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Building efficient distributed coordination algorithms is critical for the large scale multiagent system design, and the communica-
tion network has been shown as a key factor to influence system performance even under the same coordination protocol. Although
many distributed algorithm designs have been proved to be feasible to build their functions in the large scale multiagent systems as
claimed, the performances may not be stable if the multiagent networks were organized with different complex network topologies.
For example, if the network was recovered from the broken links or disfunction nodes, the network topology might have been
shifted. Therefore, their influences on the overall multiagent system performance are unknown. In this paper, we have made an
initial effort to find how a standard network recovery policy, MPLS algorithm, may change the network topology of the multiagent
system in terms of network congestion. We have established that when the multiagent system is organized as different network
topologies according to different complex network attributes, the network shifts in different ways. Those interesting discoveries
are helpful to predict how complex network attributes influence on system performance and in turn are useful for new algorithm
designs that make a good use of those attributes.

1. Introduction

In state of the art of artificial intelligence research, scalable
multiagent system applications in complex environments
have been popular in domains of military [1], crisis manage-
ment [2], and business [3]. In those systems, to efficiently
coordinate and share information, agents are required to
communicate via flexible wireless media, such as mobile
ad hoc networks. In those networks, agents may only be
able to directly connect with a few of the others and the
network topologies may dynamically change according to
agents’ movements or joint intentions. Moreover, when the
system gets bigger, Musolesi et al. have found that the system
presents the characteristics of complex networks [4], for
example, small world effect discovered by Travers and Mil-
gram [5] and scale free phenomenon discovered by Barabási
and Albert [6]. Predicting team performances according to
different communication network topologies is interesting
and challenging. From our previous research we learned that
the same coordination algorithm may lead to huge different

performances when the complex network topologies vary [7].
Other researches support our discovery as well. For example,
Scerri and Sycara mathematically analyzed how different
complex networks may affect the system in information
sharing, sensor fusion, and task allocation [8]. Gaston and
DesJardins took a bottom-up research on network formation
and found that the incomplete complex network structure
varies in decentralized adaptation strategies on team perfor-
mances [9].

Although the effects of complex networks are popular in
large multiagent systems, not all distributed algorithms are
tested under different complex network topologies in order
to estimate how complex network effects change the system
performance. As the network recovery is one of the most
important network operations to maintain a desired system
performance, in this paper, we made an initial effort on find-
ing how the network topology of a multiagent system shifts
when agents recover from their communication failures. For
example, a UAV may be shot by a hostile missile or robots’
connections broken by physical obstacles in a mobile ad
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hoc network. Although the popular restoration of rerouting
mechanism, for example,MPLS recovery algorithm, has been
proven to be feasible on network recoveries, the potential
shifts on the multiagent network topology may significantly
change the system performance in an unpredictable way.

In our simulation, we simulated a series of large scale
multiagent systems with different complex network topolo-
gies. A popular restoration of rerouting mechanism-MPLS
algorithm is implemented to recover link and node failures.
The network is evaluated by its diameter, average distance,
and cluster [10]. To simulate the physical network, in those
experiments, the communication capabilities of each link or
node are limited.The experiment results are presented in two
major sections: system robustness and influence of network
topologies.

In the first section of the experiments, data that flows
through the failure agents or links has to be rerouted and
may cause congestions on existing links or agents. Based
on our discussion about the efficiency of network recovery,
the number of newly congested links or nodes (agents) that
hurt system performance is investigated. More importantly,
the network is in danger of being disconnected from those
congestions. By comparing the influence on different network
topologies, while there are some differences in different cases,
our major discoveries are that a random network is more
likely to be congested if more links are broken, while a
small world network is the least likely. On the other hand,
a scale free network appears to be more vulnerable to node
congestions, while a grid network is the most robust.

