exposure to 5HT where during the first 25 min KT5720 alone was applied, while during the last 40 min both anisomycin and
KT5720 was applied. B, Quantification of PKC Apl II translocation (bars) and modeling output (line with square points). 90 min 5HT with KT5720 and
anisomycin (light blue bars) is similar to that shown in Figure 1C and 90 min 5HT with anisomycin (dark blue bars) is similar to that shown in
Figure 4D. These data points, from Farah et al. (2009), are reproduced here for comparison purposes with the following newly acquired data. Error
bars are SEM. Red bars represent quantification of eGFP-PKC Apl II translocation during experimental protocol from A (n = 9 cells) compared to line
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activation [65]. None of these cases directly implicate the rates of

protein synthesis or degradation as critical for timing, although it is

possible that the induction of MAP kinase activation at later times

may require protein synthesis. Interestingly, the activation of

CREB in mammals appears to require removal of CREB

repressor, which requires both blockade of translation through

eIF2a dephosphorylation [66] and increased degradation due to

proteosomal activation [67]. Thus, in this case regulating the level

of a protein also may mediate differences between spaced and

massed trained determining whether or not transcription is

activated. It will be interesting in the future to determine how

generally neurons sense time through measuring the half-life of

newly synthesized proteins.

Materials and Methods

Mathematical modeling
A mathematical model of the desensitization of PKC Apl II

translocation in Aplysia californica sensory neurons was constructed

in the MATLAB programming environment. The model consists

of a system of integro-differential equations with delays, where

each equation describes the change in concentration of the

proteins PKC Apl II, PKA, Desensitizer (D), Anti-Desensitizer

(AD), and of each instance of the signaling complex (S). Since we

are only interested in PKC Apl II translocation occurring between

the cytosol and plasma membrane [18] a single compartment

model was used.

The complete model is depicted in Figure 2. The colours of this

figure correspond to the components of the model. The model was

constructed in a sequential manner. First, the components outlined

in black and maroon were fit to data [13] at which point its

parameters were specified and not allowed to change. Following

these component’s completion, the component outlined in blue

was similarly constructed, then the red component and finally the

green component. In order to illustrate this sequential construction

within the model equations, we have named the parameters

according to which component they reside in: A for the black

component, B for blue, C for red, and D for green.

The most basic component of the model is the translocation of

PKC Apl II from the cytosol to the plasma membrane (maroon

component). This translocation is proportional to the concentra-

tion of diacylglycerol (DAG) on the membrane and thus the

translocation is given by the following equation:

d

dt
PKC~kDAGp

:(SONzSADON ){kDAGd
:PKC, ð1Þ

where kDAGp is the rate of PKC Apl II translocation to the

membrane, and kDAGd the rate of PKC Apl II removal from the

membrane. SON represents the proportion of S currently in the

active state, which is capable of translocating PKC Apl II to the

membrane. The inactive state of S is given by SOFF, and SIN1 is a

transition state between SON and SOFF. S can be transformed into

3 other states, as will be described next. We require the total

amount of S to remain constant by employing the following

restriction:
P

i

Si~STOT , where i = ON, OFF, IN1, IN2, PKA,

AD, and D. We scale each S variable by 1/STOT, such that all

parameters ki, i = A1–A5, B1–B2, C1–C2, and D1–D3 will have

units min21. We have set STOT = 1, where we refrain from

assigning units to the S variables since we cannot measure the

concentrations of PKA or PKC in Aplysia neurons in order to

accurately define a unit of measure. Furthermore, units are not

assigned to any variable with concentration as a possible

dimension. This simplification is justified since we have developed

a single compartment model of Aplysia sensory neurons to

qualitatively describe the dynamics of PKC desensitization. Using

non-dimensional variables and parameters allows us to observe

important dynamics, such as relative magnitudes of proteins and

the time course of S recycling, which allow us to gain insight into

the molecular regulatory mechanism involved in the desensitiza-

tion of PKC translocation.

