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Simple Summary: In this experiment, mouse secondary follicles were cultured in the three-dimensional
culture system of alginate gel with different concentrations of IGF-1. According to the results of follicle
growth, oocyte maturation, the levels of hormone (17β-estradiol, progesterone and AMH) and the ex-
pressions of genes related to hormone secretion, oocyte-secreted factors, apoptosis and gonadotropin
receptor, the optimal concentration of IGF-1 was determined to be 10 ng/mL in the culture medium.
Moreover, the intraperitoneal injection of IGF-1 before superovulation in mice could increase the
number of ovulated oocytes and reduce their degraded rates.

Abstract: Insulin-like growth factor-1 (IGF-1) plays a crucial role during folliculogenesis, which
has been demonstrated by previous research. However, the optimal IGF-1 dosage in the three-
dimensional (3D) culture system is unknown. Mouse secondary follicles (140–150 µm) were cultured
for 6 days within an alginate bead in a medium supplemented with 0 (G0), 5 ng/mL (G5), 10 ng/mL
(G10), or 50 ng/mL IGF-1 (G50). Secretions of 17β-estradiol and progesterone were significantly
increased in G10 and G50 (p < 0.05). However, G50 significantly inhibited follicular growth (p < 0.05),
while G10 showed a higher oocyte maturation rate. Thus, the 10 ng/mL IGF-1 was used in subsequent
experiments. IGF-1 enhanced the function of granulosa cells (GCs) by upregulating expressions of
Star, Cyp19a1, Hsd3b1, Fshr, and Lhcgr. Oocyte secretory function was promoted by upregulating
expressions of Bmp-15, Gdf-9, and Fgf-8. Addition of IGF-1 showed anti-apoptotic effect. However,
G10 did not improve fertilization rate of MII oocytes compared to G0. In an intraperitoneal injection
experiment in mice, IGF-1 significantly increased the number of ovulated oocytes (p < 0.05). In
conclusion, 10 ng/mL IGF-1 can promote the production of mature oocytes in the 3D culture medium
and injection of IGF-1 before superovulation increases the number of ovulated oocytes.

Keywords: IGF-1; follicle development; three-dimensional culture; mouse

1. Introduction

Follicular development is gonadotropin-independent at the earliest growth stage [1]
when it is mainly regulated by paracrine or endocrine factors [2]. Insulin-like growth factor-
1 (IGF-1) regulates many intraovarian activities (follicular growth, hormones selection,
atresia, cell differentiation, steroidogenesis, and oocyte maturation) as a paracrine or
endocrine factor during follicular development [3] and performs its biological function
by binding to IGF binding proteins (IGFBPs) or IGF-1 receptor (IGF-1R) [4]. Previous
research reported that Igf-1 was expressed in the ovaries of different species [5,6], and
IGF-1 could improve oocyte maturation rate and quality in vitro [7]. Both male and female
Igf-1 knockout mice were infertile, and the size of the ovaries of Igf-1−/− female mice
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was less than half of the normal. Furthermore, most follicles were mostly arrested in the
preantral stage, while a few follicles developed into the antral stage without maturation
and ovulation [8]. The transcripts of Igf-1 are low during the primary follicle stage and
reach a high level in the late preantral and early antral stages in mice [9]. In addition,
the development of mouse early secondary follicles with diameters less than 150 µm was
promoted by the addition of IGF-1 [5]. These results indicate that the regulatory function is
concentrated at the rapid development stage from the secondary follicles to antral follicles.

In rats, IGF-1 and IGFR are located in oocytes during the preantral follicle stage and
the intensity of IGFR is stronger than IGF-1 based on immunohistochemistry analysis [10].
The oocyte is the main source and site of action, and similar results appeared in a study on
sheep [11]. These previous studies showed that the endogenous paracrine system of IGF-I
plays an important role and the oocyte was a site of action during the preantral follicle
stage. The oocyte–granulosa cell interaction during the early follicular growth stage has
been indicated [12]. In vitro studies have shown that IGF-1 also can prevent granulosa
cells (GCs) apoptosis and enhance proliferation [3] which showed that the regulation of
GCs by IGF-1 may be mediated by oocytes. The expression of Fshr in preantral follicles
of IGF-1−/− mice remained at a low level, while the IGF-I can significantly increase Fshr
expression in murine granulosa cells in vivo [13]. The effect of IGF-1 on the differentiation
and proliferation of GCs may be related to gonadotropin receptors.

Excessive concentrations of IGF-1 can upregulate apoptosis-regulating genes, increase
the vulnerability of GCs and lead to apoptosis [14]. Yang et al., showed that 10 ng/mL of
IGF-1 treatment inhibited apoptosis in cultured bovine GCs, while higher concentrations of
IGF-1 (100 ng/mL) promoted apoptosis [15]. These results indicate that the role of IGF-1 in
inhibiting apoptosis is dose-dependent. Similarly, mouse preantral follicles in traditional
in vitro culture exposed to 50 ng/mL IGF-1 significantly increased estradiol secretion at
4 day [16]. This implied that the effect of IGF-1 on follicular development is dependent on
its dosage.