In the second section, we test how the network topology
may be shifted from the network recovery. We have found
that most of network topologies are immune to the network
recovery when the congestions are not so serious. However,
when the number of congested links and nodes is highly
increased, the network topologies may have been changed.
It is especially the case when the network is organized as a
scale free network or a small world network. However, since
scale free and small world networks are the most important
attributes in a large multiagent system, from our previous
research experience, their changesmay significantly affect the
system performances.

2. Related Work

The structure and behavior of complex networks have been
attractive in various studies [11]. Inspired by the discoveries
on how the rich network structure facilitates effective orga-
nizational behavior [12], Gaston and DesJardins illustrated
the importance of network topologies in multiagents net-
works [9]. Y. C. Jiang and J. C. Jiang analyzed the complex
network in actor-oriented and actor-structure views to find
the relationship between complex networks and multiagent
systems [13]. Taylor et al. examined joint actions in the
multiagent optimization problem, and the results are sur-
prising because a high number of connections in a complex
networked multiagent team can hurt system performance;
even communication and computation costs are ignored [14].
Liu et al. proposed an integrated model based on small

Figure 1: Different complex network topologies: random network,
grid network, small world network, and scale free network.

world network and multiagent system to simulate epidemic
spatiotemporal transmission.They found that the small world
effect brings better performance than the traditional model,
and his discovery has been applied in real geographical
multiagent applications [15].

On the other hand, a set of researches show that net-
work operations could influence the performance of the
large scale multiagent systems as well. For example, when
facing the same network attack, the network vulnerabili-
ties are different if the multiagent systems are organized
as various types of complex networks [16]. D’Angelo and
Ferretti explained that gossip protocols would change the
communication of the complex network and have some
impacts on routing efficiency [17]. Gong andXu analyzed and
tested that different parameters on a scale free network can
make significant different efficiencies of information delay
in multiagent systems [18]. Peschlow et al. [19] described a
flexible dynamic partitioning algorithm that rapidly recovers
information routing and optimizes the performance with
different complex network topologies.

3. Modeling the Complex Networks

The network topology of a multiagent system is defined as
an undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {1, 2, . . . , 𝑁},
𝑁 = |𝑉|, defines the agent set. 𝐸 denotes the set of links
between agents; that is, link (𝑖, 𝑗) ∈ 𝐸 and 𝑖 and 𝑗 are
neighbors. 𝑛 : 𝑉 → 𝐸 defines the set of all neighbors of an
agent. That is, 𝑛(𝑖) = {𝑏, 𝑗, . . . , 𝑙} is the neighbor of agent 𝑖. 𝐺
could be organized as different network topologies based on
the different properties of complex networks. In this paper,
we are mainly interested in four of them shown in Figure 1:
random network, grid network, small world network, and
scale free network. Preliminary studies [20] have found that
each topology encodes different fundamental properties, that
is, network diameter, average distance between nodes, cluster,
and degree distributions.

(i) Degree: the degree of agent 𝑖 is 𝑑(𝑖) = |𝑛(𝑖)|.

(ii) Average degree: 𝑑 = (1/𝑁)∑
𝑖∈𝑉

|𝑛(𝑖)| is the average
number of neighbors of all agents, for any complex
network 𝑑 ≪ |V|.

(iii) Degree distribution: 𝑝(𝑘) = 𝑃𝑟[𝑑 = 𝑘] defined as a
fraction of agents (the number of such agents is 𝑑)
with the degree 𝑘.

(iv) Distance: distance(𝑖, 𝑗) is defined as the least number
of hops to communicate between the agents 𝑖 and 𝑗.
Specifically, distance(𝑖, 𝑗) = 1, if (𝑖, 𝑗) ∈ 𝐸.
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(v) Average distance:

𝑙 =
1

𝑁 (𝑁 + 1)
∑

∀𝑖,𝑗∈𝑉

distance (𝑖, 𝑗) (1)

is the average distance between any pairs of agents.
(vi) Network diameter: the diameter of the graph 𝐺 is

defined as argmax(𝐷), where 𝐷 = {distance(𝑖, 𝑗) |

𝑖, 𝑗 ∈ 𝑉}, which is the longest distance between pairs
of agents.

