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Abstract
We examined biofilms formed by the metabolically versatile bacterium Rhodopseudomonas
palustris grown via different metabolic modes. R. palustris was grown in flow cell chambers

with identical medium conditions either in the presence or absence of light and oxygen. In

the absence of oxygen and the presence of light, R. palustris grew and formed biofilms

photoheterotrophically, and in the presence of oxygen and the absence of light, R. palustris
grew and formed biofilms heterotrophically. We used confocal laser scanning microscopy

and image analysis software to quantitatively analyze and compare R. palustris biofilm for-

mation over time in these two metabolic modes. We describe quantifiable differences in

structure between the biofilms formed by the bacterium grown heterotrophically and those

grown photoheterotrophically. We developed a computational model to explore ways in

which biotic and abiotic parameters could drive the observed biofilm architectures, as well

as a random-forest machine-learning algorithm based on structural differences that was

able to identify growth conditions from the confocal imaging of the biofilms with 87% accu-

racy. Insight into the structure of phototrophic biofilms and conditions that influence biofilm

formation is relevant for understanding the generation of biofilm structures with different

properties, and for optimizing applications with phototrophic bacteria growing in the biofilm

state.

Introduction
Biofilms are characterized by bacterial adherence to surfaces followed by growth to high cell
population densities within a self-produced exopolysaccharide matrix. Biofilm formation has
the potential to be either problematic or beneficial. In medical contexts, unwanted bacterial
growth in the biofilm state can cause disease and exacerbate the development of antibiotic
resistance [1,2]. Environmental biofilms can cause biofouling and corrosion in industrial set-
tings that slow productivity [3,4]. Beneficial applications for bacterial biofilms include
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bioremediation [5], wastewater treatment [6], and biohydrogen production [7,8]. Phototrophic
bacteria in particular are important for wastewater remediation and sustainable bioenergy pro-
duction [9,10,11,12]. A high density of bacteria, such as is achieved in the biofilm state, has
been considered desirable to increase efficiency of these nascent technologies [13,14].

There is ongoing interest in understanding the properties, organization, and development
of biofilm systems in order to combat biofilm formation when it is problematic, and encourage
it when it is desired [15]. Many studies have analyzed factors that influence the formation of
heterotrophic biofilms, including the type and availability of nutrients [16,17,18,19], the flow
velocities and hydrodynamic effects [20,21,22,23,24], the properties of the attachment surface,
and the dependence of the microbial community structures on physiochemical parameters
such as oxygen and light [25,26,27]. Several studies have examined factors that influence bio-
films formed by mixed species of phototrophic bacteria [28,22,6,29]. This current study of bio-
film formation by monospecies phototrophic bacteria contributes to our understanding of how
phototrophic biofilms develop in response to light. Knowledge of the dynamics of non-patho-
genic strains capable of phototrophic growth in high cell population densities will have impor-
tant implications for both theoretical research and practical technologies.

Rhodopseudomonas palustris is a metabolically versatile phototrophic bacterium that can
grow using all four major metabolic modes: photoautotrophic, photoheterotrophic, organohe-
terotrophic, and chemoautotrophic [30,31]. These bacteria are commonly found in the oxic to
anoxic transition zones of natural bodies of water and marsh-like habitats. Under anoxic con-
ditions and in the presence of light, R. palustris grows via a photoheterotrophic metabolism in
which it derives energy from light and can use organic compounds such as succinate or acetate
as electron donors. Under oxic conditions and in the absence of light, R. palustris can grow
(organo)heterotrophically, obtaining energy, electrons, and carbon from organic compounds.
The versatile metabolism of R. palustris enables examination of the influences of the metabolic
growth mode on biofilm formation within a single species.

In this work, we analyze and compare the biofilms formed by R. palustris under photoheter-
otrophic and heterotrophic metabolisms. We experimentally identify differences in their archi-
tectures and develop a complementary two-dimensional computational model with the aim of
understanding the biotic and abiotic factors that give rise to such differences. The model is a
two-dimensional hybrid discrete-continuum model. Hybrid models have been shown to be a
good approximation of accurate but more computationally intensive continuum models [32].
Such models describe biofilm colonies as probabilistic cellular automata occupying a discrete
grid superimposed on a continuous nutrient concentration field, and have been used by several
authors previously to model heterotrophic biofilm development (for a review, see Wang and
Zhang [33]). We extended this framework by incorporating light dependence and surface ten-
sion effects. The computational model tests the hypothesis that the experimentally observed
differences in structure between heterotrophic and photoheterotrophic biofilm growth can be
reproduced by considering the dual limitations of diffusive media access, with its effects on
porosity, and attenuating light access, with its effects on biofilm depth.