The following equations describe the rates of change of

concentration of the first four S states:

d

dt
SON~kA1

:½5HT �:SOFF{kA2
:SON , ð2Þ

d

dt
SOFF ~{kA1

:½5HT �:SOFFzkA3
:SIN1zkA5

:SIN2z

kB2
:SPKA

: kB2a
kB2b

(kB2a
kB2bzPKAkB2b )

: kD2a
kD2b

(kD2a
kD2bzDkD2b )

{kC1
:SOFF

:ADzkC2
:SAD

: kC2a
kC2b

kC2a
kC2bzADkC2b

{

(kB1
:PKAzkD1

:D):SOFF
: kD1a

kD1b

kD1a
kD1bzAD

k
D1b

,

ð3Þ

d

dt
SIN1~kA2

:SON{(kA3zkA4):SIN1, ð4Þ

d

dt
SIN2~kA4

:SIN1{kA5
:SIN2, ð5Þ

where [5HT] represents the concentration of 5HT being applied

to the system and is given a standard value of 10 mM during any

application of 5HT, kA1 represents the transformation of SOFF into

SON, kA2 of SON into SIN1, kA3 of SIN1 into SOFF, kA4 of SIN1 into

SIN2, and kA5 of SIN2 into SOFF. The additional terms in equation

(3) refer to the further transformations that SOFF can undergo.

Without these additional terms these equations describe the black

model in Figure 3A. The first additional transformation of SOFF is

mediated by the catalytic subunit of PKA, where SOFF is converted

to SPKA, which has the following equation:

d

dt
SPKA~(kB1

:PKAzkD1
:D):SOFF

: kD1a
kD1b

kD1a
kD1bzADkD1b

{

kB2
:SPKA

: kB2a
kB2b

(kB2a
kB2bzPKAkB2b )

: kD2a
kD2b

(kD2a
kD2bzDkD2b )

{kD3
:SPKA

: ADkD3b

kD3azADkD3b
,

ð6Þ

with triangles for the modeling prediction of this experimental protocol (25 min 5HT with KT5720 followed by 65 min with KT5720 and ansiomycin).
F, Top panel represents S dynamics in response to experimental protocol from D. Black line represents the ratio of SOFF and SON to total S and the red
line the ratio of SIN2 to total S, and green line represents the ratio of SAD and SADON to total S. Bottom panel represents the amount of AD over time.
doi:10.1371/journal.pcbi.1002324.g007
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where kB1 is rate constant of the transformation from SOFF into

SPKA, which is brought about by the activity of the catalytic

subunit of PKA or the protein D. However, the protein AD,

through a Hill function with coefficient kD1b and half saturation

kD1a, can inhibit this conversion. The recycling of SPKA into SOFF

occurs with rate constant kB2, but is inhibited by PKA and D

through inhibiting Hill functions with coefficients kB2b and kD2b,

respectively, and half saturations kB2a and kD2a, respectively. Also,

activity of AD can convert SPKA into SAD with a rate constant kD3

and a Hill function with coefficient kD3b and half saturation kD3a.

The dynamics of the catalytic and regulatory subunits of PKA

are adapted from a model presented by Pettigrew et al. (2005),

where the changes to this model are described in the results. PKA

dynamics are given in the following equations:

d

dt
cAMP~Vm

½5HT �
k5HTz½5HT �{(cAMP{cAMPbasal), ð7Þ

d

dt
R~Kfpka

:RC:cAMP2{Kbpka
:R:C, ð8Þ

d

dt
C~Kfpka

:RC:cAMP2{Kbpka
:R:C, ð9Þ

d

dt
RC~{Kfpka

:RC:cAMP2zKbpka
:R:C, ð10Þ

Where Vm is the cAMP synthesis rate constant, and K5HT is the

half saturation of the Hill function associated with cAMP synthesis.

Kfpka is the rate constant associated with the dissociation of the

catalytic and regulatory subunits, while the reassociation rate is

given by Kbpka. The amount of PKA activity is set equal to the

amount of the free catalytic subunit (C); PKA = C. The parameters

associated with protein synthesis are given the subscript S to

differentiate them from signaling complex dynamics. The synthesis

of AD and D are given by the following equations:

d

dt
AD~kS1

: f (PKC,t)kS1b

kS1a
kS1bzf (PKC,t)kS1b

{kS2
:AD, ð11Þ

f (PKC,t)~

ðt

t{int PKC

PKC(t):dt, ð12Þ

d

dt
D~kS3

: g(PKA,t)kS3b

kS3a
kS3bzg(PKA,t)kS3b

{kS4
:D, ð13Þ

g(PKA,t)~

ðt

t{int PKA

PKA(t{delayD):dt, ð14Þ

AD synthesis depends on the total activity of PKC Apl II over a

previous time window of duration given by intPKC in equation

(12). The integration of PKC Apl II activity leads to the synthesis

of AD through a Hill function with coefficient kS1b and half

saturation kS1a. kS2 represents the AD degradation constant.

