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Abstract

Background

Pancreatic tumor cells may avoid immune surveillance by releasing the transmembrane

major histocompatibility complex class I chain-related A (MICA) protein in soluble form

(s-MICA). We hypothesized that the presence of the A5.1 polymorphism in the MICA gene,

which encodes a truncated MICA protein, is associated with higher s-MICA levels and

increased pancreatic cancer risk.

Methods

MICA alleles and s-MICA levels were measured in 121 pancreatic cancer cases and 419

controls. General linear regression with a log transformation assessed geometric means of

s-MICA levels across MICA alleles. Unconditional logistic regression was used to calculate

the odds ratio (OR) and 95% confidence intervals (CI) for pancreatic cancer associated with

MICA alleles.

Results

After multivariate adjustment, participants with at least one copy of the A5.1 allele versus no

A5.1 allele had 1.35 (95% CI: 1.05–1.74) times greater s-MICA levels (1.65 times higher for

cases and 1.28, for controls) and increased risk of pancreatic cancer (OR = 1.91, 95% CI:

1.05–3.48).

Conclusions

Our study suggests higher risk of pancreatic cancer among those with the MICA A5.1 poly-

morphism, which may be explained by an increase in s-MICA secretion and impaired

immune response.
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Impact

These findings provide further evidence at the genetic and molecular level of the important

role of MICA in pancreatic cancer development, and may have important implications with

regards to pancreatic cancer screening.

Introduction

Pancreatic cancer is the 4th leading cause of cancer death among men and women in the U.S.,

with over 40,000 deaths annually[1]. Currently, there are no screening tests to detect pancre-

atic cancer at an early stage. [2,3] Most pancreatic cancer patients are diagnosed at an

advanced stage when benefits of treatment are very limited and thus most cases have an

extremely poor prognosis, with a 9% five-year survival rate[1]. Therefore, there is an urgent

need for new methods for early detection and treatment of pancreatic cancer. Emerging evi-

dence shows that the immune system plays an important role in the pathogenesis of pancreatic

cancer[4,5]. Understanding specific immune system mechanisms that interact with pancreatic

tumor cells could help determine high-risk groups who may benefit from screening and lead

to new therapies in the future.

Immune cells such as NK cells, gamma delta (γδ) T cells, and alpha beta (αβ) CD8 + T cells

can target and eliminate pancreatic tumor cells when their NKG2D (natural-killer group 2,

member D) receptors bind to the major histocompatibility complex class I-related chain A

(MICA) protein expressed on tumor cells[5–7]. MICA is a transmembrane protein that, in

response to various cellular stresses, is expressed on the surface of epithelial cells [7–11] and,

may be shed into the blood circulation in its soluble form (s-MICA)[8,12–16]. The release of

MICA into circulation may lead to decreased binding affinity between NKG2D-bearing

immune cells and pancreatic tumor cells, resulting in insufficient immune surveillance.

The binding affinity of MICA to NKG2D receptor on immune cells and its shedding into

circulation may be modulated, in part, by polymorphisms in the MICA gene[17–19]. The

MICA gene is highly polymorphic, with over 80 alleles identified to date [www.ebi.ac.uk/imgt/

hla/] [7,18]. The MICA protein consists of three extracellular domains, namely α1 (encoded

by exon 2), α2 (encoded by exon 3), and α3 (encoded by exon 4), a transmembrane (TM)

region (encoded by exon 5) and a cytoplasmic tail (encoded by exon 6). The transmembrane

domain of the MICA protein is encoded by alleles characterized by a variable number of short

tandem repeat (STR) polymorphisms, consisting of 4, 5, 6, 7, 8, 9 and 10 GCT repeats, desig-

nated as A4, A5, A6, A7, A8, A9, A10 respectively[17,18]. In addition, the A5.1 allele contains

an extra guanine (G) insertion after 5 GCT repeats, which causes a frameshift polymorphism

leading to a premature stop codon. Compared to its non-mutated counterparts, the MICA

A5.1 protein is shorter and more easily cleaved from the cell surface by the disentegrins and

metalloproteases (ADAM) 10 and 17 [12,17,18].

Recent papers have demonstrated that the MICA A5.1 polymorphism modulates cancer

susceptibility in several cancer types including cervical cancer[20], oral squamous cell carci-

noma[21–23] and hepatocellular carcinoma[24–26]. However, no epidemiologic studies to

date have evaluated the MICA A5.1 polymorphism in relation to pancreatic cancer risk. We

hypothesized that the presence of the A5.1 MICA allele is associated with higher circulating s-

MICA levels and increased pancreatic cancer risk. We tested this hypothesis in a population-

based case-control study of pancreatic cancer in Minnesota. In addition, in an exploratory

analysis, we investigated the pancreatic cancer risk associated with four other MICA-STR

MICA polymorphisms and pancreatic cancer risk.
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polymorphisms[17,18] and eight MICA single nucleotide polymorphisms (SNPs) with known

associations to cancer [24,27–30].

