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Development and growth of organs 
in living whole embryo and larval 
grafts in zebrafish
Toshihiro Kawasaki1,2, Akiteru Maeno1,3, Toshihiko Shiroishi1,2 & Noriyoshi Sakai1,2

Age-related systemic environments influence neurogenesis and organ regeneration of heterochronic 
parabiotic partners; however, the difficulty of manipulating small embryos prevents the effects of 
aged systemic environments on primitive organs at the developmental stage from being analysed. 
Here, we describe a novel transplantation system to support whole living embryos/larvae as grafts 
in immunodeficient zebrafish by the intrusion of host blood vessels into the grafts, allowing bodies 
similar to those of heterochronic parabiosis to be generated by subcutaneous grafting. Although 
grafted embryos/larvae formed most organs, not all organogenesis was supported equally; although 
the brain, eyes and the intestine usually developed, the liver, testes and heart developed insufficiently 
or even occasionally disappeared. Removal of host germ cells stimulated testis development in grafted 
embryos. These results indicate that primitive testes are susceptible to the systemic environments that 
originated from the germ cells of aged hosts and imply that the primitive liver and heart are similar. 
Upon applying this method to embryonic lethal mutants, various types of organs, including testes that 
developed in germ-cell-removed recipients, and viable offspring were obtained from the mutants. This 
unique transplantation system will lead to new insights into the age-related systemic environments 
that are crucial for organogenesis in vertebrates.

Parabiotic pairings, which share a circulatory system by surgical connections between two entire animals, show 
unique phenomena of rescuing individuals that were lethally damaged by radiation1 and affecting organ growth2,3. 
Recently, heterochronic parabiosis in mice has advanced in ageing studies because age-related systemic environ-
ments influence neurogenesis and organ regeneration in heterochronic partners4–6. However, a rejection response 
and the difficulty of manipulating the connection between two individual animals likely prevents the production 
of heterochronic parabiotic pairs in most vertebrates. In the sexual parasitism of deep-sea ceratioid anglerfishes, 
the male is joined to the female on the belly, and attachment is followed by the fusion of epidermal tissues and, 
eventually, the uniting of the circulatory systems7. Syngnathus pipefish males care for their embryos in a brood 
pouch, where paternally derived blood vessels contact the embryos8. These unique properties of fish epidermal 
tissues hint at an alternative approach to generate parabiosis in teleosts.

We recently established a subcutaneous transplantation system of the adult testis using immunodeficient rag1 
mutant zebrafish, in which the immune system does not reject allogeneic tissue9. The grafted fragment of testic-
ular hyperplasia grows subcutaneously, and host blood vessels intrude into the grafts. Since the size of zebrafish 
embryos and larvae is smaller than the size of the fragment, it is possible to graft the whole-body subcutaneously, 
allowing us to transplant all of the tiny organs in the body simultaneously. Therefore, we sought to establish a 
transplantation system for living whole embryos and larvae to achieve whole-organism transplantation subcu-
taneously in adult zebrafish. The results show that transplantation of a living whole embryo or larva into rag1 
mutant recipients can support development, including of embryonic lethal mutants, by the intrusion of host 
blood vessels into the grafts. Although primitive organs such as the liver, heart and testes in the grafted embryos 
occasionally disappeared 2 months after transplantation, germ cell-removed hosts recovered the support for testis 
development in grafted embryos, giving rise to the possibility that age-related systemic environments influence 
the development of primitive organs such as the liver, heart and testis in zebrafish.
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Results
Growth of embryos after primitive body structure formation by subcutaneous grafting.  First, 
we performed subcutaneous transplantation of embryos at 72 hours post-fertilization (hpf), just after they had 
hatched and completed most morphogenesis. The grafted embryos were maintained and grown in the rag1−/− 
recipients, and their shape was relatively similar to that of fish at 2 months post-grafting (Fig. 1a,b). A beating 
heart was observed in these grafted embryos (Supplementary Video S1).