(vii) Clustering coefficient: 𝐶
𝑖
for an agent 𝑖 is given by

the proportion of links between the agents within
the set of 𝑛(𝑖) that is divided by the number of links
between them. The set 𝑒(𝑖) is to record the existing
links between these agents in 𝑛(𝑖); then

𝐶
𝑖
=

2 |𝑒 (𝑖)|

|𝑛 (𝑖)| ∗ (|𝑛 (𝑖)| − 1)
. (2)

The clustering coefficient for the network is given by
𝐶 = (1/𝑁)∑

𝑁

𝑖=1
𝐶
𝑖
.

Different complex network topologies can be described
according to the properties mentioned above. Erdös and
Rényi put forward a classical random network ERmodel [21].
In this model, a random network follows a Poisson degree
distribution. Most nodes in a grid network keep the same
degree, which is also called a regular network. Watts and
Strogatz put forward the concept of small world network
and the WS model [22]. This model presents much shorter
average distance than that in a grid network. Moreover, some
typical large scale networks such as mobile agents on internet
[23] and hyperlinks on web [24] possess certain dynamics—
Matthew effect [25], a power law distribution: 𝑝(𝑘) ∝ 𝑘

−𝑟

(2 < 𝑟 < 3). Some researchers found an interesting formula:
argmax(𝐷) ∝ lnln𝑁 [26], that the average distance may
decrease as the network grows [27]. This formula precisely
reflects the small world effect as well. Then, Barabási and
Albert put forward a scale free network and theBAmodel [6].
Our simulations are based on those complex networkmodels.

To simulate a physical network, we define the flow of the
communication for a link (𝑖, 𝑗) ∈ 𝐸 as 𝑓(𝑖, 𝑗) and its allowed
bandwidth is set as a constant, written as 𝐹max. Therefore,
𝑓(𝑖, 𝑗) should not overflow to its bandwidth; otherwise, the
link will be congested. Please note, if 𝑓(𝑖, 𝑗) = 0, there
is no communication in a physically connected link (𝑖, 𝑗)

and it is called a backup link that may be used for future
communications. In addition, we define 𝑟(𝑖) as the amount
of communication through agent 𝑖. 𝑟(𝑖) cannot be more than
𝐶max(𝑖), the max allowed bandwidth capability through agent
𝑖; otherwise the agent is congested as well. Moreover, the
following properties are defined in our simulations.

(i) Network connection: 𝐺 is disconnected if ∃𝑖, 𝑗 ∈ 𝑉,
distance(𝑖, 𝑗) = ∞, or no value can be assigned.
Otherwise, we say the network 𝐺 is connected.

(ii) Subgraph of a pair of agents ⟨𝑖, 𝑗⟩: let 𝐺󸀠(𝑖, 𝑗) be the
subgraph of 𝐺, 𝐺󸀠(𝑖, 𝑗) = (𝑉

󸀠
, 𝐸
󸀠
), where 𝑉

󸀠 is the set
of agents on all the shortest paths between the pairs

(1) find all transition agents 𝑆(𝑖);
(2) for each agent 𝑤 ∈ 𝑠(𝑖) do

(3) 𝑆𝑒𝑛𝑑𝐷𝑎𝑡𝑎(𝑤,
𝑓 (𝑖, 𝑗)

|𝑠 (𝑖)|
);

(4) end for

Algorithm 1: 𝐿𝑖𝑛𝑘 𝑅𝑒𝑐𝑜V𝑒𝑟𝑦((𝑖, 𝑗), 𝑓(𝑖, 𝑗)).