Maintaining follicular structure during the culture period facilitates the gap junction
between the oocyte and the GCs, which is essential for oocyte growth and meiotic compe-
tence [17]. The disruption of follicle structure by two-dimensional culture can be solved by
three-dimensional (3D) culture. The 3D culture system provides a physical force to main-
tain normal morphologies of follicles and ensures a normal paracrine environment [18].
To mimic an in vivo environment, a variety of 3D culture systems have been developed
and many studies have been reported [19,20]. There are several types of matrices [18]
(collagen, alginate, and hyaluronan hydrogel [21]). The advantage of an alginate hydrogel
over other substances is that a solution containing the binding agent (Ca2+) can be added to
complete polymerization [22]. This property allows the follicle to be easily embedded under
physiological conditions [23]. In the sodium alginate culture system, mouse, monkey, or
human secondary follicles can develop normally [24]. Optimized follicular culture systems
promote the production of high-quality oocytes, which have been successfully applied in
various animal models, including humans and non-human primates, and have produced
offspring in rodents [25].

In this study, we determined the optimal concentration of IGF-1 in a 3D in vitro culture
system. The function of IGF-1 was analyzed by the changes in hormone secretion and gene
expression and the synergistic effect of IGF-1 and gonadotropin was demonstrated in vivo
during superovulation.

2. Materials and Methods
2.1. Media and Chemicals

MEM α with GlutaMAX™, Ham’s F-12 Nutrient Mixture, Leibovitz’s L-15, Collagenase
IV, and fetal bovine serum (FBS) were purchased from Gibco (Gibco BRL, Grand Island,
NY, USA). Other chemicals were obtained from Sigma-Aldrich (Sigma-Aldrich Co. LLC,
St. Louis, MO, USA) unless otherwise specifically indicated.
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2.2. Animals

All animals were purchased from SPF (Beijing, China) Biotechnology Co., Ltd. All mice
were housed in polypropylene cages and provided food and water ad libitum. Animals
were kept on a 12 h light/dark cycle (8:00 a.m.–8:00 p.m.) at 22–25 ◦C with 30–50%
relative humidity.

2.3. Follicle Isolation, Encapsulation, and Culture

Ovaries isolated from 16 days old ICR-1 female mice were divided into two pieces and
placed in enzymatic media containing L-15 with 0.2% Collagenase IV and 0.2% DNase I
for 40 min at 37 ◦C before follicle isolation. Secondary follicles (140–150 µm) with theca
cells were then mechanically isolated using insulin-gauge needles in L-15 media with 1.0%
FBS and encapsulated into a sterile 0.5% (w/v) alginate bead. Beads were incubated in half
MEM α and half F-12 of the mixture containing 10% FBS at 37 ◦C, 5% for 30 min. Then,
beads were plated (one follicle/well) in 96-well plates in 100 µL of culture media composed
of MEM α, 3 mg/mL of BSA, 1 mg/mL bovine fetuin, 5 µg/mL of insulin, 5 µg/mL of
transferrin, and 5 ng/mL of selenium. Encapsulated follicles were cultured at 37 ◦C in
5% CO2 for 6 days. Every other day, half of the media (50 µL) was exchanged and stored
at −80 ◦C. Follicle survival and diameter were assessed using an inverted microscope
(Olympus IX-70) with transmitted light and phase objectives. Follicles were designated
dead if the oocyte was no longer surrounded by a granulosa cell layer or if the GCs had
become dark and fragmented.

After 6 days, the culture medium was replaced by 100 µL L-15 medium containing
10 mIU/mL alginate lyase for 30 min at 37 ◦C.

2.4. Follicle Diameter Measurement

Pictures of encapsulated follicles were taken on culture day 0, 2, 4, and 6 using an
inverted microscope with the same setup parameters. The diameters of follicles were
measured in duplicate from the outer layer of theca cells by Image J.

2.5. Oocyte In Vitro Maturation

After follicles >300 µm were retrieved from the alginate bead, they were transferred to a
maturation media composed of MEM α, 10% FBS, 3 IU/mL human chorionic gonadotropin
(hCG), 10 ng/mL epidermal growth factor (EGF), and 10 mIU/mL porcine FSH (SIOUX
Biochemical, Inc., Sioux Center, IA, USA) for 16 h at 37 ◦C, 5% CO2. Oocytes were then
denuded from the surrounding cumulus cells by treatment with 0.3% hyaluronidase and
gentle aspiration through a polished drawn glass pipette. The oocytes were considered to
be in metaphase I if neither the germinal vesicle nor the first polar body was visible. If a
polar body was present in the perivitelline space, the oocytes were classified as metaphase
II. Fragmented or shrunken oocytes were classified as degeneration and were discarded.

2.6. Oocyte In Vitro Fertilization

Sperm was collected from the cauda epididymis of 9-week-old ICR-1 male mice. One
hour before IVF, motile sperm was incubated in 100 µL mHTF medium (Irvine Scientific,
Santa Ana, CA, USA) under mineral oil at 37 ◦C, 5% CO2. Twenty metaphase II oocytes
were placed in 50 µL mHTF medium drops containing 106 sperm/mL and incubated under
mineral oil for 6 h at 37 ◦C, 5% CO2. Oocytes were then washed 3 times in fresh G1-PLUSTM

(Vitrolife, Göteborg, Sweden) medium to remove all bound sperm and cultured in G1-
PLUSTM medium at 37 ◦C, 5% CO2. Fertilized oocytes were identified by the presence of
2 pronuclei (2PN).