Materials and methods

Study design

As described previously[31], the participants for this study were recruited between 1994 and

1998 in Minnesota. Newly diagnosed pancreatic cancer cases were recruited from all hospitals

in the seven-county metropolitan area of the Twin Cities of Minnesota (i.e., Minneapolis and

St. Paul) and the Mayo Clinic, where cases were restricted to those who lived in the upper Mid-

west[32–35]. Patients with pancreatic cancer were eligible for the study if they were 20 years of

age or older, English-speaking, and gave informed consent[32–35]. Of the 460 eligible cases,

85 cases were excluded due to death before contact or the interview, 79 cases were excluded

due to participant refusal, 31 cases were not invited due to physician refusal, and 7 participants

could not be contacted. After those exclusions, 258 cases from the original sample participated

in the study (56%).

Potential controls for the study were selected from drivers’ license lists for individuals

between 20 and 64 years of age, and from US Health Care Financing Administration records

for those aged 65 years and above using stratified random sampling from the seven-county

metropolitan area of the Twin Cities. Controls were frequency matched to cases by age (within

5 years), sex and race. Inclusion criteria for controls were the same as those for cases, in addi-

tion to no prior diagnosis of pancreatic cancer. Of 1145 eligible controls, 676 participated in

the study (59%).

Written, informed consent was obtained from all study participants prior to their interview.

The protocol for this case-control study was approved by the Institutional Review Boards of

the University of Minnesota and the Mayo Clinic. All study participants were interviewed in

person about demographics, cigarette smoking, physical activity, dietary and alcohol intake,

and medical history. Our analysis was restricted to Caucasians, who represented 96% of all

study participants. Participants were asked to donate a blood sample at the time of the in-per-

son interviews, and 30 mL of venous blood were drawn from each consenting participant.

DNA was isolated by phenol-chloroform and stored at -70˚C and stored until further analysis

[35,36]. After excluding participants without blood samples, a total of 121 cases and 419 con-

trols were available for the current analysis (n = 540).

Genotyping of MICA genetic variants

For genotyping of the STR polymorphisms in the transmembrane region of the MICA gene,

MICA specific PCR primers flanking exon 5 in the MICA gene were used (MICA5F, 50CCT
TTTTTTCAGGG AAA GTGC 3; MICA5R, 50 CCTTACCATCTCCA GAAACTGC 30)[22,37].

Samples were amplified using a multiplexed PCR approach, then indexed, pooled, and

sequenced using a 2x300 bp MiSeq lane using the Illumina MiSeq Personal Sequencing plat-

form. The resulting reads were aligned to the hg19 reference genome using the Burrows-

Wheeler transform (BWA-MEM) and processed with the genome analysis toolkit (GATK) for

base quality score recalibration and indel realignment[38,39]. In an exploratory analysis, eight

additional MICA SNPs associated with cancer in previous studies were genotyped using the

GATK HaplotypeCaller.

MICA STR genotypes were assigned by counting the number of sequence reads from

known alleles (A4, A5, A6, A7, A9, A10, and A5.1) seen in sequence reads overlapping the STR

region. Samples where a single corresponding allele was detected were called homozygous and

samples where two corresponding alleles were detected were called heterozygous. Five MICA

MICA polymorphisms and pancreatic cancer risk.
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STR polymorphisms were identified in this study: A4, A5, A6, A9 and A5.1. All analyses of the

MICA gene including the design of primers, amplification, and next generation sequencing

were conducted in the University of Minnesota Genomic Center (UMGC).

Laboratory measurements of s-MICA levels

s-MICA plasma levels were assessed using the Luminex Bead-based assay in the Cytokine Ref-

erence Laboratory (University of Minnesota) following the manufacturer’s instructions (R&D

Systems, Minneapolis, MN), as discussed in detail in our previous study[31]. Only samples

with soluble MICA levels greater than 2.0 pg/mL were considered positive and included in the

study, based on the detection limit of the ELISA assay. The protocols for the laboratory mea-

surements and genetic analyses are available at dx.doi.org/10.17504/protocols.io.2cngave.

Statistical analysis

The demographic, lifestyle and other characteristics of pancreatic cases and controls were

compared using a t-test for continuous variables, and a chi-square test for categorical variables.