(1) 𝑝𝑎𝑡ℎ(𝑖) ← 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒𝑆𝑡𝑟𝑒𝑎𝑚(𝑖);
(2) for each path 𝑝 ∈ 𝑝𝑎𝑡ℎ(𝑖) do
(3) (𝑢, V) ← 𝐹𝑖𝑛𝑑𝑁𝑒𝑖𝑔𝑏𝑜𝑟𝑠(𝑝, 𝑖);
(4) 𝐿𝑖𝑛𝑘 𝑅𝑒𝑐𝑜V𝑒𝑟𝑦((𝑢, V), 𝑓(𝑝));
(5) end for

Algorithm 2: 𝐴𝑔𝑒𝑛𝑡 𝑅𝑒𝑐𝑜V𝑒𝑟𝑦(𝑖).

of agents ⟨𝑖, 𝑗⟩, and 𝐸
󸀠
⊂ 𝐸 consists of all the links in

those shortest paths.
(iii) Transition agents of agent 𝑖 to 𝑗: let 𝑠(𝑖) be the set to

record all the neighbors that can transfer data from
agent 𝑖 to 𝑗, and 𝑠(𝑖) ⊂ (𝑛(𝑖) ∩ 𝐺

󸀠
).

(iv) Transition paths of agent 𝑖: let path(𝑖) =

{. . . , ⟨𝑠, 𝑡⟩, . . . | . . . , 𝑠, 𝑡, . . . ∈ 𝑛(𝑖)} be the set
that records all the pairs of agents that communicate
data via agent 𝑖.

4. MPLS-Based Recovery Mechanisms

When agents come to link failures or node failures, the
restoration of rerouting mechanisms is usually exploited to
maintain the communication between agents. In this paper,
we implement a typical network recovery policy, MPLS
[28], to restore communication between agents by rerouting
mechanisms.

Algorithm 1 briefly describes how a failed link (𝑖, 𝑗)whose
data flow is 𝑓(𝑖, 𝑗) is recovered. We suppose there is a
predefined sequence according to agent󸀠 ID that 𝑖 ≺ 𝑗.
Assume that each agent is able to get the global state of the
network, agent 𝑖 can easily find all the alternative shortest
paths to 𝑗, and 𝑤 is one of the transition agents 𝑠(𝑖) (line
1). In line 3, the data flow will be divided evenly into pieces
according to the number of shortest paths detected. Each of
them will be sent to one of the transition agents and passed
through predefined paths (line 3).

Algorithm 2 briefly shows how a failed agent 𝑖 is recov-
ered. The communication through an agent 𝑖 may be com-
posed of several streams from different links. Each stream
𝑝 going through the agent 𝑖 is written as a unique path
{. . . , 𝑢, 𝑖, V, . . .}, where 𝑢 ≺ V. The value of data flow going
through 𝑝 is written as 𝑓(𝑝). Therefore, to recover node
failure, Algorithm 2 first enumerates all the stream path(𝑖)
(line 1). For each stream 𝑝, we will find the pair of neighbors
of 𝑖 : ⟨𝑢, V⟩ in 𝑝’s path (line 3). Then, if we suppose there has
been a link of (𝑢, V) whose communication amount is 𝑓(𝑝),
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(1) 𝜇 ← 𝑤;
(2) for each agent 𝑖 ∈ 𝑠(𝑖) do
(3) if agent 𝑖 was not been visited then
(4) 𝑥 ← 𝐹max − (𝜇 + 𝑓(𝑖, 𝑗));
(5) if 𝑥 < 0 then
(6) 𝜀 ← 𝐹max − 𝑓(𝑖, 𝑗);
(7) return the link (𝑖, 𝑗) is congested;
(8) end if
(9) if 𝜇 ̸= 0 then
(10) 𝑡 ← 𝐶max − (𝜀 + 𝑟(𝑗));
(11) end if
(12) if 𝑡 ≤ 0 then
(13) return the agent 𝑗 is congested;
(14) else
(15) if 𝑡 ≤ 𝜀 then
(16) 𝜇 ← 𝑡;
(17) return the agent 𝑗 is congested;
(18) else
(19) 𝜇 ← 𝜀;
(20) end if
(21) end if
(22) end if
(23) end for

Algorithm 3: 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛(𝑖, 𝑗).

the stream 𝑝 can be rerouted in a way similar to link failure
algorithm (Algorithm 1) (line 4).