Materials and Methods

Growth Conditions
R. palustris was grown in a defined salts medium [34] with 10 mM sodium succinate as the car-
bon source. For growth in liquid culture under phototrophic conditions, cultures were grown
in deoxygenated medium that was sealed in Balch tubes and cooled after autoclaving with
nitrogen gas. Cultures were incubated in front of light from a 60W incandescent light bulb. For
growth under non-phototrophic conditions, cultures were grown aerobically in a 30°C
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incubator that was shaking at 250 rpm. Bacterial biofilms were grown in flow cells using meth-
ods adapted from Sternberg and Tolker-Nielson [15]. To initiate biofilm growth, exponentially
growing liquid cultures were inoculated into individual biofilm flow cell chambers using sterile
syringes with subQ needles (BD, Franklin Lakes, New Jersey). The R. palustris liquid cultures
were inoculated at an optical density of 660 nm between 0.6 and 0.8. One hour after inoculation
of the biofilm flow cells, the peristaltic flow of the mineral salts medium was started at a flow
rate of 3 ml per minute. Biofilm growth experiments were carried out at 25°C. For photohetero-
trophic growth conditions, biofilms were inoculated and grown under anaerobic conditions
within an anaerobic chamber (Coy Laboratories, Grass Lake, Michigan) under illumination
from a 60W incandescent lightbulb. For non-phototrophic and heterotrophic growth condi-
tions, biofilms were grown aerobically and incubated in the dark with biofilm chambers
wrapped in aluminum foil. The biofilms that developed within the flow cell chambers were
imaged using confocal microscopy.

Image acquisition and analysis
Confocal stacks were taken using an inverted Leica SP5 RS AOBS microscope with a 63X glyc-
erol immersion lens. Confocal reflectance at 633 nm was used for cell imaging. For early stage
growth, depths of up to 100 μmwere easily visible. Anaerobic biofilms older than seven days
post inoculation or aerobic biofilms older than ten days post inoculation were found to be too
overgrown to provide reliable data due to light attenuation. Attenuation of the light was sub-
stantial in these late-stage growth samples with acceptable signal to noise levels obtainable only
to depths of 30–40 μm.

Data were collected for six different inoculation dates for both heterotrophic and photohe-
terotophic biofilm growth conditions with 1–3 replicate samples per inoculation date. Data
were collected from 2–14 days post inoculation to observe the full development of the biofilms.
On each day that a sample was studied, between 5 and 10 confocal stacks were taken to get a
representative sampling of the biofilm structure (see S1 Table). Additionally, a visual survey of
the entire sample was conducted to ensure uniformity across the sample chamber. The com-
plete data set includes a total of 324 confocal stacks. Each stack images a 145–160 μm square
with depth appropriate to the biofilm thickness to date. Images were spaced at depths intended
to optimize for the vertical resolution of the microscope configuration.

For quantitative analysis of these images, we developed software image processing methods
based on those provided in the COMSTAT image analysis program created by Heydorn et al.
[16]. Whereas the original COMSTAT methods used only one intensity threshold throughout
an image stack, our implementation corrects for diminishing light penetration through an
adaptive threshold that varies from image to image. These thresholds are selected at specified
depths by the user, and then linearly interpolated for all intermediate images. In addition to the
analyses present in COMSTAT, we implemented an average area coverage as a function of
depth calculation to illustrate the depth-dependent structure of the biofilm.

Computational Model
We developed a computational model that incorporates abiotic and biotic parameters to
describe the growth and maturation of R. palustris biofilms for the purpose of modeling light-
dependent structures observed experimentally. The discrete grid for our model is comprised of
uniformly-sized, rectangular cells in the x-z plane. Each grid cell has two possible states: bio-
mass-filled or media-filled. The grid has finite size (w, d), with reflective boundaries at the sub-
strate z = 0, the bulk media z = d, and artificial sides x = {0, w}. For w> 102, the difference
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between periodic and reflective borders becomes negligible; therefore, we used reflective bor-
ders to increase computational efficiency.

We considered two separate time scales: (1) nutrient concentration equilibration, and (2)
bacterial cell division. Given our experimental setup in which a constant flow of nutrient-rich
solution exists above the biofilm, the nutrient concentrations equilibrate instantaneously rela-
tive to the much slower process of cell division. We discretized time with two components to
each time step:

1. Light intensity and mean equilibrium nutrient concentration are calculated at every grid
cell.

2. Biomass grid cells replicate stochastically based on the light and media fields and the exist-
ing structure of the biofilm.

In the model, time begins with all grid cells set to be filled with medium except for an inocu-
lation of biomass cells separated equally by an integer distance s. Time steps continue until a
prescribed biomass count is reached or the probability of division is negligible. Note that we do
not consider cell death or structural deformations via hydrodynamic shearing and erosion. In
both experiment and model, we are concerned with only early-growth biofilms, rendering cell
death a negligible effect. Similarly, flow velocities and structural depths are low enough such
that shearing and erosion are rare. Cell motion along the coverslip or within the biofilm is also
neglected.