Analyses of X-ray µ-CT for grafted 72 hpf embryos showed cranial bones and vertebrae at 2 months 
post-grafting (Fig. 1c, Supplementary Video S2), suggesting that osteogenesis also proceeded in grafted embryos. 
When recipients were stained with Lugol’s solution, vascularization that extended from the recipient to the donor 
embryo was observed (Fig. 1c). In addition, when FITC-labelled dextran solution was injected into recipient 
hearts, we confirmed the arrival of FITC-labelled dextran into grafted embryos (Fig. 2). These results suggest that 
the vasculature of grafted embryos connects to the host by sharing blood circulation. This feature likely supports 
the development of grafted embryos for 2 months.

Subcutaneous grafting perturbs the normal development of blastula and gastrula 
embryos.  Since the embryos at 72 hpf were maintained and developed for 2 months after subcutaneous trans-
plantation, we next examined the subcutaneous transplantation of embryos at different developmental stages. 
Whole embryos at 3 hpf (blastula, 1000-cell stage), 6 hpf (early gastrula, shield stage), 24 hpf (completion of soma-
togenesis) and larvae at 5 days post-fertilization (dpf) were transplanted into rag1−/− recipients subcutaneously. 
The grafted embryos at 24 hpf and larvae at 5 dpf were maintained and developed the same as did embryos that 
were grafted at 72 hpf (Supplementary Fig. S1a,b). These results indicate that the development of living embryos 
after the completion of somatogenesis is supported by the subcutaneous condition.

In contrast, although almost all of the grafted embryos at the 1000-cell (3 hpf) and shield stages (6 hpf) were 
maintained 2 months after transplantation and their sizes increased, the shapes of the grafted embryos were not 
similar to that of the normal fish body (Fig. 3a,b). Histological observation did not show most of the organs, 
except for the brain-like tissue (Table 1; Fig. 3c,d). The intestine and an eye were rarely observed (they were 
observed in 1 of the 8 samples). To confirm these findings, the expression of the brain-specific marker elavl310, the 
heart-specific marker tnnt2a11, the intestine-specific marker fabp212 and the liver-specific marker fabp10a13 was 
measured by RT-PCR. This analysis indicated the strong expression of the brain-specific marker elavl3 and the 
weak expression of the intestine-specific marker fabp2, whereas specific markers of the heart, tnnt2a, and liver, 
fabp10a, were barely detectable (Fig. 3e).

Because a hypertonic environment disrupts normal embryogenesis in zebrafish14, we examined whether 
an isotonic environment would affect embryogenesis. When we kept 1000-cell-stage embryos in isotonic 
medium (300 mOsm/L: a common vertebrate extracellular tonicity), most of the embryos developed normally 
(Supplementary Table S1). These results suggest that the subcutaneous condition of adult hosts does not support 
the development of blastulae and early gastrulae, which seem to induce differentiation to mostly ectodermal 
derivatives.

Heterogeneous development of organs in grafted embryos and larvae after primitive organ 
formation.  Since subcutaneous conditions in adult hosts do not support the normal development of blastula 
and gastrula embryos, we performed histological observations of sections after their removal from the host to 
examine if organogenesis occurred appropriately in the grafted embryos/larvae at 24 hpf, 72 hpf, and 5 dpf. The 
sections showed that each organ, such as the brain, eyes, heart, intestine, liver, and testes, developed in different 
ways. The brain, eyes, and intestine developed in most grafted embryos/larvae, whereas the liver, heart and testes 
were occasionally absent (Table 1; Fig. 1d; Supplementary Fig. S1c). Development of the heart was rarely observed 
in the grafts of 24 hpf embryos, whereas such development was observed in most grafts at 5 dpf. By RT-PCR analy-
sis of organ-specific genes, the expression of elavl3 and fabp2 was detected in all of the grafted embryos and larvae, 
tnnt2a was not expressed in any grafted 24 hpf embryos and fabp10a was not observed in some grafted embryos 
(Supplementary Fig. S1d), thus supporting our histological observations of grafted embryos/larvae. These results 
indicate that several primitive organs, especially the heart, liver and testes, do not develop under subcutaneous 
conditions, even though the grafted embryos become larger. They may thus have a period in which they are sus-
ceptible to the systemic environments of the adult host and can be severely damaged.