5. Network Robustness after MPLS Recovery

AlthoughMPLS recoverymechanism can effectively enhance
recovery efficiency, network congestion cannot be avoided
due to the limited physical communication capacities of
the links and agents. In order to detect network conges-
tion including link congestions and node congestions, we
designed Algorithm 3 to check existed network congestions
around the multiagent system by rerouting data from a link
failure (𝑖, 𝑗) or a node failure 𝑗.

According to Algorithm 3, we can first summarize the
link congestion by link (𝑖, 𝑗). It is supposed that the amount
of messages conveyed to the link (𝑖, 𝑗) is set as 𝜇 (line 1). The
available capacity 𝑥 for an existing link is calculated as 𝑥 =

𝐹max−(𝜇+𝑓(𝑖, 𝑗)) (line 4). If there is no available capacity, link
(𝑖, 𝑗) is congested (lines 5–7). To judge the agents’ congestion,
we calculate the available capacity 𝑡 for an existing agent 𝑗

as 𝜀 ← 𝐹max − 𝑓(𝑖, 𝑗) and 𝑡 ← 𝐶max − (𝜀 + 𝑟(𝑖)) (lines 6–
10). If there is no available capacity, the agent 𝑗 is congested
(lines 12–21). The rerouting mechanisms modify the LSP in a
failed spot and the length of the shortest path is often more
than one agent; therefore, the amount of messages 𝜇 may be
modified (lines 16–19), and the algorithm may be recursively
judged many times in terms of Depth First Search (DFS).

In this section, we investigate how network recovering
operation may create node or link congestions when 𝐺 is
organized as four different network topologies. The system
size is 𝑁 = 1000, average degree is 𝑑 = 6, and maximum

allowed link overload is 𝐹max = 10. The agent having a
higher degree usually plays an important role in the network;
therefore the communication through the agent is larger.
Based on this observation, the capacity of agent 𝑖 follows
𝐶max(𝑖) = 𝜆 × 𝑑(𝑖) × 𝐹max, where 0 < 𝜆 < 1 is a constant so
that its capability is proportional to the degree of the agent.
The results are evaluated according to newly congested links,
congested agents, probability of network connectivity, and the
average distance of the network by varying the ratio of failed
links (Ratio link), the ratio of failed nodes (Ratio agent),
and the ratio of average communication of each link 𝑓(𝑖, 𝑗)

(Ratio flow). Moreover, when𝑚 = 0, we assume there are no
backup links and all the links are used for communication
and, for each (𝑖, 𝑗), 𝑓(𝑖, 𝑗) > 0. If 𝑚 > 0, additional 15%
backup links are presented. The amount of communication
for each link is randomly set.The experiment results are based
on 100 runs.

5.1. Robustness on Link Failure Recovery. In this section, we
examine the number of congested links and congested nodes
when the MPLS algorithm recovered link failures. We fix
the average communication of each link 𝑓(𝑖, 𝑗) as 50% of
the 𝐹max (𝑅𝑎𝑡𝑖𝑜 𝑓𝑙𝑜𝑤 = 0.5). In Figures 2(a) and 2(b),
we varied the number of link failures from 0.5% to 5%
of all the links. In Figure 2(a), network recovery operation
leads to congested links and congested nodes, and their
number rapidly increases with the slow increase ofRatio link.
By comparing the number of congested links in the same
Ratio link, we have found that random network appears to
have the largest number of congested links while the small
world network appears to have the least number of congested
links.
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Figure 2: Congestions from link failure recovery by varying Ratio link and Ratio flow.