Factors affecting cell division. Cell division in the model is governed by access to nutri-
ents in the medium and, for photoheterotrophs, light intensity at appropriate wavelengths. At
lower flow velocities, we approximated the fluid dynamics near the biofilm-bulk media inter-
face as forming a boundary layer of velocity-dependent thickness b due to large differences in
convective and diffusional transfer rates [35]. In two dimensions, we represented this boundary
layer using a circular dilation of radius b. In bulk media, we assumed that the nutrient concen-
tration is constant, whereas nutrient penetration into the biofilm is achieved solely through
diffusion across the boundary layer. We described the concentration gradient using the two-
dimensional equilibrium diffusion equation with a reflective boundary at the coverslip and
artificial fluid borders:

Dr2n ¼ uðnÞ ð1Þ

nðbulk mediaÞ ¼ 1;
@n
@z

ðcoverslipÞ ¼ 0;
@n
@x

ðborderÞ ¼ 0 ð2Þ

n(x, z) is the nutrient concentration field measured relative to the bulk media concentration, D
is the diffusion constant, u and is the biological uptake rate for a given concentration. Inside
grid cell (x, z), we follow the approximation made by Hermanowicz [36] and define

uxz ¼ u0cxznðx; zÞ ð3Þ

Where u0 is a constant uptake parameter, and cxz is unity if the cell is biomass-filled and zero
otherwise. We simplify (1) by defining a uptake-diffusion ratio r = u0 / D, yielding

r2n ¼ rcxzn ð4Þ

The uptake-diffusion ratio r is related to the Thiele modulus parameters as studied in litera-
ture [36]. We find the equilibrium concentrations n(x, z) at each cell using an implicit finite-
differences method discretized over the same cellular grid and the UMFPACK unsymmetrical
sparse linear system solver [37].
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For light-dependent biofilms, the additional factor of the cell division rate due to the light
intensity at a given cell was included. We modelled the light with a uniform light source at the
coverslip pointing in theþẑ direction. We neglected any backscattered or otherwise-oriented
light given its low intensity compared to the vertical light introduced by the incandescent bulb.
As follows from the exponential attenuation of light in an absorbing medium, we defined the
light intensity at a grid cell (x, z) to be

Ixz ¼ I0 exp � 1

p

Xz

i¼0

cxi

 !
ð5Þ

where p is the characteristic penetration depth of the light.
We translated light intensities and nutrient concentrations into a probability of division per

time step via Monod kinetics [35]. We defined the Monod probability factor K to be

Kðy; y1=2Þ ¼
y

y þ y1=2
ð6Þ

where y is a positive dimensional quantity and y1/2 is the value of y at which a cell will divide
with probability ½ per time step when all other probability factors are unity. Hence, the divi-
sion probability of a biomass-filled cell (x, z) is

PðdivisionÞxz ¼
(

Kðnxz; n1=2Þ light independent

KðIxz; I1=2ÞKðnxz; n1=2Þ light dependent

)
ð7Þ

where I1/2 and n1/2 are variable model parameters. Note that I0 is incorporated into I1/2. Within
a single time step, every such Pxz is computed along with a random value Vxz, which is drawn
uniformly from the range [0, 1]. If Pxz > Vxz, then the cell (x, z) is considered to be dividing.

Factors affecting daughter cell placement. The effect of cell division on the morphology
of the biofilm is driven by complex biomechanical interactions between parent and daughter
cells, as well as their surrounding cell neighborhood. Cell division can create nonlocal perturba-
tions to the morphology through a chain of displacements such that the net effect may be the
displacement of an existing cell several cell lengths away from the dividing cell. Since the bio-
mass-filled cells are indistinguishable in our model, the displacement of an existing cell can be
modeled as the creation of a daughter cell in its new displaced location (see, for example, Her-
manowicz [35]). We approximated such morphological perturbations stochastically under the
following assumptions:

a. daughter cells must always be connected to the existing biofilm,

b. the probability of a perturbation is inversely related to the distance from the parent cell, and

c. the probability of a perturbation is also inversely related to changes induced in the biofilm
surface energy.

Our model examines a block of N -by- N grid cells centered on a dividing biomass cell at
(x0, z0), where N is odd and large relative to the perturbation length scale. We immediately
assigned a daughter cell placement probability of zero to all biomass cells and to all empty cells
not adjacent to a biomass cell, satisfying assumption (a). The remainder of the cells are
assigned the probability

PðplacementÞxz ¼ A � ðRxzÞaðSxzÞb ð8Þ

where R is the placement distance factor, S is the surface energy factor, α and β are model
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weightings for the two factors, and A is a normalization factor. We define R to be the reciprocal
of the Euclidian distance:

Rxz ¼
1

ðx � x0Þ2 þ ðz � z0Þ2
ð9Þ

with the ½ power included in α.
While the true surface energy of the biofilm is a function of three-dimensional surface area,

we modeled its effect in two-dimensions as a result of changes in the perimeter of biomass
cells. Within the N -by- N block, we considered the perimeter L to be the number of grid cell
edges that occur between an empty cell and a biomass cell. Then, for a surface tension γ and a
change in perimeter ΔLxz produced by a daughter biomass cell at (x, z), we obtained:

DExz ¼ gDLxz ð10Þ

We translated the energy cost of increased perimeter into the probability factor S using
Maxwell-Boltzmann statistics:

Sxz ¼ e�DExz=kT ð11Þ

Assuming that both γ and T are constant across the biofilm, we included them in β such
that:

Sxz ¼ e�DLxz ð12Þ

Finally, we calculated the normalization factor as:

1

A
¼
X
x;z

ðRxzÞaðSxzÞb ð13Þ

The P(placement) may become numerically unstable for very small R and S. We therefore
defined a cutoff value Amax = 1012 above which we do not place a daughter cell. Values of A
above Amax corresponded to cells dividing deeply within the biofilm, where the nearest vacant
grid cell is on the order of N / 2 cells away. Such events are rare as cells are much less likely to
divide in the interior of the biofilm. The final daughter cell locations were chosen by iterating
randomly though the set of dividing cells and selecting an empty grid cell according to the P
(placement) distribution for the particular dividing cell.

Model Parameter Summary. The complete model parameters are shown in Table 1. In
summary, these parameters can be directly related to factors influencing the experimental sys-
tem as follows. The inoculation separation distance is a two-dimensional analog of the initial
inoculation density in experiments. The boundary layer thickness is a parameter experimen-
tally related to the flow velocity of the medium past the biofilm during growth with faster
velocities resulting in smaller boundary layer thicknesses. The nutrient uptake-diffusion ratio
represents the ratio of the rate at which the bacteria consume succinate to the diffusion con-
stant of the succinate through the biofilm. The light penetration depth at the phototrophic
wavelength for R. palustris is a measurable quantity, which we have determined as approxi-
mately two microns in late-stage biofilm growth for the experimental system, although based
on qualitative observations, this is likely a strong function of biofilm age and density. The
Monod parameters, as explained above, are derived from a standard Monod kinetics model of
cell division. α and β are weightings between two approximations of processes involved in the
restructuring of the biofilm during cell division, namely the chain of biomechanical displace-
ments caused by the creation of the daughter cell and the presence of a surface tension across
the exterior of the biofilm. The mechanical and rheological properties of the biofilm influence
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the chain of displacements, whereas the nature and composition of the exopolysaccharide
matrix influence the biofilm surface tension.

While the approximations made within the model prevent exact quantitative mapping of
numerical values from experiment to the results from the model, by studying this model we
can achieve qualitative understanding of how modification of experimental parameters can be
expected to affect the resultant biofilm structure.

Random Forest Classifier and Regression Analysis. To evaluate the extent to which the
experimentally observed morphology is indicative of the growth conditions, we applied a
supervised machine-learning algorithm to analyze data derived from experiment and classify
whether a sample belonged to a biofilm formed by photoheterotrophic growth or by heterotro-
phic growth. Initially, we applied this algorithm to two-dimensional slices of the image stack
data. The dataset was comprised of 100 slices extracted from each of the 324 image stacks,
yielding a total dataset size of 324,000. Each slice was 96 μm long and 20 μm deep, starting at
and perpendicular to the coverslip. For each slice, we provided the machine-learning algorithm
with features that were representative of morphology, specifically, the age of the slice in days
and 21 samples of the slice’s average coverage vs. depth curve taken every 1 μm from the cover-
slip up to 20 03BCm deep. Note that the 21 coverage points were normalized to sum to 1 such
that they could be compared directly between slices of differing biomass. Each slice in the data-
set was labeled with the growth conditions of the biofilm, either 'heterotrophic’ or ‘photoheter-
otrophic’. The learning algorithm was a random forest classifier with 1000 estimators, a Gini
impurity criterion, and a maximum of 5 features considered for each split [38,39].

When applied to results from the computational model, some modifications to the classifier
were necessary to make the connection between the model and the experimental slice data,
since the model has no inherent physical time scale or space scale. While the number of steps
taken by the model to reach a given biomass is analogous to experimental sample age, an accu-
rate conversion is difficult to make; therefore, we used only biomass as a classifier feature and
excluded time. For physical scale, assigning each model grid cell to be 1 μm by 1 μm yielded
qualitative agreement in feature scale between model and experimental morphologies. We also
did not include the first 2μm of coverage data from the model given both the simplifications
made when describing the initial biofilm colonization of the coverslip and qualitative differ-
ences between the model and experimental results near the base layer. The modified random
forest classifier used 19 features: total biomass and the normalized coverage sampled every
1μm from 2 to 20 μm above the coverslip.

Table 1. Parameters and value ranges explored in the computational biofilmmodel.