Similarly, D synthesis depends on an integration of PKA activity

over a time period of intPKA in equation (14), which leads to the

synthesis of D with a rate constant of kS3 and through a Hill

function with coefficient kS3b and half saturation kS3a. The

degradation of D is given by rate constant kS4. D leads to the

transformation of SOFF into SPKA, which was described above in

equation (6), while AD transforms SOFF into SAD, whose dynamics

are modeled with the following equation:

d

dt
SAD~kC1

:SOFF
:AD{kA1

:½5HT �:SADz

kA2
:SADON{kC2

:SAD
: kC2a

kC2b

kC2a
kC2bzADkC2b

zkD3
:SPKA

: ADkD3b

kD3a
D3bzADkD3b

,

ð15Þ

where kC1 is the rate constant associated with the transformation

of SOFF into SAD, kC2 the rate constant of the recycling of SAD into

SOFF, which can be inhibited by AD through a Hill function with

coefficient kC2b and half saturation kC2a. Also, SAD can become

activated when 5HT transforms it into SADON, whose dynamics

are given in the following equation:

d

dt
SADON~kA1

:½5HT �:SAD{kA2
:SADON , ð16Þ

whose transformation and recycling rate constants are identical to

those of SOFF into SON. SADON activates PKC Apl II in an

identical fashion to SON in equation (1).

The system was solved numerically by employing a 4th order

Runga-Kutta scheme to solve the differential equations and the

Trapezoid Rule to solve the integrals [68]. Parameter estimation

was conducted with the help of the MATLAB Optimization

Toolbox and Global Optimization Toolbox, specifically the

functions lsqcurvefit, ga, and fmincon. These functions were used

to minimize the least squares distance between the modeling

output and experimental data. Values of individual parameters are

given in Table 1.

Figure 8. Fitting complete model to PKC translocation measured during no pharmacological interventions. A, PKC Apl II translocation
in response to 565 min application of 5HT with 15 min washes in between (bars) and modeling output (line). B, Top panel represents S dynamics in
response to experimental protocol from A. Black line represents the ratio of SOFF and SON to total S, red line the ratio of SIN2 to total S, green line
represents the ratio of SAD and SADON to total S, and blue line represents the ratio of SAD and SADON to total S. Middle panel is the amount of AD over
time and the bottom panel is the amount of D over time. C, PKC Apl II translocation in response to a 90 min application of 5HT (bars) and modeling
output (line). D, Top panel represents S dynamics in response to experimental protocol from G, with line colours identical to in B. Middle panel
represents the amount of AD over time and the bottom panel the amount of D over time. E, PKC Apl II translocation in response to 265 min
applications of 5HT with varying wash periods in between (black line) and modeling output (red line).
doi:10.1371/journal.pcbi.1002324.g008
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Aplysia cell culture preparation
Adult Aplysia californica (76 to 100 g; University of Miami Aplysia

Resource Facility, RSMAS, FL) organisms were anesthetized by

an injection of 50 to 100 ml of 400 mM (isotonic) MgCl2.

Pleuropedal ganglia were removed and digested in L15 medium

containing 1% protease type IX (Sigma). L15 medium was

purchased from Sigma and supplemented with 0.2 M NaCl,

26 mM MgSO4?7H2O, 35 mM dextrose, 27 mM MgCl2?6H2O,

4.7 mM KCl, 2 mM NaHCO3, 9.7 mM CaCl2?2H2O, 15 mM

HEPES, and the pH was adjusted to 7.4. Following digestion, tail

sensory neurons were isolated and plated in L15 medium

containing 50% Aplysia hemolymph on MatTek glassbottom

culture dishes (MatTek Corporation, Ashland, MA) with a glass

surface of 14 mm and a coverslip thickness of 0.085 to 0.13 mm.

The dishes were pretreated with poly-L-lysine (molecular weight,

.300,000; Sigma).

Plasmid construction and microinjection of plasmid
vectors

The pNEX3 enhanced green fluorescent protein (eGFP) PKC

Apl II has been described previously [13,19,69]. On day 1 after

isolation, solutions of plasmids in distilled water containing 0.25%

fast green were microinjected into neurons from back-filled glass

micropipettes. The tip of the micropipette was inserted into the

cell nucleus, and short pressure pulses (10–50 ms duration; 20 lb/

in2) were delivered until the nucleus became uniformly green. The

cells were incubated for 4–5 hrs at room temperature and then

kept at 4uC until use.