2.7. Immunostaining and Confocal Imaging

For immunostaining, oocytes were fixed in 4% paraformaldehyde at 4 ◦C for 60 min.
The oocytes were washed three times in PBS containing 0.1% PVA and transferred to 3%
bovine serum albumin (BSA) at 37 ◦C for 60 min. Blocked oocytes were incubated at
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37 ◦C with CoraLite594-Conjugated Alpha Tubulin Monoclonal Antibody (1:200, CL594-
66031, Proteintech, Thermo Fisher Scientific, Waltham, MA, USA) for 60 min in the dark.
After washing three times with PBS containing 0.1% PVA, chromosomes were labeled
using Hoechst 33342 for 5 min and oocytes were mounted in 2.5 µL Antifade Mounting
Medium drops on glass bottomed dishes. Samples were examined under a confocal laser
scanning microscope.

2.8. Assay of 17β-Estradiol, Progesterone, and AMH

The hormone determination work was completed by the Beijing JinHaiKeYu Biological
Technology Development Co. Ltd. (JinHaiKeYu Biological Technology Development
Co. Ltd., Beijing, China). The 17β-estradiol and progesterone in conditioned media
were measured using a radioimmunoassay. AMH in conditioned media was determined
by ELISA. The sensitivities for the 17β-estradiol, progesterone and AMH assays were
5 pg/mL, 30 pg/mL, and 10 pg/mL. Intraassay and interassay coefficients of variation
were determined to be 10 and 15%, respectively. To obtain sufficient media for each assay,
media collected from follicles in identical alginate conditions were pooled for each time
point (10 samples pooled per measurement). Five independent measurements for each
hormone at each time point were performed.

2.9. Characterization of Genes Expression

Total RNAs from the follicles were extracted and purified using the RNeasy Micro
Kit (TransGene, Beijing, China). The total RNAs were reverse transcribed by MaximaTM H
Minus cDNA Synthesis Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) and
the first-strand cDNAs were used for Q-PCR analysis with GoTaq® qPCR Master Mix
(Promega, Madison, WI, USA). The primer sequences used are listed in Table 1. We have
performed the melting curve and the quality of primers are very good, and no dimers
are formed.

Table 1. RT-PCR primers of target genes. Note: 39 amplification cycles of 95 ◦C for 10 s, 60 ◦C for
20 s, and 72 ◦C for 15 s. The efficiency of qPCR is between 95–98%.

Gene Sequence bp No. NCBI

Gapdh F: 5′-GGGTCCCAGCTTAGGTTCATC-3′

R: 5′-CCCAATACGGCCAAATCCGT-3′ 100 NM_001289726.1

Gdf-9 F: 5′-TCACCTCTACAATACCGTCCGG-3′

R: 5′-GAGCAAGTGTTCCATGGCAGTC-3′ 139 XM_006532220.3

Bmp-15 F: 5′-GCACGATTGGAGCGAAAATG-3′

R: 5′-CGTACGCTACCTGGTTTGATGC-3′ 123 NM_009757.5

Fgf-8 F:5′-CAGGTCTCTACATCTGCATGAACAA-3′

R: 5′-TCTCCAGCACGATCTCTGTGAATA-3′ 96 XM_006526668.3

Amh F: 5′-TGCTAGTCCTACATCTGGCTGA-3′

R: 5′-GTCCAGGGTATAGCACTAACAGG-3′ 120 XM_006513119.3

Star F: 5′-GCTGCAGAAGCTCAACAACC-3′

R: 5′-TTGTCCCGTTCATCTGGTGG-3′ 104 NM_010828.3

Cyp19a1 F: 5′-GAACAACCCTTGAGCACCTC-3′

R: 5′-AGCTTGGTGCCTTAATCCTTTC-3′ 111 NM_011485.5

Hsd3b1 F: 5′-TTTTCGCTGAGAGACGTGGAG-3′

R: 5′-CCTCTGGATACTCTGCGACG-3′ 135 NM_007810.4

Lhcgr F: 5′-GCTGCACAGGAATAAAGGACA-3′

R: 5′-CATGCCTGCTTCGTGACCAT-3′ 89 NM_008293.4

Fshr F: 5′-AATGAGTCCATCACGCTGAAAC-3′

R: 5′-CCTGCAATTTGGTGGAAGAGA-3′ 187 NM_001364898.1

Bcl2 F: 5′-AGTACCTGAACCGGCATCTG-3′

R: 5′-TATGCACCCAGAGTGATGCAG-3′ 169 NM_009741.5

Bax F: 5′-CCCGAGCTGATCAGAACCAT-3′

R: 5′-TTCCTAATGCCAACCTGTGAAG-3′ 139 XM_011250780.2

Caspase3 F: 5′-GCTTGGAACGGTACGCTAAG-3′

R: 5′-CCACTGACTTGCTCCCATGT-3′ 112 NM_001284409.1

Real-time quantitative polymerase chain reaction (qPCR) was performed using the
qTOWER 2.0/2.2 sequence detection system (Analytik Jena, Jena, TH, Germany). For each
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reaction, 2 µL cDNA, 0.4 µL primers, 10 µL 2×Master SYBR Green mix (Promega), and
7.2 µL nuclease-free water were added to a final volume of 20 µL. PCR cycling conditions
were 95 ◦C for 15 min, followed by 39 amplification cycles of 95 ◦C for 10 s, 60 ◦C for 20 s,
and 72 ◦C for 15 s. After testing, the efficiency of qPCR is between 95–98%. To maximize
accuracy, each sample was run in triplicate with a negative control of the reaction mixture
with no cDNA added.