For the size of the organs, we measured the area of each organ in serial sections of grafted 72 hpf embryos 2 
months after transplantation. Although the volume of each organ type in 72 hpf embryos increased after trans-
plantation (Supplementary Fig. S2), the size of the liver and testis was smaller than that of normally developing 
individuals, even in the cases when they developed (Fig. 1e). The development of the eyes and intestine of the sub-
cutaneously grafted 72 hpf embryos also showed changes in size, but the brain developed as same as observed in 
normal embryos. Although hearts were lost in many grafted embryos at 24 dpf, in grafted embryos at 72 dpf, they 
developed to almost the same size observed in normal individuals in the cases in which they developed. These 
results suggest that the development of various primitive organs such as the liver, testes, heart, eyes and intestine 
are affected by the subcutaneous conditions of adult hosts, although the degree is different for each organ type.

Removal of germ cells from hosts stimulates testis development in grafted embryos.  Testicular 
function is not necessary for the survival of the individual, and castrated mouse hosts are used for grafting testis 
tissue of newborn mice, pigs or goats15. Similarly, germ cells can be removed from zebrafish via knock down of 
dead end using morpholino antisense oligonucleotides16. Therefore, we examined testis development in 72 hpf 
embryos grafted into castrated and germ-cell-depleted rag1 mutants to determine which cells of the host testis 
affect the growth of primitive gonads in grafted embryos.
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Figure 1.  Development of grafted 72 hpf embryos and organ growth in rag1 mutant hosts. (a) Schematic of 
whole-embryo transplantation. (b) Representative 72 hpf embryos and grafted embryos. Arrowheads indicate 
the site of the subcutaneous embryo graft. Scale bar: 2 mm. (c) µ-CT imaging of the grafted embryo 2 months 
after transplantation. Cranial bones and vertebrae were observed in the grafted embryos without staining. Using 
Lugol staining, a vascular structure was observed. Note that the posterior cardinal vein (red) of the recipient 
is connected to the grafted embryo (yellow dotted line). Scale bar: 1 mm. (d) Histology of the 72 hpf embryo, 
the 72 hpf embryo graft 2 months after transplantation, and the 2 mpf fish. Germ cells of 72 hpf embryos were 
stained with anti-DDX4 (Vasa) antibody to identify the primitive gonad. Arrowheads indicate each organ as 
labelled above the panels. Scale bar: 80 µm. (e) Comparison of organ size between grafted 72 hpf embryos 2 
months after transplantation and normal 2 mpf males. The volume of each organ was calculated from serial 
sections of grafts (n = 12 brains, 11 eyes, 11 hearts, 12 intestines, 8 livers, and 6 testes) and of 2 mpf males 
(n = 3). Error bars indicate standard deviation. *p < 0.01 (Student’s t-test).
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At two months after transplantation, the gonads of 72 hpf embryo grafts in either the castrated or 
germ-cell-depleted hosts developed more frequently than did those in embryo grafts in the normal host (Table 1). 
The donor testes in the germ-cell-depleted host became approximately 30 times larger than those in the normal 
host and 4 times larger than the testes of normal fish at 2 months post-fertilization (mpf) (Fig. 4). The size of the 
donor testis in the castrated host was also larger than that in the normal host and varied widely. Since we observed 
a small fragment of the testis remaining in the host in which testes of the grafted embryo did not develop well at 
2 months after transplantation, the wide variation in castrated hosts is probably due to the incomplete removal 
of host testes. Spermatogenesis was confirmed by artificial insemination using well-developed testes of the graft 
at 2 months post-grafting, and the resultant fertilized eggs developed normally (Supplementary Table S2). These 