The experimental results in Figure 2(b) show that, except
for the grid network, network recovery operation on failed
links will lead to node congestions. Apparently, scale free
network appears to have the largest number of congested
agents in any settings, because of the stability of hub nodes
which have large bandwidth (proportion to its degree). The
other agents with limited bandwidth are prone to be jammed.
Moreover, cluster may contribute to the node congestions
as well. For example, the agent 𝑖 whose degree is larger
than others’ in a scale free network has a larger clustering
coefficient 𝐶

𝑖
, and the number of agents retransmitting data

would be high. In addition, the cluster of a grid network is the

smallest in the four networks, and the node congestions are
less likely to be present.

In the next experiment, we fix the failed link as 2%
(𝑅𝑎𝑡𝑖𝑜 𝑙𝑖𝑛𝑘 = 0.02). Figures 2(c) and 2(d) show that when
the average communication Ratio flow of each link 𝑓(𝑖, 𝑗)

increases from 10% to 90% of the 𝐹max, both the congested
nodes and links increase nomatterwhat the complex network
topologies are. Consistent with the conclusion from Figures
2(a) and 2(b), a random network performs the worst while
a small world network performs the best according to
congested links. A scale free network appears to have the
largest number of congested nodes and random network
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Figure 3: Connectivity and average distance by varying Ratio link and Ratio flow.

performs worse as well. The grid network appears to have the
least number of congested nodes. It can be explained the same
as Figure 2(b).

Figure 4 summarizes how link failure recovery may
influence the network performance in two sets of values:
the probabilities that the network is broken and the average
distance of the network. If network breaks, the system may
not work. If the average distance increases, the system’s
performance decreases because communication flows have
to take more hops to the destination. In Figures 3(a) and
3(b), the result shows that when there are more failed links
to be fixed (𝑅𝑎𝑡𝑖𝑜 𝑓𝑙𝑜𝑤 = 0.5), the system is in a higher

danger to be disconnected. However, a scale free network
performs the worst and a grid network performs the best.
The reason is that if a hub agent is congested, the network
is more likely to be disconnected. On the other hand, agents
in a grid network only connect to each other locally; the
network is less likely to break down even when more and
more links or agents are congested. Figures 3(a) and 3(b)
also show that the average distance slowly increases in all
network topologies, and, before the network is broken down,
the scale free network keeps the shortest distance and reserves
the small world effect best. Figures 3(c) and 3(d) illustrate
that when the average flow increases (𝑅𝑎𝑡𝑖𝑜 𝑙𝑖𝑛𝑘 = 0.02),
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Figure 4: Congestions from node failure recovery by varying Ratio node and Ratio flow.

a similar conclusion can be reached as in Figures 3(a) and
3(b).

5.2. Robustness on Node Failure Recovery. In this section,
we investigate the network performances after the network
recovery policy recovered node failures. In Figures 2(b)
and 4(b), we varied the failed agents in the network from
0.5% to 5%, and we set 𝑅𝑎𝑡𝑖𝑜 𝑓𝑙𝑜𝑤 = 0.5. We found
that the congested links increased quickly while congested
agents slowly increased. As we expected, scale free networks
made heavy congested nodes. Unlike Figures 2(a) and 4(a),
although random and scale free networks have more number
of congested links when the failed nodes are sparse, small

world and grid networks create about 40% more congested
links when failed nodes are more than 3.5% of all the agents.

Figures 4(c) and 4(d) show the results that when we
set the failed agents to be fixed as 2% (𝑅𝑎𝑡𝑖𝑜 𝑛𝑜𝑑𝑒 =

0.02) and varied the average flow of each link from 10%
to 90% of the 𝐹max, both congested agents and congested
links are increasing in different complex network topologies.
Consistent with the results of link failure recovery, a random
network performs the worst according to congested links
while a small world network works the best. On the other
hand, aswe expected, a scale free network always createsmore
congested nodes while a grid network creates the least.