2.10. Injection Protocol of IGF-1 during Mouse Superovulation

Sixty ICR-1 8-week-old female mice were randomly divided into two groups. There
were 3 repetitions per group and 10 mice per repetition. The mice were injected intraperi-
toneally with IGF-1 (2 µg/g body weight per mouse) 24 h before equine chorionic go-
nadotropin (eCG) (7.5 IU per mouse) injection, followed by injection with hCG (7.5 IU per
mouse) 48 h after eCG injection in the IGF-1 treatment group. Mature metaphase II oocytes
were collected from the oviducts 16 h after hCG injection (Figure 1a). The control group
mice were injected with the same dosage of saline (Sal) as IGF-1 at the same time point
(Figure 1b).
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2.11. Statistical Analysis

Experimental data were obtained from three or more independent repeated experi-
ments. Percentage data were arcsine transformed. Differences in follicular diameter, survival
rate, maturation rate, degeneration rate, hormonal production, and the number of ovulated
oocytes were analyzed by one-way ANOVA (SAS, Cary, NC, USA). The expression level
of different genes was analyzed using Student’s t-test. The percentages of normal and
degraded oocytes were analyzed by chi-square analysis. Data were reported as mean ± SD.
p < 0.05 * was considered statistically significant. All statistical calculations were performed
using SAS (version 9.0) software (Cary, NC, USA).

3. Results
3.1. Effects of IGF-1 on Follicular Development and Maturation In Vitro

During culture processing, the follicles of the control group increased from
156.21 ± 16.85 µm at 0 day to 406.14 ± 37.74 µm at 6 day (Figure 2c) and produced mature
oocytes with meiotic ability after mature culture (Figure 2b). The oocytes were visible and
the follicles were transparent during culture in G0, G5, and G10 (Figure 2a). However, GCs
became darker and the edges of the oocytes were blurred or invisible (Figure 2a), and the
survival rate was significantly reduced in G50 at 4 day and 6 day (p < 0.05) (Figure 2d,e).
Meanwhile, there was a significant decrease in follicular size in G50 on day 2 compared
with the other groups (p < 0.05) (Figure 2c). However, there was no significant change in
follicular size in G5 and G10 compared with the control group (p > 0.05) (Figure 2c).
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difference on day 4 (p > 0.05) (Figure 3b). However, there was a significant difference at 
day 6 when G50 significantly increased the secretion of progesterone compared to the 
other groups (p < 0.05) (Figure 3b). AMH, secreted by the growing follicles, was detectable 

Figure 2. Effects of IGF-1 on mouse follicle growth and oocyte maturation. (a) Images of follicular
growth in media containing different concentrations of IGF-1 (0, 5, 10, and 50 ng/mL) from day 0
to day 6; (b) Images of GV, MI, MII, and DG (degeneration) oocytes after IVM; (c) Line graph of
change in follicle diameters in media containing different concentrations of IGF-1 from day 0 to day 6;
(d) Follicle survival rates at day 6 in media containing different concentrations of IGF-1; (e) Line graph
of change in follicle survival rates in media containing different concentrations of IGF-1 from day 0 to
day 6; The maturation (f) and degeneration (g) rates of oocytes after IVM were isolated from follicles
treated with different concentrations IGF-1 for 6 days. Scale bar in (a): 100 µm; (b): 50 µm. Error
bar: standard deviation; points or bars with completely different letters (a, b, c) indicating significant
difference among treatments for isolated time points (p < 0.05). n = 10 follicles for five replicates.

Compared with the maturation rate of the G0, G10 was significantly increased (p < 0.05)
while G50 was significantly decreased (p < 0.05) (Figure 2f). Meanwhile, there was no
significant difference in the maturation rate of G5 compared with the G0 (p > 0.05) (Figure 2f).
There was no significant difference in the degeneration rate of G5 and G10 compared with
G0 (p > 0.05) (Figure 2g). However, the degeneration rate of G50 was the highest (32.14%),
which was significantly higher than G5 and G10 (p < 0.05) (Figure 2g).