Figure 2.  Microinjection of FITC-dextran into the recipient heart. To examine vascularization between 
recipients and grafted embryos, FITC-conjugated dextran solution was injected into the hearts of living 
recipients in which 72 hpf embryos had been transplanted 3 months previously. (a) At 3 minutes after injection, 
slight fluorescence of the recipient blood vessels (white arrow) was observed in the recipient abdomen but not in 
grafted embryos (yellow dotted line). No fluorescence in the blood vessels was observed in the grafted embryo 
(yellow arrows). The recipient heart in which FITC-dextran was injected is outside the frame of this panel. Most 
of the FITC-dextran has not reached the abdomen at 3 minutes after injection. (b) At 15 minutes after injection, 
strong fluorescence was observed in the recipient blood vessels (white arrow) of the abdomen and the grafted 
embryos (yellow dotted line). This strong fluorescence was also observed in the blood vessels of the grafted 
embryo (yellow arrows). These results suggest that recipient blood vessels are connected with grafted embryos.
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Figure 3.  Failure of organ formation in grafted blastular and gastrular embryos. (a,b) Representative 
1000-cell-stage (3 hpf) embryos (a), shield-stage (6 hpf) embryos (b) and grafted embryos two months after 
transplantation. Both embryo stages were subcutaneously transplanted into rag1 mutants. Scale bar: 1 mm. (c,d) 
Histology of 1000-cell-stage embryos (c) and shield-stage embryos (d) before and after transplantation. Sections 
were stained with haematoxylin and eosin. Although brain-like organs with an irregular shape and cell body 
arrangement were observed in all of the grafted early-stage embryos, other organs were not observed, except an 
eye (arrow) and intestine (arrow head) in a few grafted embryos. Scale bars: 200 µm (brain-like organ and eye), 
100 µm (intestine), 50 µm (blastula and gastrula). (e) RT-PCR analysis of organ-specific genes in the grafted 
blastular and gastrular embryos at 2 months post-transplantation. Each experiment was conducted using two 
independent samples. Wild-type zebrafish at 2 mpf were used as positive controls. Negative controls lacking 
reverse transcriptase are located in alternating lanes (−). gapdh was used as a positive control.
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results indicate that the host germ cells are the origin of the systemic environment that prevents testis develop-
ment in the grafted embryo.

Generation of sperm from embryonic lethal mutants.  Since germ-cell-depleted recipients stimulated 
constant testis growth in grafted embryos, we asked if this method supported spermatogenesis in embryonic 
lethal mutants, such as those with severe defects in the heart, which prevents the analysis of spermatogenesis 
beyond the lethal stage. Therefore, we examined the possibility of sperm generation in two embryonic lethal 
mutants, spns217 and oep18–20, after transplantation into the rag1 mutant.

The spns2 mutant displays cardia bifida (two hearts) during early embryogenesis due to mutation of the spin-
ster homolog 217 and dies within several days after hatching. The spns2 mutant grafted at 72 hpf developed for two 
months in the recipient (Fig. 5a). The brain, eyes, intestine, liver, and testes were observed histologically (Table 1; 
Fig. 5b). The testis contained all stages of spermatogenesis, including sperm. Although a primitive heart was 
observed in 72 hpf spns2 mutants, further heart development was not observed. RT-PCR analysis supported the 
existence of all organs except the heart, as tnnt2a was only weakly detected (Fig. 5e).

The oep mutant has severe defects in the development of the prechordal plate, endoderm, ventral neuroec-
toderm, liver, gut, and heart due to mutation of teratocarcinoma-derived growth factor 1 (tdgf1)18–20 and dies by 
10 dpf. Transplantation of the 7 dpf oep mutant, in which maldevelopment had already become apparent, enabled 
the development of the eyes, brain and testes but not the heart, intestine or liver at 2 months post-transplantation, 
as detected histologically (Table 1; Fig. 5c,d). The expression of tnnt2a, fabp2, and fabp10a, which were barely 
detected in the grafted oep mutants, supported these histological observations (Fig. 5e). By artificial insemination 
using testes of grafted oep mutants and wild-type unfertilized eggs, we obtained fertilized eggs that developed 
normally into adult fish (Supplementary Table S2). These results indicated that not only the generation of sperm 
but also the development of organs in embryos with lethal mutations may be rescued from beyond the lethal stage 
in the rag1 mutant in the case that spermatogenesis and organogenesis were not severely affected by the mutation.