Parameter Symbol Units Value(s)

Grid width w L 128

Grid depth d L 40

Inoculation separation distance s L 1–64

Boundary layer thickness b L 1–16

Nutrient uptake-diffusion ratio r 1/L2 0–5

Characteristic light penetration depth p L 0–30

Light intensity Monod parameter I1/2 – 0–1

Nutrient concentration Monod parameter n1/2 – 0–1

Cell placement block length N L 11

Placement distance factor weighting α – 0–3

Surface energy factor weighting β 1/L 0–3

Placement normalization cutoff Amax L2α 1012

doi:10.1371/journal.pone.0129354.t001
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The exploration of the model parameter space consisted of 470,000 samples taken uniformly
from the parameter ranges described in Table 1. Each sample of the parameter space was
grown to a target biomass chosen at random and uniformly from the range of 0 to 40. We used
the above classifier to assign a probability of displaying heterotrophic-like morphologies to
each parameter space sample. For a coarse evaluation of the effect of model parameters on the
assigned heterotrophic probability, we performed a regression analysis using random forests
with 500 estimators and a mean squared error criterion [38].

Results and Discussion

R. palustris growth and biofilm formation
R. palustris growing photoheterotrophically in the presence of light in batch liquid culture
under anaerobic conditions grew to higher cell yields than R. palustris growing heterotrophi-
cally and aerobically in the dark (Fig 1). The doubling time of R. palustris growing anaerobi-
cally was 10.8 ± 1.4 hrs, and the doubling time growing aerobically was 11.8 ± 1 hrs. This is
comparable to generation times previously observed in the literature [40]. The yield of the
cultures growing phototrophically was 55% greater than the cell yield of R. palustris growing

Fig 1. Growth ofR. palustris in batch culture under anaerobic or aerobic conditions. Cultures were
grown in triplicate with 10 mM succinate as the sole carbon source. The doubling time of R. palustris growing
anaerobically and phototrophically was 10.8 hrs ± 1.4 hrs, and the doubling time of R. palustris growing
aerobically and heterotrophically was 11.8 hrs ± 1.0 hr.

doi:10.1371/journal.pone.0129354.g001
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under heterotrophic and aerobic conditions. The energetic benefit of conversion of light to
chemical energy may explain this difference in cell yield.

R. palustris biofilms formed under photoheterotrophic and heterotrophic conditions dif-
fered in development over time. Similar to growth in batch liquid culture, the biofilms formed
by R. palustris growing anaerobically and phototrophically display a faster increase in biomass
than the biofilms formed by the bacterium growing heterotrophically under aerobic conditions
(Fig 2). During the first five days after inoculation, a difference of means test indicates that the
growth rate (biomass over time) of the anaerobic biofilms was significantly faster than the
growth rate of the aerobic biofilms (0.44 μm/day vs 0.18 μm/day, p< 0.0001). The early stages
of biofilm formation of R. palustris growing via either metabolic mode were characterized by
the formation of microcolonies followed by a base layer of cells covering the surface. During
later stages of growth under both conditions, the biofilms formed dense, nearly uniform assem-
blages throughout the depth that could be imaged. However, in the intermediate stages of bio-
film formation, clusters of cells formed pillar structures of different and characteristic
morphologies depending on whether the bacteria were growing phototrophically or heterotro-
phically (Fig 3). We conducted control experiments to establish if the density of the inoculum
could affect the resulting biofilm structure, and we saw no discernable effect over the accessible
range of inoculation densities.

Phototrophic R. palustris biofilms were characterized by pillar-like structures that fanned
out at the top into distinctive “T” or mushroom shapes. In contrast, biofilms formed by R.
palustris growing under aerobic and heterotrophic conditions were characterized by pillars
that decreased in width with increasing distance from the coverslip. The morphological differ-
ences in the biofilms grown via different metabolisms were observed at points of similar bio-
film thickness and cell population density indicating that the structural differences observed
are not dependent on cell population factors.

We computed the average biofilm area coverage as a function of depth from the coverslip as
a representative metric of column shape. The aerobic, heterotrophic biofilms showed coverages
that decreased monotonically away from the coverslip at all times after inoculation (Fig 4A),
while the phototrophic biofilms displayed non-monotonic behavior at intermediate times
(Fig 4B). For intermediate-time phototrophic biofilms, the coverage is large within the base

Fig 2. Biomass versus time since inoculation ofR. palustris biofilms formed under aerobic and
anaerobic conditions. Amodified implementation of the COMSTATmethods [16] was used to quantify the
biomass of anaerobic and aerobic biofilms. Each data point represents an individual scan.

doi:10.1371/journal.pone.0129354.g002
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Fig 4. Average biofilm coverage as a function of distance from the coverslip for R. palustris biofilms grown under (A) heterotrophic and (B)
photoheterotrophic conditions. Each curve is labeled by the time since inoculation and represents an average of multiple scans within each sample
obtained by interpolation and binning of values at similar depths. The mean standard deviation for coverage values binned at the same depth was 2.5%. The
aerobic and heterotrophically grown biofilms show coverages that decrease monotonically with increasing distance from the coverslip. Very early-growth
phototrophic biofilms show similar behavior, but in later stages of growth they show a localized peak in coverage at a depth of 5–10 μm.