Figure 5 shows when either the rate of failed nodes
increases or the average flow rate increases, the probability
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Figure 5: Connectivity and average distance by varying Ratio node and Ratio flow.

that the network is broken increases. In Figures 5(a) and
5(b), when there are more failed nodes to be recovered
(𝑅𝑎𝑡𝑖𝑜 𝑓𝑙𝑜𝑤 = 0.5), the system is in a higher danger to
be disconnected; however, a scale free network performs the
worst and a grid network performs the best.The reason is that
if any hub agents are congested, the network is much easier
to be disconnected. Figures 5(a) and 5(b) also show that the
average distance slowly increases in all network topologies,
and the scale free network still keeps the shortest average
distance as we expected. Figures 5(c) and 5(d) represent that
when the average flow increases (𝑅𝑎𝑡𝑖𝑜 𝑛𝑜𝑑𝑒 = 0.02), we can
make the similar conclusions as Figures 5(a) and 5(b). All the

experiments in this section are based on the setting of 𝑚 > 0

(there are 15% backup links), but we could reach the same
conclusion when we set𝑚 = 0.

5.3. Data Loss in Network Recovery. As explained, when the
multiagent system comes to network failures, althoughMPLS
helps to reroute the data tomaintain the system performance,
network congestions in the nodes or the links between them
will still bring communication loss. In this subsection, we
investigate the percentages of data loss when the multiagent
system is organized as different complex networks.



The Scientific World Journal 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
at

a l
os

s (
%

)

System scale
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Random network
Scale-free network
Grid network
Small-world network

(a) Link failure

System scale
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Random network
Scale-free network
Grid network
Small-world network

D
at

a l
os

s (
%

)
(b) Node failure

Figure 6: Data loss from network recovery in different network topologies.

In the first experiment, we briefly use the basic setting
of Section 5.1 that, in the multiagent system, there are 2%
links that are broken and the original average data volume
in each link is 50% of 𝐹max. When the system was organized
as four different complex network topologies, we measured
the percentages of the data loss in different scales. The results
are illustrated as in Figure 6(a). We can see that no matter
the system size is, the grid network and small world network
maintain good performances in link failure recoveries and the
data loss rates keep the lowest. Consistent with our analysis
in Section 5.1, the scale free network keeps a higher data loss
rate and random network performs the worst in link failure
recovery where its data loss rate closes to 60%.

In the second experiment, we briefly use the basic setting
of Section 5.2, and there are 2% agents that are lost. When
the system was organized as four different complex network
topologies, Figure 6(b) briefly shows that no matter the
system size is, scale free network occupies the stability of
hub nodes and always performs the best, and it is especially
the case when the network scales up. Consistent with our
conclusion in Section 5.2, small world network and random
network bring out close performances, while grid network
made the worst data loss in node failure recovery. In some
cases, the data loss rates are more than 70%.

6. Network Shifts on Recovery from
Different Topologies

In this section, we verify if network recovery operationwould
lead to the changes of complex network topologies. Similar
experiment settings are kept as Section 5, and both 𝑚 >

0 (consists of 15% backup links) and 𝑚 = 0 are tested.
During the experiments, we found that network recovery

usually does not lead to distinct shifts of network topologies.
However, when the number of congested links and nodes
rapidly increases, network connectivitymay be destroyed.We
set𝐶max(𝑖) = 𝜆×𝐹max, where𝜆 > 1 is a constant so that agents’
communication volumes are fixed. Our experiments are
conducted by varying the parameters Ratio link, Ratio node,
and Ratio flow but we always maintain that the network con-
nectivity is not broken (very few results with disconnected
networks are excluded). The experiment’s results are shown
as degree distribution. Each graph represents one type of
complex network and consists of three curves with three
settings: the original network topology before any failures
(Normal), the network topology after network recovery (𝑚 >

0), and the network topology after network recovery without
any backup links (𝑚 = 0).

6.1. Link Failure Recovery. In this experiment, we tested how
the different network topologies will be changed after link
failure recovery. Each network topology will be presented in
two different settings with different rate of link failure to be
recovered (Ratio link) and different average flow (Ratio flow)
which are very likely to break network connectivity.