Discussion
In the present study, we established a novel transplantation method for living whole embryos and larvae that can 
support their development, including embryonic lethal mutants, after subcutaneous grafting into rag1 mutant 
recipients. Both the intrusion of host blood vessels into grafts and shared blood circulation between them were 
observed, which likely supports the development of grafted embryos over 2 months. Thus, this method can gen-
erate body compositions similar to that observed in heterochronic parabiosis by the simple grafting of embryos 
into juvenile or adult fish, which effectively allows tiny embryos to join the vasculature of the host, although the 
embryos are inside the host. This is different from the process of parabiotic zebrafish embryo generation by blas-
tula fusion21. The survival of lethal embryos by this transplantation technique allows us to analyse any further 
defects in the mutant organs beyond the lethal stage.

Transplantation of embryos and larvae reveals that some primitive organs, such as liver, testes and heart, 
occasionally do not develop well in the subcutaneous conditions of adult hosts. In zebrafish, hepatocytes are 
histologically evident by 36 hpf, and the extrahepatic biliary duct is evident by 52 hpf22. Primordial germ cells 
migrate to the genital ridge by 24 hpf23. The heart is first visible at 24 hpf, and the heart tube is elongated by 
26 hpf24. Therefore, the affected organs are in a rather early stage of development. The liver is a highly regenerative 
organ, and partial hepatectomy affects hepatocyte proliferation in parabiotic partners2,3, but to our knowledge, 
there have been no reports of a loss of liver tissue in these parabiotic conditions. Our previous study reported 
that grafted adult testes are maintained but not lost in isogenic zebrafish25. It has also been reported that rat infant 

grafted 
embryo recipient

# of 
grafts

# of survived 
recipients

# of 
grown 
grafts

# of grafts with 
testis formation

# of grafts 
containing 
brain

# of grafts 
containing eye

# of grafts 
containing 
heart

# of grafts 
containing 
intestine

# of grafts 
containing 
liver

3 hpf rag1 13 13* 12 0/8† 8/8 0/8 0/8 1/8 0/8

6 hpf rag1 12 12 11 0/4 4/4 1/4 0/4 0/4 0/4

24 hpf rag1 21 20 16 4/9 9/9 8/9 1/9 8/9 3/9

72 hpf rag1 28 21 20 6/14 14/14 14/14 11/14 14/14 9/14

5 dpf rag1 12 12 12 5/7 7/7 7/7 6/7 5/7 3/7

72 hpf Germ cell-depleted 
rag1 28 27 25 9/10 10/10 9/10 7/10 10/10 7/10

72 hpf Castrated rag1 17 6§ 6 5/6 6/6 6/6 6/6 6/6 3/6

72 hpf 
spns2 
mutant

Germ cell-depleted 
rag1 21 15 13 4/8 8/8 8/8 0/8 8/8 6/8

7 dpf oep 
mutant

Germ cell-depleted 
rag1 14 14 14 4/7 7/7 5/7 0/7 1/7 0/7

Table 1.  Growth of grafted embryos/larvae and development of their organs. *The number of recipients that 
survived for 2 months after transplantation. †The denominator shows the number of grafts used for histological 
observation; the remaining grafts were used for other analyses. §Because the castrated rag1 recipients tended 
to die immediately after transplantation due to damage incurred from castration surgery, only some of the 
recipients survived for 2 months after transplantation.
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hearts grafted to young and adult hosts grow autonomously26. The disappearance of the liver, testes and heart in 
the present study is not consistent with these findings and is likely due to a combination of the primitive organs 
and adult systemic environments.

To explore the possibility that the adult host environments affect the development of primitive organs in the 
grafted embryo, we focused on the testis because germ cells and testes can be removed by either knock down of 
dead end16 or castration. Removal of host germ cells stimulated testis development in the grafted embryo. In our 
previous study, no adult testes disappear after transplantation even though germ cells were not removed from the 
host25. Therefore, this result indicates that the primitive testis of an embryo at 24 hpf–5 dpf has a period in which 
it is susceptible to the systemic environment produced by the germ cells of adult hosts during development. It 
is well known that the growth and development of germ cells are controlled by the pituitary-gonad endocrine 
system. The present study indicates that the extra pituitary and testicular somatic cells of the host stimulate the 
development of the primitive testis in the graft, whereas extra germ cells in the host suppress it. By comparing the 
molecules that appeared at different levels between these conditions, the factors originating from the germ cells, 
which are assumed to circulate in blood, could be identified.