The main focus of our analysis was the A5.1 polymorphism, because it is a functional variant

that encodes a truncated MICA protein. The A5.1 polymorphism was modeled in two ways: as

a dominant model (i.e. categorized as having no A5.1 allele or having at least one copy of the

A5.1 allele) and as an additive model, i.e. presented as a three-level variable: no A5.1(X/X), het-

erozygous A5.1 (X/A5.1), or homozygous A5.1 (A5.1/A5.1).

To address the non-normal distribution of s-MICA levels, geometric means of s-MICA

were used to compare s-MICA levels across A5.1 genotypes for pancreatic cancer cases and

controls. To conduct a multivariate analysis, s-MICA values were log transformed and general

linear regression was used to estimate the relative risk (RR) and 95% confidence intervals (CI)

for mean s-MICA levels across MICA alleles. The multivariate models were adjusted for pan-

creatic cancer risk factors including age, sex, education, smoking status, alcohol consumption,

and diabetes status.

Unconditional logistic regression was used to calculate the odds ratio (OR) and 95% CI for

pancreatic cancer associated with the MICA A5.1 polymorphism using the dominant and

additive genetic models. In similar fashion to our general linear regression models described

above, all logistic regression models were adjusted for age, sex, education, smoking status, alco-

hol consumption, and diabetes status. In an additional analysis, we adjusted for the s-MICA

levels to test whether the MICA A5.1 is associated with pancreatic cancer via the s-MICA.

Finally, we conducted three exploratory analyses. First, we examined whether the associa-

tion between the MICA A5.1 genotype and pancreatic cancer risk differed by age category

(stratified at the median age), sex, education, diabetes history, smoking history and alcohol

consumption. Interaction was examined on a multiplicative scale by including the product of

the A5.1 variant and the variable of interest. Our second exploratory analysis examined the

association between four other MICA STR polymorphisms (A4, A5, A6, and A9) and pancre-

atic cancer risk using unconditional logistic regression. Similar to A5.1, the MICA STR poly-

morphisms were categorized using an additive genetic model (i.e. being homozygous,

heterozygous or having no copy of a particular allele) and a dominant genetic model, i.e.

categorized as having no allele or at least one copy of the specified allele (A4, A5, A6, or A9).

Further, we evaluated the association of eight cancer-associated MICA-SNPs (rs1051792,

rs1051794, rs1051798, rs1051799, rs1063635, rs1131896, rs1131898, rs1140700) with pancre-

atic cancer risk in our study[24,27–30] as well as the association between a functional SNP

MICA-129 (rs1051792) and s-MICA levels, as it has been previously reported to modulate s-

MICA shedding [24,27].

MICA polymorphisms and pancreatic cancer risk.
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The p-value for statistical significance was determined a priori at p<0.05, and at p<0.10 for

interaction on the multiplicative scale. All statistical analyses were conducted using SAS soft-

ware (version 9.4; SAS Institute, Cary, NC).

Results

The median age of the 540 participants in this study was 68 years, and 44% were female

(Table 1). Participants with pancreatic cancer were more likely to smoke (18% vs. 12%;

p = 0.02) and report a history of diabetes (21% vs 8%, p = <0.01), but they were less likely to

drink alcohol (11% vs. 18%; p =<0.01) or be college educated (47% vs 60%, p =<0.01) com-

pared to controls (Table 1). The observed frequency of the MICA A5.1 allele was 73%

(n = 396), with 155 participants being homozygous and 241 participants being heterozygous

for MICA A5.1 (Fig 1).

Table 1. Distribution of study participant characteristics among pancreatic cancer cases and controls.

Participant’s characteristics Categories Number of participants Cases

N (%)

Controls

N (%)

P-value

Sex Female 239 46 (38.02) 193 (46.06)

Male 301 75 (61.98) 226 (53.94) 0.11

Age� <68y 284 68 (56.20) 216 (51.55)

>68y 256 53 (43.80) 203 (48.45) 0.41

Smoking status Never 237 42 (34.71) 195 (46.54)

Former 231 57 (47.11) 174 (41.53)

Current 72 22 (18.18) 50 (11.93) 0.01

Alcohol consumption (Servings/week) 0 243 67 (62.62) 176 (42.62)

1–6 189 28 (26.17) 161 (38.98)

�7 88 12 (11.21) 76 (18.40) 0.01

Diabetic status No 483 96 (79.34) 387 (92.36)

Yes 57 25 (20.66) 32 (7.64) <0.01

Education Less than College 229 63 (52.07) 166 (39.62)