Confocal microscopy of Aplysia neurons
Neurons expressing eGFP-PKC Apl II were imaged on a Zeiss

laser-scanning microscope (Zeiss, Oberkochen, Germany) with an

Axiovert 200 and a640 or663 oil immersion objective with a 25-

mW argon laser with 25% laser output. The laser line was

attenuated to 4% transmission output prior to live imaging. 5HT

(10 mM) was added to the dish in L15 medium containing 50%

hemolymph. 5HT was washed away with artificial seawater (ASW;

10 mM HEPES, pH 7.5, 0.46 M NaCl, 10 mM KCl, 11.2 mM

CaCl2?2H2O, 55 mM MgCl2?6H2O). For spaced training,

neurons received five applications of 10 mM 5HT (5 min each)

at an intertrial interval (ITI) of 20 min. For massed training,

neurons received a single continuous application of 10 mM 5HT

for 90 min. All experiments were performed at room temperature

(20 to 23uC).

Drug treatment
Anisomycin (Sigma-Aldrich), and KT5720 (Calbiochem) were

used at concentrations of 50 mM, and were present in the media

throughout spaced or massed training. There was no pre-

incubation with these drugs prior to 5HT treatment and because

of this we erred on the high side of the concentrations that have

been used previously. The controls used in all experiments were

always performed from the same batch of animals when the drugs

were used. The translation inhibitor anisomycin was purchased

from Sigma-Aldrich.

Image analysis
The level of PKC Apl II translocation for each cell was

determined by tracing three rectangles at random locations at the

plasma membrane and three rectangles at random locations in the

cytosol. The width of the membrane rectangles was three-five

pixels wide to avoid cytoplasmic contamination, but otherwise the

size of the rectangles was not constrained. The average intensity at

the membrane (Im) and the average intensity in the cytosol (Ic) was

then calculated and the Im/Ic ratio is the degree of membrane

association. In all figures, the control used to normalize the

translocations in the presence of a drug is the post 5HT #1 in the

presence of that drug.

Figure 9. Longer wash periods lead to greater desensitization of PKC Apl II translocation. A, Representative confocal fluorescence images
of sensory neurons expressing eGFP-PKC Apl II during a 3615 min application of 5HT with 15 min washes in between. B, Quantification of PKC Apl II
translocation (bars, n = 9 cells) and modeling output (line). Error bars are SEM. C, Top panel represents S dynamics in response to experimental
protocol from A. Black line represents the ratio of SOFF and SON to total S, red line the ratio of SIN2 to total S, green line represents the ratio of SAD and
SADON to total S. Middle panel represents the amount of AD over time and the bottom panel the amount of D over time. Dotted line represents time
of second and third 5HT application. D, Representative confocal fluorescence images of sensory neurons expressing eGFP-PKC Apl II during a
3615 min applications of 5HT with 25 min washes in between. E, Quantification of PKC translocation (bars, n = 6 cells) and modeling output (line).
Error bars are SEM. F, Top panel represents S dynamics in response to experimental protocol from E. Black line represents the ratio of SOFF and SON to
total S, red line the ratio of SIN2 to total S, green line represents the ratio of SAD and SADON to total S. Dotted line represents time of second and third
5HT application. Middle panel represents the amount of AD over time and the bottom panel the amount of D over time.
doi:10.1371/journal.pcbi.1002324.g009

Figure 10. Quantifying the amount of desensitization of PKC
Apl II translocation occurring during wash periods. Left pair of
bars represent the amount of PKC Apl II translocation at the 5 min point
of the second pulse divided by the amount of PKC Apl II translocation at
the 15 min point of the first pulse. Right pair of bars represents the
amount of PKC Apl II translocation at the 5 min point of the third pulse
divided by the amount of PKC Apl II translocation at the 15 min point of
the second pulse. Red bars correspond to 15 min 5HT with 15 min
washes (n = 9) and Orange to 15 min 5HT with 25 min washes (n = 6).
Student’s unpaired two-tailed T test conducted and statistical
significance of p,0.05 illustrated by *.
doi:10.1371/journal.pcbi.1002324.g010
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