doi:10.1371/journal.pone.0129354.g004

Fig 3. Confocal images of R. palustris biofilms growing under (A) heterotrophic and (B)
photoheterotrophic conditions. Raw vertical images show characteristic morphologies observed in
biofilms grown under either of the two growth conditions. Image dimensions are (145 μm x 30 μm) and
(145 μm x 35 μm) respectively. The coverslip and light source direction are at the bottom of the images with
media above. Biofilms formed under anaerobic and phototrophic conditions show a greater tendency toward
‘T’ or mushroom shaped structures.

doi:10.1371/journal.pone.0129354.g003

Rhodopseudomonas palustrisMetabolism and Biofilm Formation

PLOS ONE | DOI:10.1371/journal.pone.0129354 June 18, 2015 10 / 18



layer near the coverslip, but, rather than a monotonic decrease in coverage, we see a local maxi-
mum in coverage at a distance of 5–10 μm. The qualitative trajectory of the structural develop-
ment in the biofilm samples is robust to sample-to-sample variations in growth time and local
structure (Fig 4A and 4B).

The shape of the coverage curve appears to be highly indicative of the growth conditions of
the biofilm. To evaluate this, we applied the aforementioned supervised machine-learning algo-
rithm to analyze the experiment and classify whether a sample belonged to a biofilm formed by
photoheterotrophic growth or by heterotrophic growth. When applied to the two-dimensional
slice dataset, the out-of-bag estimate [38] of the rate of misclassification was 3%. The probabil-
ity of the supervised classifier achieving a lower error rate when trained on a random permuta-
tion of the growth condition labels is much less than 10−200. The probability of achieving a
lower error rate using a naïve classifier, which guesses the growth conditions based solely on
the relative number of heterotrophic and photoheterotrophic slices in the dataset (46% are het-
erotrophic), is also negligibly small. If we restrict the feature set to only those that are comput-
able from the slice image data by replacing time with biomass as the first feature of the dataset,
the out-of-bag error estimate rises to 9%, but the probabilities of that rate or lower for the per-
muted labels or a naïve classifier remain negligible.

We then applied this classification method to the coverage curves of the three-dimensional
image stacks. Using the same depth sampling rate and normalization procedure to produce the
coverage features, the trained random forest classifier accurately identified the mode of growth
by which the biofilm was formed in 87% of the 324 three-dimensional stacks. A naïve classifier
using only the relative number of photoheterotrophic and heterotrophic stacks has a negligible
probability of achieving this accuracy. This demonstrates that the morphological profiles of the
two growth conditions, as characterized by the coverage curves, are different enough to be rec-
ognized with a high degree of accuracy by a machine-learning algorithm.

Computational Model
We developed the two-dimensional stochastic cellular automaton model described above to
examine how abiotic and biotic factors could interact to explain the experimentally observed
differences in morphology. We used this model to simulate biofilm development under both
heterotrophic and photoheterotrophic conditions. Previous work on modeling biofilm forma-
tion has focused on multiparameter, single-species heterotrophic biofilm development [33]
with an emphasis on nutrient transport and metabolism with prescribed geometry, sometimes
to the detriment of studying morphological development [36]. Continuum and hybrid dis-
crete-continuum models such as ours have had success in reproducing observed biofilm archi-
tectures in heterotrophic biofilms [33], but our study of the effects of light sensitivity on the
resulting biofilm structure and the comparison of heterotrophic and photoheterotrophic mor-
phologies within a single species is novel. Liao et al. [41] have investigated the effect of optical
intensity, but have studied only the effects on model-based optimization of biofilm growth
rates and not on biofilm morphology nor in comparison to heterotrophic biofilms of the same
species. In addition, our model includes a novel probabilistic method of daughter cell place-
ment incorporating surface tension and distance effects.

Previous work on biofilm models has established a link between media access and the for-
mation of diffuse, fractal-like pillars whose porosity maintains media contact for the largest
fraction of cells [36,42,33]. Both the previous work and our model reproduce the early-stage
growth observed with both heterotrophic and photoheterotrophic metabolisms in this study.
Heterotrophic and photoheterotrophic biofilms require access to the succinate in the media as
a source of carbon, but light access is required for growth of photoheterotrophic biofilms. As
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the photoheterotrophic biofilm grows over time, the intervening biomass between the deep
cells and the coverslip attenuates the light available to cells at the deepest levels of the biofilm.
Our computational model investigates the structures that result when light effects are included
during biofilm growth.

Media behavior. Our computational model reproduces literature behavior of biofilm mor-
phologies in the absence of light-dependent effects. The Hermanowicz model demonstrated
dense, laminar growths for small boundary layer thickness b, while increasingly dendritic or
columnar growths for large b [36]. Our model results in Fig 5demonstrate the same behavior
and corroborate the more general literature result of irregular columnar growth under nutrient
limited regimes that has been previously summarized by Wang and Zhang [33]. Nutrient lim-
ited regimes occur in our model when both b2 and r are large. The parameter b2 defines the size
of the boundary layer domain in which diffusion dominates over the convective transport in
the bulk media and r is a measure of the impact of diffusion time on the nutrient uptake rate of
cells inside the boundary layer. Small boundary layers denote small diffusion distances and
thus small effects resulting from varying r, while large boundary layers have large diffusion dis-
tances and large effects of r.