The liver and heart in grafted embryos also occasionally disappeared 2 months after transplantation, although 
we were not able to determine the cell or organ of the host that affected them in the present study. It is possible 
that similar to testes, these organs also have periods of susceptibility to the age-related systemic environment 
of adult hosts. Specific cell types that express foreign nitroreductase can be removed by chemical ablation in 
zebrafish27. Using this technique in our whole living embryo/larvae transplantation could identify the means by 
which the development of the primitive liver and heart is prevented. It is assumed that each factor preventing 
these organs’ development differs from the factor preventing testis development because the liver and heart also 
occasionally disappeared during transplantation into a germ-cell-removed host.

Figure 4.  Growth of testis in 72 hpf embryos grafted into germ cell-depleted and castrated rag1 mutants after 
2 months. (a) Histology of testes of 72 hpf embryos grafted into normal, germ cell-depleted, and castrated rag1 
mutants. Dotted lines represent testes of the grafts. Scale bar, 100 µm. (b) Comparison of testis size between 2 
mpf normal testes and grafts into normal, germ cell-depleted and castrated rag1 mutants. Testes volume was 
calculated from graft serial sections (n = 9 normal, n = 7 germ cell-depleted and n = 5 castrated) and of 2 mpf 
males (n = 3). Error bars indicate the standard error. *p < 0.01; **P < 0.05 (paired t-test).
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We further observed that the sizes of the eyes and intestine at 72 dpf, similar to the liver and testes, became 
smaller than those of normally developing individuals. The optic lobe can be first distinguished at the 6 somite 
stage (12 hpf), and by the end of somitogenesis (24 hpf), the lens is spherical and has detached from the epi-
dermis28. Endodermal precursors originate from marginal blastomeres, which involute early in gastrulation 
(5.25 hpf), and the developing gut is a cord of radially aligned cells at 36 hpf22. These organs may have more severe 
damage when embryos earlier than 24 hpf are transplanted into adult hosts. Conversely, the subcutaneous con-
dition reduces the light stimulation of eyes and requires no digestion in the intestine of the grafts. Since the eyes 
of cave fish become smaller and regress29, a reduction of functional needs may cause the small sizes of the eyes 
and intestine of the grafted embryos. It is possible to determine whether the eye size is affected by darkness or 
extra eyes by transplantation to transparent hosts30 or mutants lacking eyes. Further studies utilizing specific cell 
ablation methods would also help elucidate if the cells or organs in the host affect development.

Figure 5.  Development of lethal mutant embryos and larvae grafted into rag1 mutants. (a,c) Morphology of 
72 hpf spns2 mutant embryos (a) and 7 dpf oep mutant larvae (c) before and after transplantation into germ cell-
depleted rag1 mutants. The spns2 mutant has cardia bifida (two hearts) as determined by cmlc2-driven mRFP 
expression (arrowheads), and the oep mutant exhibits a single eye (arrows). Scale bar: 1 mm. (b,d) Histology of 
organs found in grafted spns2 mutant embryos (b) and oep mutant larvae (d) at 2 months after transplantation. 
Arrowheads indicate each organ as labelled above the panels. Note that testes of the grafted spns2 and oep 
mutants contained all stages of spermatogenic cells: spermatogonia (g), spermatocytes (c), and sperm (s). The 
heart was not observed in grafted spns2 mutant embryos (b). Scale bar: 200 µm. (e) RT-PCR analysis of grafted 
spns2 and oep mutants at 2 months post-transplantation. Wild-type zebrafish at 2 mpf were used as a positive 
control. Negative controls lacking reverse transcriptase are in alternating lanes (−). Each experiment was 
conducted using two independent samples.
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Recent studies reported that an aged systemic environment influences the regeneration potential of young 
stem cells during heterochronic parabiosis and that blood age affects the regeneration of all three germ layer 
derivatives during rodent blood exchange4–6,31. The present study reveals that the development of primitive 
organs, particularly of the testes and possibly the heart and liver, are affected by the aged systemic environments 
of the adult hosts, which originates from adult germ cells in the case of testes. Identifying the factors and molecu-
lar mechanisms that affect primitive organ development could facilitate our understanding the unique phenome-
non in which the organ development is coordinated with age-related systemic environments.