College Educated 311 58 (47.93) 253 (60.38) <0.01

� Age was stratified at median

https://doi.org/10.1371/journal.pone.0217868.t001

Fig 1. Distribution of MICA STR polymorphisms (A4, A5, A5.1, A6, A9). MICA genotypes were coded as not

having the allele, being heterozygous or being homozygous for the allele if the participant possessed 0, 1 or 2 allele

copies for the polymorphism, respectively (additive model).

https://doi.org/10.1371/journal.pone.0217868.g001
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Association between s-MICA levels and the MICA A5.1 polymorphism

To evaluate the association between the A5.1 genotype and s-MICA levels in the underlying

population, we first examined unadjusted s-MICA levels among controls. Compared to those

who did not have a copy of the A5.1 allele, controls with one and two copies of the A5.1 allele

had consistently higher unadjusted s-MICA levels (pg/mL), and the highest levels were

observed among those with two A5.1 alleles (mean (95% CI) = 30.2 (24.5–37.1), 40.9 (36.1–

46.2) and 51.5 (45.4–58.5), respectively). The patterns were similar among all study partici-

pants and among pancreatic cancer cases, with higher values being observed for pancreatic

cases (Fig 2). Similar trends remained in all three groups (controls, cases and total study sam-

ple) after adjustment for confounders in both dominant and additive models (Table 2). In the

additive models with MICA A5.1 as a three-level variable, there was a dose-response relation-

ship between s-MICA levels and the number of copies of the A5.1 allele. Compared to controls

without a copy of the A5.1 allele, controls with one copy had 1.24 (95%CI: 0.97–1.59) times

greater mean s-MICA levels, and controls with two copies had 1.38 (95%CI: 1.06–1.80) times

greater mean s-MICA levels (Table 2).Similar dose response relationships were also observed

among cases and the total study sample, and the strongest association between s-MICA levels

and the number of copies of the A5.1 allele was observed in pancreatic cancer cases.

Association between the MICA A5.1 polymorphism and pancreatic cancer

risk

In a multivariate model, having at least one copy of the MICA A5.1 allele was associated with an

increased risk of pancreatic cancer (Table 3). The multivariate-adjusted OR was 1.91, 95%CI: 1.05–

3.48, for cases compared to participants without an A5.1 allele. After additional adjustment for s-

MICA level, the A5.1 genotype was no longer associated with pancreatic cancer risk (OR = 1.91,

95%CI: 1.05–3.48). When the A5.1 genotype was modeled as a three-level variable, there was no

dose-response relationship between A5.1 genotype and estimated pancreatic cancer risk (Table 3).

Exploratory analyses

We examined whether the association between the MICA A5.1 genotype and pancreatic can-

cer risk differed by age (below and above 70 years), sex, education (no college vs some college),

Fig 2. Distribution of s-MICA levels by MICA A5.1 polymorphism genotype. Unadjusted geometric means for s-

MICA levels are presented for each group of participants having 0, 1 or 2 A5.1 allele copies for the polymorphism,

respectively (additive model). The error bars represent the lower and upper 95% CI for the unadjusted s-MICA

geometric mean values.

https://doi.org/10.1371/journal.pone.0217868.g002
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diabetes history, smoking history (never, former and current) and alcohol consumption (no

alcohol consumption, 0–6 servings per week and 7 or more servings per week). Although we

did not find statistically significant interactions (all p-values were >0.10), having at least one

copy of the A5.1 allele was associated, significantly, with pancreatic cancer among women:

OR = 2.58 (95% CI: 1.11–5.96), but not men: OR = 1.24 (95%CI: 0.51–3.02) (p-for interac-

tion = 0.43). Of note, in the subset of participants without diabetes, those with at least one

copy of the MICA A5.1 allele remained at an apparent increased risk of pancreatic cancer,

OR = 2.01 (, 95% CI: 1.04–3.89) implying that the observed association between A5.1 allele

and pancreatic cancer was not driven by diabetes (S1 Table). In our analysis of additional

MICA STR polymorphisms, we did not observe any significant association between the A4,

A5, A6, or A9 MICA STR polymorphisms and pancreatic cancer risk (S2 Table). Finally, in

the analyses of cancer-associated MICA SNPs, s-MICA levels were greater among participants

with the MICA-129 Val / Val genotype (S3 Table), but this association was only statistically

significant for pancreatic cancer cases with the MICA-129 Val / Val genotype who had 3.06

times great mean s-MICA levels [95% CI: 1.62–5.77)] compared to cases with MICA-129 Met/

Val genotype. No pancreatic cancer cases with detectable s-MICA level had the MICA-129

Met / Met genotype (S3 Table). No SNPs were statistically significantly associated with pancre-

atic cancer risk, most likely to limited sample size but there were indications of an association

for several SNPs (S4 Table).