3.2. Effects of IGF-1 on 17β-Estradiol, Progesterone, and AMH Secreted by Follicles Cultured
In Vitro

The 17β-estradiol significantly increased from days 2 to 4 of culture (Figure 3a). On
day 2, the secretion of 17β-estradiol in G0 was significantly lower than the other groups
(p < 0.05), and the level of 17β-estradiol was positively correlated with the dosage of
IGF-1 (Figure 3a). On day 4, the 17β-estradiol levels in G10 and G50 converged and were
significantly higher than G0 and G5 (p < 0.05) (Figure 3a). However, the difference between
the treatment groups was no longer significant by day 6 (p > 0.05), but still significantly
increased the amount of 17β-estradiol secretion compared with the G0 (p < 0.05) (Figure 3a).
Progesterone levels decreased from day 2 to day 4 and increased from day 4 to day 6.
On day 2, the progesterone level in G0 was significantly lower than the treatment groups
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(p < 0.05) (Figure 3b). On day 4, the progesterone level in G5 was not significantly different
from the G0 (p > 0.05) and was maintained until the end of the culture (Figure 3b). The
progesterone levels of G10 and G50 were at a high level, and there was no significant
difference on day 4 (p > 0.05) (Figure 3b). However, there was a significant difference at
day 6 when G50 significantly increased the secretion of progesterone compared to the other
groups (p < 0.05) (Figure 3b). AMH, secreted by the growing follicles, was detectable by day
2 and peaked at day 4 (Figure 3c). The G10 and G50 significantly decreased the secretion of
follicular AMH on days 2, 4, and 6 in comparison to the other groups (p < 0.05) (Figure 3c).
The amount of AMH secreted was also reduced in G5 on day 6 compared with the G0
(p < 0.05) (Figure 3c).
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Figure 3. Effect of IGF-1 on hormone secretion of in vitro cultured follicles. (a) The secretion of
17β-estradiol; (b) progesterone and (c) AMH at days 2, 4, and 6. Error bar: standard deviation;
points with completely different letters (a, b, c) indicating significant difference among treatments for
isolated time points (p < 0.05). n = 10 follicles for three replicates.

3.3. Effect of 10 ng/mL IGF-1 on the Expression of Hormone Secretion Related Genes,
Oocyte-Secreted Factors Genes, and Gonadotropin Receptor Genes In Vitro

Based on the results of follicular development and hormone secretion, the best con-
centration of IGF-1 was 10 ng/mL. Subsequently, the mRNA transcript levels of hormone
secretion-related genes were measured. The results showed that the expression of steroid
synthesis-related genes (Star, Cyp19a1, and Hsd3b1) were increased with the development
of follicles, and IGF-1 treatment significantly increased the expression level (p < 0.05) in
all stages of in vitro culture of follicles (Figure 4a–c). The transcriptional and expression
level of Amh mRNA increased from days 2 to 4, but from day 4 to day 6, the expression
level decreased (Figure 4d). At all stages of culture, IGF-1 significantly downregulated
the expression level of Amh mRNA (p < 0.05) (Figure 4d). Gdf-9, Bmp-15, and Fgf-8 are
expressed at all stages of in vitro follicular development and their expression increased tens
or even hundreds of times as the number of days of culture increased, reaching its highest
at day 6 (Figure 4e–g). On day 4, 10 ng/mL IGF-1 treatment had significantly upregulated
the expression of these three genes (p < 0.05), Gdf-9 (D4: 2.54-fold; D6: 2.94-fold) (Figure 4e),
Bmp-15 (D4: 2.30-fold; D6: 2.86-fold) (Figure 4f), and Fgf-8 (D4: 2.62-fold; D6: 2.63-fold)
(Figure 4g). The gonadotropin receptor genes Lhcgr and Fshr also increased with the growth
and development of follicles and, from day 4, the expression level of the treatment group
was significantly higher than that of the control group (p < 0.05) (Figure 4h,i). On day 4,
Fshr mRNA expression was upregulated by 4.45-fold (Figure 4h), and by day 6 Lhcgr mRNA
expression was upregulated by 3.49-fold (Figure 4i).
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Figure 4. Effect of IGF-1 on the mRNA expression of hormone secretion related genes, oocyte-
secreted factors and gonadotropin receptors in vitro. (a) The mRNA expression of Star; (b) The
mRNA expression of Cyp19a1; (c) The mRNA expression of Hsd3b1; (d) The mRNA expression
of Amh; (e) The mRNA expression of Gdf-9; (f) The mRNA expression of Bmp-15; (g) The mRNA
expression of Fgf-8; (h) The mRNA expression of Fshr; and (i) The mRNA expression of Lhcgr.
* p < 0.05 compared to the control group; error bar: standard deviation. n = 10 follicles for each of
three replicates.
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3.4. Effect of IGF-1 on the Expression of Apoptosis-Related Genes In Vitro

The expression of Bcl2 increased with the development of follicles (Figure 5a). The
regulation of 10 ng/mL IGF-1 reached a significant level at day 4 and day 6, which increased
the expression level of Bcl2 in the treatment group (p < 0.05) (Figure 5a). Additionally,
50 ng/mL IGF-1 significantly decreased the expression level of Bcl2 compared with the
G0 at day 6 (p < 0.05) (Figure 5a). Bax initially decreased and then increased during
in vitro follicular development (Figure 5a). The addition of 10 ng/mL IGF-1 significantly
downregulated its expression at each stage, while 50 ng/mL IGF-1 significantly increased
its expression at each stage (p < 0.05) (Figure 5a). Furthermore, 10 ng/mL IGF-1 treatment
also significantly increased the Bcl2/Bax ratio after 4 days of culture (p < 0.05) (Figure 5b).
Meanwhile, 50 ng/mL IGF-1 treatment significantly decreased the Bcl2/Bax ratio at day 6
(p < 0.05) (Figure 5b). The expression level of Caspase3 increased with the development of
follicles in G0, and the addition of 10 ng/mL IGF-1 significantly inhibited its expression in
follicles (p < 0.05) (Figure 5a). This trend was opposite to the G0, with decreased follicular
development (Figure 5a). Finally, 50 ng/mL IGF-1 significantly increased the expression
level of Caspase3 compared with the G0 at each stage (p < 0.05) (Figure 5a).
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3.5. Effect of 10 ng/mL IGF-1 on Oocyte Quality and Fertilization Rate In Vitro