Methods
Zebrafish.  rag1 mutant (rag1t26683), one-eyed pinhead mutant (oep, tdgf1tz257), and spinster homolog 2 mutant 
(spns2ko157) zebrafish were provided by Dr Lora Petrie-Hanson, Dr Masahiko Hibi and Dr Atsuo Kawahara, 
respectively. For wild-type fish, we used India or AB lines. The use of these animals for experimental purposes 
was approved by the committee on laboratory animal care and use at the National Institute of Genetics (approval 
identification numbers 27-12 and 28-13), and the experiments were conducted in accordance with the guidelines 
of the National Institute of Genetics.

Transplantation of embryos and larvae.  Transplantation of embryos and larvae was performed using 
the immunodeficient rag1 mutant as described previously9,32. rag1 mutant adult males were not fed on the day 
prior to transplantation. Recipient fish were anesthetized with 0.01% ethyl p-aminobenzoate (Wako, Osaka, 
Japan), and an incision of approximately 10 mm was made into their abdominal skin with a razor blade. Next, 
the muscle and skin were separated by inserting a forceps tip between the muscle and skin through this wound. 
The embryo or larva was then inserted into the space. To facilitate healing, the recipient fish were maintained for 
four days in 0.4x phosphate buffered saline (PBS) containing 10 µg/ml gentamicin (Life Technologies) without 
suturing the wound in the dark. Fish were subsequently reared normally and, after an appropriate period, were 
anesthetized to enable removal of the graft. The removed graft was fixed overnight at room temperature using 
4% paraformaldehyde (PFA) in PBS or Bouin’s fixative, embedded in paraffin, and then sectioned at 5–15 µm for 
histological analysis.

Castrated recipients were produced by removing the testes after anaesthesia and abdomen incision with a 
razor blade. After fixing the wound softly by hands without suturing, fish were maintained for four days in 0.4x 
PBS containing 10 µg/ml gentamicin in the dark. After two weeks, fish were used for grafting the embryos/larvae. 
Germ cell-depleted recipients were produced by an injection of morpholinos targeting the dead end gene into 1–2 
cell stage zebrafish embryos as described16.

Microinjection of FITC-dextran solution into the heart of a living recipient.  For microinjection 
into recipients’ hearts, we used recipient fish into which 72 hpf embryos were transplanted within 3 months after 
transplantation. Recipients were anesthetized, and the thorax was cut with a razor blade to expose the recip-
ient’s heart. A total of 1.5 µl of solution containing 5% fluorescein isothiocyanate (FITC)-conjugated dextran 
(Molecular Probes) was placed into a glass needle using a Nanoject II auto-nanoliter injector (Drummond) and 
then injected into the exposed heart of the recipient. Injected recipients were transferred to standard tank water 
and then used for observation of blood vessels at 3 and 15 minutes after injection. The observation of blood vessel 
fluorescence was performed using a stereomicroscope (Leica).