We characterize the nutrient scarcity resulting from slow diffusion and large boundary lay-
ers as the dimensionless quantity ns = 1 / b2r. This quantity is approximately the equilibrium
nutrient concentration experienced by an isolated cell as measured relative to the bulk nutrient
concentration. Cells on the exterior of the biofilm, which are responsible for most early-stage
growth, are at least partially isolated and so ns is a reasonable measure of the nutrient access on
the biofilm exterior. When ns is small, small differences in distance to the bulk media will result
in large differences in nutrient concentrations and thus large differences in growth rates.
Hence, any initial fluctuations in cell depth will be exaggerated over time into column-like
structures (Fig 5B).

Light behavior. Building upon media-dependent behavior that is consistent with literature
results, our model incorporates novel light-dependent reproduction factors. Surveying the
broader parameter space, we primarily observe a compression of the biofilm that increases
under greater light scarcity and sensitivity. Fig 6 indicates that when biofilms are sensitive to
light intensities (large I1/2) and light only weakly penetrates biofilm columns (small p), the
reproduction rates of cells near the top of the column are greatly diminished, which increases
the relative reproduction rates of cells closer to the coverslip. This effect is robust and matches
experimental data showing deeper average growth for aerobic, light-independent biofilms than
anaerobic light-dependent biofilms at the same biomass accumulation.

Experimental comparison. In order to evaluate the extent to which, if at all, light depen-
dence in our model induces a transition from columnar to mushroom-like morphologies, we
used the modified, biomass-based supervised classifier approach described above to explore
the model parameter space. Trained on the experimental two-dimensional slice dataset, the
modified classifier achieved a 10% out-of-bag estimate of the rate of misclassification. A naïve
classifier would have a negligibly small chance of achieving a lower rate of misclassification.
The larger error rate for the modified classifier vs the original classifier reflects the loss of infor-
mation from excluding the first 2 μm of the coverage vs. depth curve. When applied to the
parameter space exploration, the classifier assigned heterotrophic classification probabilities
ranging fully from 0 to 1, with a mean of 0.46 and a standard deviation of 0.20. This demon-
strates that the model is capable of generating biofilms that have morphologies characteristic of
either heterotrophic or photoheterotrophic growth, at least as perceived by the classifier.

We then investigated the relationship of the model parameters to the heterotrophic classifi-
cation probability using a random forest regression analysis. While the regression only weakly
predicted the heterotrophic probability (R2 = 0.14), it still provided an estimate of relative
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model parameter importance in increasing the prediction accuracy (see Table 2) [43,39]. The
low prediction accuracy could be caused by the wide breadth of morphologies produced by the
model across the entire parameter space. The nutrient scarcity and the nutrient concentration
Monod parameters had the two highest importance estimates (15% and 14%, respectively),
suggesting that the heterotrophic vs. photoheterotrophic morphology production is influenced
substantially by nutrient and metabolic factors. The large importance estimate of nutrient scar-
city, 1/ns = b2r, in contrast to the small importance of the isolated b and r parameters also evi-
dences the explanatory power of the dimensionless nutrient scarcity parameter.

The inoculation separation distance s has a non-negligible importance estimate (11%),
which matches our observation of its strong influence on produced model morphologies.
Experimentally, over the range of accessible inoculation densities, we observed no evidence of a
relationship between inoculation density and morphology. It is likely that we are experimen-
tally unable to reach the inoculation densities which the model suggests may strongly influence
the biofilm morphology, but it is also possible that the large variance in morphological classifi-
cation induced by the separation distance is further evidence of the model inaccuracy near the
coverslip.

Most importantly, the light penetration depth (8% estimated importance) and light Monod
(13%) parameters do not dominate the regression of heterotrophic classification probability.

Fig 5. Increasing nutrient scarcity results in increasedmodel biofilm porosity and propensity towards
columnar structures. Panel A shows a dense, flat model output produced with b = 7 and low nutrient
demand r = 0.04, while Panel B shows column and mushroom-like growths produced with b = 7 and high
nutrient demand r = 0.56. Nutrient scarcity in the model is characterized by the dimensionless quantity 1 / ns =
b2r which is large for nutrient-deprived regimes. We use convex hull density (the density of biofilm-filled cells
contained in the convex hull area of the biofilm) as a metric for biofilm porosity. 300,000 samples were taken
over the parameter subset (b, r) such that 1� b� 16, 10−3 � r� 30, 1 / b2r� 30, with fixed values α = 2, β =
1, and n1/2 = 0.25. Each of the model samples was grown to the same total mass of 2 × 103 cells.

doi:10.1371/journal.pone.0129354.g005
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The nutrient scarcity, nutrient concentration Monod, and daughter cell placement parameters
each had greater or equal importances than the light Monod parameter (see Table 2). This sug-
gests that light dependence is not required in the model to induce a transition from columnar
to mushroom morphologies. However, there may yet be some parameter subspace where light
drives the morphological transition as the importance estimates derived from the regression do
not capture the complex relationships between parameters.