Spindle formation and chromosome alignment are important for the competence of
oocytes. Accordingly, we evaluated the effect of adding IGF-1 on these parameters during
in vitro culture. The results showed that the oocytes obtained from the G0 and G10 groups
were able to form normal spindle and maintain normal chromosome distribution after
in vitro maturation (Figure 6a). Meanwhile, there was no significant difference in the
fertilization rate of G10 compared with G0 (12/39 vs. 9/37, p > 0.05) (Figure 6c). The
oocytes in both G0 and G10 can develop to the two-cell stage after in vitro fertilization
(Figure 6b).
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Figure 6. (a) Grown oocytes underwent germinal vesicle breakdown and progressed to metaphase II
in group G0 and G10; (b) Embryo morphology at the two-cell stage in group G0 and G10. Scale bar:
100 µm; (c) The fertilization rate in group G0 (n = 37) and G10 (n = 39).

3.6. Effect of IGF-1 Treatment on Oocyte Number and Quality during Superovulation

Mice in the control and IGF-1 treated groups exhibited significant differences. Both
the number of ovulated oocytes and normal oocytes were significantly higher in the IGF-1
treated group than in the control group (p < 0.05) (Figure 7a). The number of degraded
oocytes was lower in the IGF-1 treated group compared to the control group (Figure 7a).
Figure 7b shows that the rate of normal oocyte morphology was significantly higher than
the control group after injecting IGF-1 (1403/1639 vs. 938/1302, p < 0.05), and the IGF-1
treated group had a significantly decreased percentage of degraded oocytes (236/1639 vs.
364/1302, p < 0.05).
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Figure 7. Ovulated oocytes in vivo in mice treated with IGF-1 (n = 30) or saline control (n = 30).
(a) The in vivo number of ovulation oocytes, normal oocytes, and degraded oocytes of mice in IGF-1
treated group or control group; (b) Rates of normal oocytes and degraded oocytes of mice in vivo in
the IGF-1 treated group or control group; and (c) The morphology of normal oocytes and degraded
oocytes. Scale bar: 100 µm. * p < 0.05 compared to control group.
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4. Discussion

The 3D culture system could maintain the structure of follicles and the gap junc-
tion between cells. We systematically studied the regulation of IGF-1 to whole follicles,
especially the effect on the related functional genes of oocytes and granulosa cells. Further-
more, according to the results of in vitro experiments, this has also been verified in vivo.
Previous in vitro studies have revealed the growth-promoting effect of IGF-1 in different
species [26–28]. Our results showed that 10 ng/mL IGF-1 increased the mouse follicle
diameter compared to the control (Figure 2c). It also significantly improved the ability
of oocyte meiosis resumption (p < 0.05) (Figure 2f), while 50 ng/mL IGF-1 significantly
inhibited follicular growth (p < 0.05) (Figure 2a,c). There was no significant difference in the
subsequent fertilization rate of mature oocytes obtained through in vitro maturation under
different treatment conditions [16], which was the same in our study. IGF-1 can directly in-
fluence ovarian function, and the effects depend on the concentration. High concentrations
of IGF-1 may destroy the function of preantral follicles. Previous results showed that the
ultrastructural features of follicles were normal in the presence of 30 ng/mL IGF-1 in vitro.
In contrast, follicles displayed signals of degeneration at a 100 ng/mL concentration [29].
High concentrations of IGF-1 (100 ng/mL) also promoted bovine GCs apoptosis [15]. These
results suggest that the effects of IGF-1 on follicular development are dose-dependent. Our
results showed that the 10 ng/mL and 50 ng/mL IGF-1 promoted steroidogenesis at all
stages (Figure 3a,b). Similar results have been found in other studies [16].