X-ray micro-computed tomography analysis.  The µ-CT (Scan X mate E090S Scanner, Comscantechno) 
was used to collect tomography images of grafted 72 hpf embryos at 3 months after transplantation. Samples were 
fixed with 4% PFA in PBS overnight at room temperature. For bone scanning, the µ-CT was operated at a tube 
voltage peak of 60 kV and a tube current of 100 µA. Samples were rotated 360° in steps of 0.24°, which gener-
ated 1500 projection images of 992 × 992 pixels. The µ-CT data were reconstructed at an isotropic resolution 
of 8.9 × 8.9 × 8.9 µm. Three-dimensional tomographic images were obtained using OsiriX (www.Osirix-viewer.
com) software. For scanning of soft tissue, samples were dehydrated in an ascending ethanol series (70%, 80%, 
90%, 95%, 2 × 100%, 1 hr each except overnight for the last step) to remove lipids. After dehydration, samples 
were rehydrated in a descending ethanol series and PBS (90%, 80%, 70%, PBS, 1 hr each) and then soaked in 
contrast agent, a 1:3 mixture of Lugol’s solution and deionized distilled water, as previously described33. The µ-CT 
was operated at a tube voltage peak of 90 kV and a tube current of 85 µA. Samples were rotated 360° in steps of 
0.144°, generating 2500 projection images of 992 × 992 pixels. The µ-CT data were reconstructed at an isotropic 
resolution of 6.5 × 6.5 × 6.5 µm. Three-dimensional, tomographic images were obtained using the OsiriX (www.
Osirix-viewer.com) and TRI/3D-BON (RATOC Systems) software.

RT-PCR.  Removed grafts and 2 mpf fish were minced for RNA extraction, and total RNA was isolated 
using RNAiso Plus (Takara). cDNA was synthesized using Primescript Reverse Transcriptase (Takara). 
Controls in which no reverse transcriptase was added were run in parallel in the RT-PCR experiments. PCR 
was performed using GoTaq Master Mix (Promega). The thermal cycling conditions were as follows: an ini-
tial hold of 2 min at 95 °C followed by 35–50 cycles of 30 s denaturation at 95 °C, 30 s primer annealing at 
different temperatures depending on the primer pairs, and 20 s of elongation at 72 °C. The sense and anti-
sense primer pairs were ACCCAGCTCTACCAGACAGC and TGGTTATGGGGGAGAATCTG for 
ELAV-like neuron-specific RNA binding protein (elavl3)10, CAACGAAGAAGTGGAAGAGTACGAG and 
TTCTCCATCGTGTTCCTGAGTG for troponin T type 2a (tnnt2a)11, TCATCATGACCTTCAACGGGACCT 
and ATTTCCAGTGTGCGGAAAGTGCTG for fatty acid binding protein 2 (fabp2)12, CAAGAA 
GCTCAAGTGCATCG and TTTAAATAGAGTGATGGTGAAACG for fatty acid binding protein 10a (fabp10a)13, 
and TTCTCACAAACGAGGACACAA and CAAGGTCAATGAATGGGTCA for glyceraldehyde-3-phosphate 
dehydrogenase (gapdh).

http://www.Osirix-viewer.com
http://www.Osirix-viewer.com
http://www.Osirix-viewer.com
http://www.Osirix-viewer.com
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Artificial insemination.  A single grafted testis was minced and ground using a microtube pestle in Hank’s 
saline (0.137 M NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 0.44 mM KH2PO4, 1.3 mM CaCl2, 1.0 mM MgSO4, and 
4.2 mM NaHCO3) and then stored on ice. Unfertilized eggs from a single wild-type female were collected onto 
a dish according to the method of Westerfield34. The suspension was added, and the dish was shaken gently for 
2 minutes to mix. PBS (100 μl) was added gradually, with shaking. After an additional 2 minutes, 5 ml of fish water 
was added gradually. The success of fertilization was assessed at 3–5 hpf.

Determination of organ size.  Grafted 72 hpf embryos at 2 months post-transplantation, 72 hpf embryos and 
2 mpf males were fixed with Bouin’s fixative overnight at room temperature and sectioned serially in paraffin at 
10–15 µm thickness for histological analysis. Serial sections were stained with haematoxylin and eosin. After imag-
ing all of the serial sections using a digital microscope camera (Keyence), the area of each organ was measured using 
ImageJ v. 1.4835. Organ volume was calculated by multiplying the section thickness by the sum of the organ area.

Statistical analysis.  Data were presented as the mean ± standard deviation of at least three independent 
experiments. Statistical difference between two groups was determined using Student’s t-test. P < 0.05 was con-
sidered statistically significant.
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