To further investigate the influence of nutrient and light parameters, we examined a param-
eter subset that still produced both heterotrophic and photoheterotrophic morphologies with
all other parameters held constant. In Fig 7, we show that varying ns with no light dependence
has a clear influence on the heterotrophic classification probability, which closely resembles
the influence on convex hull density in Fig 5. Nutrient scarcity appears to promote mushroom
structure formation and produce photoheterotrophic-like morphologies, while its abundance

Fig 6. Effects of light-dependence parameters on depth of cell growth.Model biofilms that are light-
limited (low p and high I1/2) show decreased average biofilm cell depth. The scale for cell depth is shown with
absolute values and in relation to the mean and standard deviation of a population of 102 light-independent
samples taken with all other parameters held equal. A total of 96,000 samples were taken with fixed values α
= 2, β = 1, b = 7, r = 1/ 2, and n1/2 = 0.25 Each sample was grown to the same total mass of 2 × 103 cells.

doi:10.1371/journal.pone.0129354.g006

Table 2. Model parameter feature importances as estimated by a random forest regression over a
broad survey of the parameter space.

Parameter Relative Importance

1/ns 0.151

n1/2 0.144

β 0.143

I1/2 0.134

α 0.134

s 0.111

r 0.097

p 0.075

b 0.009

doi:10.1371/journal.pone.0129354.t002
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produces heterotrophic-like morphologies. For light penetration depths high enough (p> 3)
to permit complex morphologies to form, varying either of the light parameters does not sub-
stantially affect the distribution of aerobic classification probabilities. Hence, based on the
model, the transition from photoheterotrophic to heterotrophic morphologies can be induced
by a change in nutrient parameters alone.

The computational model therefore suggests that the morphological differences seen experi-
mentally between heterotrophic and photoheterotrophic biofilms may not be solely a result of
a direct response to the availability of needed light, but may also be the result of other factors
including surface tension and changes in chemical nutrient demand and sensitivity. While the
surface area reducing effect of increased surface tension is a clear link to biofilm morphology,
we currently have no evidence of differences between the exopolysaccharide of photoheterotro-
phically and heterotrophically grown biofilms that could result in this change in surface ten-
sion. Rheological measurements of biofilms grown in the two different states could establish
whether this is a factor. Changes in chemical nutrient demand and sensitivity could clearly
arise from the differences in metabolism and energy source utilization between photohetero-
trophically and heterotrophically grown biofilms, but the origin of the link between these
model parameters and the resulting morphology is less clear. In practice, future experiments
using different nutrient sources during biofilm growth such as compounds with different diffu-
sivities and/or which stimulate different metabolic activity by the bacteria could help to clarify
these potential influences. In summary, the tendency of light-dependent biofilms to form
mushroom structures may not be solely explained by the abiotic light level gradient across the
biofilm. Additional biotic factors are likely needed to explain the morphologies observed.

Fig 7. Increasing nutrient scarcity results in decreased heterotrophic classification probability of
model output. The random forest classifier was trained on the 324,000 slice experimental dataset with 20
features: biomass and coverage sampled every 1μm from 2 to 20 μm above the coverslip. The classifier was
applied to the same 300,000 samples of the model parameter space described in Fig 5. Classification
probabilities closer to 1 indicate a model output that more closely resembles the heterotrophic experimental
slices than those closer to 0, which resemble photoheterotrophic slices. The shape of the relationship
between 1/ns and heterotrophic classification probability generally matches that of 1/ns and convex density,
as presented in Fig 5.

doi:10.1371/journal.pone.0129354.g007
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Conclusions
We find that R. palustris growing via photoheterotrophic or heterotrophic metabolisms
develop biofilms with different architectures. We analyzed confocal laser scanning microscopy
image data from replicate R. palustris biofilms grown via different metabolic modes and col-
lected quantitative data on biofilm structural parameters for each data set. These data indicate
substantial differences in architecture between biofilms formed under different metabolic
modes, as characterized by biomass coverage as a function of distance from the coverslip. We
interpret these differences in biofilm structure as evidence of the different pressures on the
growth and development of populations of phototrophic bacteria that result from the use of
light for energy.

The two dimensional cellular automata computational model that we develop suggests that
the light gradient across the biofilm alone may have a smaller influence than other factors, like
metabolic nutrient demand, on the development of the observed structures. This understand-
ing of the effect of metabolism on biofilm development contributes to an understanding of bio-
film formation for all biofilm systems, while also providing insight into the optimal growth
conditions for applications that involve environmental biofilms.

Supporting Information
S1 Table. Information on Experimental Data Collection. This table shows a comprehensive
listing of all the experimental data including sample and scan replicates analyzed for this work.
(DOCX)
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