In hormone production, our results showed that IGF-1 had a promotional effect on
follicular steroidogenesis. Estradiol synthesis is primarily regulated by gonadotropins and
IGF-1 can positively or negatively alter the concentration of estradiol produced by pro-
moting differentiation and proliferation of GCs [30]. With the formation of antral follicles,
the production of 17β-estradiol and progesterone are usually increased [31]. The curve of
the diameter of follicles showed that follicles grew fastest from day 2 to day 4, which is
the same trend as the 17β-estradiol secretion curve (Figures 2c and 3a). IGF-1 promotes
steroid production by increasing the sensitivity of GCs to FSH [32]. Similar results were
found in this study. Treatment with 10 ng/mL and 50 ng/mL IGF-1 promoted progesterone
production at all stages (Figure 4b). The progesterone was secreted by the theca cells during
the development of follicles and the promotion effect of IGF-1 should be related to the
receptor of LH on the theca cells. It can be seen that the secretion of progesterone decreased
during the process of the rapid development of follicles (Figures 2c and 3b). This is due
to the large amount of progesterone being consumed as a precursor for the synthesis of
17β-estradiol from day 2 to day 4. There is the same trend in the culture system of buffalo
preantral follicles [33]. Subsequently, the progesterone level increased from day 4 to day
6 due to the accumulation of hormone secretion. In the early stages of ovulation, higher
levels of plasma progesterone help oocyte meiosis resumption and quality improvement
in dairy cows [34]. In addition, the previous report has shown that adding 10 ng/mL
progesterone during follicle development did not inhibit the growth of secondary follicles
in the ovary [35]. Our results showed that the secretion of progesterone is less than this
safe concentration. Additionally, the normal development of follicles in G10 also confirms
this. Another study also had progesterone concentrations similar to ours, and their results
showed that 50–72% of the oocytes produced in the 3D culture system were meiotically
competent [36]. In vitro exposure of neonatal mouse ovaries to anti-Müllerian hormone
(AMH) reduced the number of follicles capable of growth by 50% [37]. GCs continue
to express Amh until the early follicle stages in mice [38]. These observations support
the negative impact of endogenous AMH on the development of antral follicles. IGF-1
decreased the secretion of AMH in our studies (Figure 3c).

Considering follicular development, oocyte maturation efficiency and hormone se-
cretion level, the optimal concentration of IGF-1 in the 3D culture of mouse follicles was
10 ng/mL. With the proliferation of GCs, the steroid secretion activity in follicles in-
creased during the culture period. IGF-1 significantly promoted the expression of the
steroidogenesis-related genes (Star, Cyp19a1, and Hsd3b1) at each stage. These results
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indicated that the synthesis increased steroid hormones by upregulating the expression of
genes involved in steroid synthesis. The expression of Star, Hsd3b1, and Cyp19a1 in GCs is
regulated by FSH stimulation, while IGF-1 alone can increase the expression of Star, Hsd3b1,
and Cyp19a1 [39]. The intracellular pathway triggered by FSH and IGF-1 was mediated
by different receptors and then promoted GCs to produce 17β-estradiol and progesterone.
During the development of mouse follicles in vitro, the expression level of Amh increased
in the early stage of culture and decreased in the late stage of culture. In research on rhesus
macaques, the trend of Amh was similar to our result [40]. The addition of 10 ng/mL IGF-1
significantly down-regulated its mRNA expression level which inhibited the secretion of
AMH. As a result, it attenuated the inhibition of follicle development.

Oocyte-derived factors such as BMP-15, GDF-9, and FGF-8 stimulate the proliferation
and differentiation of GCs, improving the developmental capacity of oocytes during in vitro
maturation [41]. The addition of GDF-9 to rodent ovarian tissue during in vitro culture
can promote primary follicular development [42]. In contrast, in Gdf-9 knockout mice,
follicular development was arrested in the primary phase [43]. GDF-9 has been shown to be
effective in stimulating the development of rat preantral follicles cultured in vitro [44], and
it also promoted early preantral follicle growth in human ovarian cortical tissue culture [45].
During the stage from preantral follicles to antral follicles, it appeared that GDF-9 improved
follicular survival by suppressing granulosa cell apoptosis [46]. Bmp-15 homozygous
mutants are completely sterile, and follicles cease to develop in the primordial stage [47].
Removal of the bovine oocyte from cumulus–oocyte complexes triggered cumulus cell
apoptosis, which could be prevented by BMP-15 [48]. BMP-15 was also involved in
cumulus expansion by enhancing the expression of EGF-like growth factors [49]. FGF-8
plays a mediator of the oocyte to regulate follicle cell proliferation or differentiation to a
large extent [50]. Additionally, both BMP-15 and FGF-8 cooperated to promote glycolysis
in cumulus cells [51]. Therefore, the oocyte-derived factors in follicles are essential for
the development of follicles [41]. Gdf-9 and Bmp-15 are expressed in an oocyte-specific
manner [52]. The previous research found that IGFR was located in oocytes [10], so IGF-1
may directly act on oocytes. The present results confirmed exogenous IGF-1 really appeared
this function. In this experiment, IGF-1 could significantly promote expressions of Gdf-
9, Bmp-15, and Fgf-8 during the later stages of culture, which showed that IGF-1 could
increase oocyte-derived paracrine signals. The previous report showed that there was a
synergistic relationship between GDF-9 and BMP-15, which regulated the sensitivity of
GCs to FSH [53]. These results further motivate us to study the regulation of IGF-1 on
gonadotropin receptors.