Figures 7(a) and 7(b) show how a random network topol-
ogy shifts on two different settings. Although the random
network topology is kept and its distribution still follows a
Poisson distribution, the distribution clearly shifts left after
the link failure recovered (it is more distinct when 𝑚 = 0).
Therefore, its average degree is decreased with link failure
recovery.

Figures 7(c) and 7(d) show that the scale free network
significantly shifted. In both graphs, the scale free networks
are losing their power lawdistribution and aremore andmore
close to a Poisson distribution as random networks. In the
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Figure 7: Network shifts from link failure recovery in different network topologies.

settings of 𝑚 = 0, almost all the high degree agents are lost.
The reason is that hub agents are easily congested whenmuch
more communication flow transmitted through hub agents.
Therefore, the small world effect is gradually disappeared.

In Figures 7(e) and 7(f), the original small world network
before link recovery presents a generalized binomial distri-
bution [29]. However, the network cannot keep this topology
in both graphs. All the agents with higher degrees in a small
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Figure 8: Network shifts from node failure recovery in different network topologies.

world network are more likely to be congested, especially in
the settings of 𝑚 ≥ 0. Moreover, when the average degree
of the networks decreases, the average distance between
nodes rapidly increases, and its degree distribution closes to
a Poisson distribution after link failure recovery.

6.2. Node Failure Recovery. Similar to the experiments of
link failure recovery in Section 6.1, we vary two parameters
of the node failure recoveries: Ratio node and Ratio flow.
Similar to link failure recovery schema, networks are very
prone to be broken. Figures 8(a) and 8(b) show the changes
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on the random network. Although the degree distributions
slightly change and the average degree decreases, its Poisson
distribution remains.

Similar to the conclusion from Figures 7(c) and 7(d),
Figures 8(c) and 8(d) show that the scale free networks
cannot keep their topologies in both settings and are
more and more close to a random network. However, in
Figure 8(c), the scale free network has a significant mutation
with the setting of 𝑚 > 0. Its degree distribution has
been a combination of a Poisson distribution and a power
law distribution. We found that the agent 𝑖 whose degree
is higher would present higher clustering coefficient 𝐶

𝑖
.

Otherwise, low degree agents are loosely connected with
each other [30]. Therefore, the scale free network works
distinctly between high clustering coefficient region and low
clustering coefficient region after node failures are recov-
ered.

Figures 8(e) and 8(f) illustrate that small world networks
cannot keep their topologies in node failure recovery. It is
similar to the phenomenon in Figures 7(e) and 7(f). In both
settings, degree distribution does not follow a generalized
binomial distribution any more. Therefore, the average dis-
tance between agents may be significantly increased.

In conclusion, the power law distribution in scale free
network and the binomial distribution in small network are
unstable and can be easily destroyed by network congestions.
On the other hand, a random network with Poisson
distribution is stable. Moreover, network recovery operation
by creating link or node congestions can significantly
decrease the average degree of the network. In this section,
we excluded the results from the grid network because it
only has local connections and the congestions have little
influences on its network topology.

7. Conclusions and Future Work

Network recovery plays an important role in maintaining
the stability of the multiagent system in any application
domain. However, its impacts on different complex network
organizations are still undiscovered. In this paper, we made
our initial efforts on studying those effects. We have found
that although the MPLS recovery mechanism can efficiently
recover link or node failures by rerouting communication
flows via alternative paths, it may bring node or link conges-
tions on those alternative paths. The congestions can signifi-
cantly change the network topology and system performance.
In addition, their effects are different on different complex
networks. By conducting extensive experiments, we found
that the small world effect and power law phenomenon in
a scale free network are not stable in many cases. Based
on our interesting discoveries, we may be able to make
lots of progresses in near future. The first is to predict the
system performance variances according to the changes of
the network topology in multiagent coordination domains
such as resource allocation, information sharing, and task
assignments. Second, we could optimize the recovery algo-
rithm efficiency based on the utilizations of complex network
attributes.
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