Our results showed that IGF-1 significantly increased the expression levels of go-
nadotropin receptors (Fshr and Lhcgr) in mouse follicles from day 4 to day 6, cultured
in vitro (Figure 4h,i). IGF-1 can synergize with FSH to induce differentiation of mouse
GCs by modulating Fshr expression [16]. The primary role of the IGF system is to ensure
a critical level of Fshr necessary for gonadotropin responsiveness, and the low expres-
sion of Fshr is responsible for decreased follicular growth in IGF-1 knockout mice [13].
FSH stimulates serine/threonine kinase AKT which is essential for the differentiation of
GCs [54]. However, in IGF-1 knockout mice, the effect of FSH on the induction of AKT
phosphorylation was reduced [55]. Therefore, GCs differentiation of IGF-1 knockout mice
is inhibited, because FSH fails to stimulate AKT phosphorylation in vivo. In the IGF-1
knockout state, the induction of AKT by FSH is not sufficient to induce granulosa cell
differentiation [56]. This may be due to decreased expression of Fshr. The expression of
Lhcgr is one of the major markers of FSH-induced granulosa cell differentiation, and this
process is also modified by many growth factors [57]. In our study, Lhcgr mRNA expression
levels increased with follicular development, and IGF-1 treatment significantly promoted
its expression in the late stage of follicular development. IGF-1 can synergize with FSH
to increase Lhcgr expression in rat GCs in a dosage- and time-dependent manner [57]. In
the sheep, an increase in LHCGR protein immunostaining in oocytes and granulosa cells
was observed after follicles culture in a medium containing IGF-1 and FSH [11]. Thus,
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IGF-1 has a major effect on Fshr expression, which in turn enhances FSH action and leads
to an increase in LHCGR protein immunostaining in GCs. Other studies have also shown
that IGF-1 increases the expression of Lhcgr in bovine GCs [58]. The synergy of IGF-1 and
gonadotropins is worthy of further exploration during the development of follicles.

The Bcl2 family plays an important role in regulating the apoptotic pathway. Among
them, the pro-apoptotic protein Bax is an essential protein for inducing apoptosis, and
the anti-apoptotic protein Bcl2 is an inhibitor of apoptosis [59]. This study found that
10 ng/mL IGF-1 can significantly increase the Bcl2/Bax ratio from day 4 to day 6, which
is critical for inhibiting the cellular apoptotic pathway. Meanwhile, 50 ng/mL IGF-1 can
significantly decrease the Bcl2/Bax ratio by day 6, which also proved that the inhibition of
follicle development is related to the apoptosis of GCs. Caspase3 is a key protease located
downstream of the mammalian apoptosis pathway. Caspase3 increased with time in the de-
velopment of follicles in vitro, but the addition of 10 ng/mL IGF-1 significantly inhibited its
expression and decreased its mRNA expression with follicular development. Apoptosis of
follicular GCs in IGF1R knockout mice was significantly increased [55]. However, excessive
concentrations of IGF-1 can upregulate apoptosis-regulating genes and increase the vul-
nerability of GCs, leading to apoptosis [14]. The addition of 50 ng/mL IGF-1 significantly
increased the expression level of Caspase3. This is the reason why 50 ng/mL IGF-1 inhibited
follicular development and caused a large percentage of oocyte degeneration in this study.
Notably, although IGF-1 promoted follicular development during in vitro culture, it did
not improve the oocyte developmental competence compared with the control group. We
observed normal spindle morphology in oocytes after in vitro maturation in both G0 and
G10 groups, which also resulted in no significant difference in fertilization rates.

Of particular note, no reverse control was set up in the in vitro culture system of
this research. The IGF system involves complex regulatory networks that operate in the
ovary. The bioavailability of IGF-1 is influenced by concentrations of IGF-1R and specific
IGFBPs. In addition, at least six IGFBPs have been characterized, and their affinity for
IGF-1 is in the same order of magnitude as that of IGF-1R [60]. Meanwhile, IGF-1 also
mediated its actions through the IR [61]. We believed that complete inhibition of IGF-1 in
our experiments may require more inhibitors, which may complicate the culture system.
Moreover, some reported results showed that IGF-1R was expressed in granulosa cells of
mammalian primary follicles [62,63], but in our experiments, the secondary follicles were
used for culture in vitro, and the level of IGF-1R was high at this stage, so interference of
Igf-1r expression by siRNA may have limited effect [3]. For the above reasons, we did not
perform reverse control for IGF-1 in the culture system in vitro.

Previous reports indicated that IGF-1 can act synergistically with FSH to enhance
follicular development [64]. During superovulation, equine chorionic gonadotropin (eCG)
is used to stimulate follicular development, which has the same effect as FSH. In the
subsequent experiment, we selected the mouse superovulation model to examine the
synergistic effect of IGF-1 and gonadotropins in vivo. The results demonstrated that
IGF-1 significantly increased the number of ovulated oocytes and normal oocytes during
superovulation (p < 0.05). We suggest that IGF-1 increased the function of GCs and
steroidogenesis, and upregulated the expression of gonadotropin receptors. IGF-I mediates
the effect of FSH on the ovary and improves follicular development.

5. Conclusions

The results of the current research have proven that designing modern and powerful
approaches to the murine ex vivo 3D model of IGF-1-assisted growth and maturation of
ovarian secondary preantral follicles in order to obtain satisfactory outcomes of IVM might
be reliable and feasible for the purposes of achieving high efficiency rates in such novel
ARTs as IVF/ICSI in humans and other mammalian species [65–68] or somatic cell cloning
in other mammalian species [69–72].
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