Table 2. Association between circulating MICA levels (s-MICA) and the genotype distribution of the MICA A5.1 polymorphism (dominant and additive models).

MICA Genotype Number of Participants s-MICA Levels Relative ratio of adjusted p-value

(Geometric Mean) geometric means (95% CI)a

MICA A5.1 Polymorphism (Dominant Model)

Total cohort

X/X 144 50.10 (38.91–64.50) Reference

X/A5.1 or A5.1/A5.1 396 67.66 (60.46–75.72) 1.35 (1.05–1.74) 0.02

Pancreatic cancer cases

X/X 25 39.41 (14.89–104.27) Reference

X/A5.1 or A5.1/A5.1 96 66.77 (48.42–92.06) 1.69 (0.62–4.62) 0.30

Controls

X/X 119 52.66 (41.34–67.08) Reference

X/A5.1 or A5.1/A5.1 300 67.56 (60.08–75.96) 1.28 (1.01–1.63) 0.04

MICA A5.1 Polymorphism (Additive Model) p-trend

Total cohort

X/X 144 49.07 (38.20–63.03) Reference

X/A5.1 241 60.84 (53.33–69.41) 1.24 (0.96–1.61)

A5.1/A5.1 155 79.03 (69.05–90.46) 1.61 (1.23–2.11) <0.01

Pancreatic cancer cases

X/X 25 38.66 (17.31–86.32) Reference

X/A5.1 65 45.18 (30.84–66.21) 1.17 (0.50–2.72)

A5.1/A5.1 31 98.02 (71.03–135.27) 2.54 (1.07–6.02) <0.01

Controls

X/X 119 52.11 (40.88–66.42) Reference

X/A5.1 176 64.86 (56.76–74.10) 1.24 (0.97–1.59)

A5.1/A5.1 124 72.15 (62.22–83.68) 1.38 (1.06–1.80) 0.01

a Adjusted for age (continuous variable), sex (males vs. females), education (no college vs. some college), smoking status (never, former or current), alcohol

consumption (no consumption, 1–6 servings per week or 7+servings per week), diabetes status (yes vs. no)

https://doi.org/10.1371/journal.pone.0217868.t002
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Discussion

In this population-based case-control study, we found that having at least one copy of the

MICA A5.1 allele was associated with an increased risk of pancreatic cancer. We also showed

that participants with the MICA A5.1 allele had elevated circulating levels of s-MICA, in both

controls and pancreatic cancer cases, with higher levels in the cases. This finding is in line with

our previous findings of an association between elevated s-MICA levels and increased pancre-

atic cancer risk[31]. In addition, we reported that the association between the MICA A5.1

allele and pancreatic cancer disappeared after adjusting for s-MICA levels implying that the s-

MICA was on causal pathway between MICA A5.1 allele and pancreatic cancer.

Consistent with our reports, several investigators have demonstrated that the MICA A5.1

allele appears to modulate cancer susceptibility in both candidate gene and genome-wide asso-

ciation studies (GWAS). A recent Swedish GWAS found that the MICA A5.1 allele was associ-

ated with a 42% increase in cervical carcinoma risk [20]. Similarly, a case-control study of a

Han Chinese reported that MICA A5.1 was associated with a 47% increase in hepatocellular

carcinoma [26], while in a Japanese case-control study, having MICA A5.1 allele was associ-

ated with a 37% increase in oral squamous cell carcinoma risk, and significantly higher s-

MICA levels in cases than in healthy controls[22]. In contrast, null associations were reported

in studies that examined associations between the MICA A5.1 polymorphism and colorectal

cancer[40], gastric cancer[41], and melanoma[42].

Our findings of higher s-MICA levels and increased pancreatic cancer risk in participants

with the MICA A5.1 polymorphism may be explained by changes in the s-MICA A5.1 protein,

as a result of the polymorphism. The A5.1 polymorphism causes a premature stop codon in

the transmembrane region of the MICA gene sequence, which results in a truncated MICA

protein around its cytoplasmic tail[17,18]. Given that the location of the A5.1 polymorphism is

in close proximity to the ADAM 17 cleaving site, the MICA A5.1 protein may be more easily

Table 3. Association between the genotype distribution of the MICA A5.1 polymorphism (dominant and additive models) and pancreatic cancer risk.

MICA Genotype Cases Controls OR (95%CI) p-value

MICA A5.1 Polymorphism (Dominant Model)

Model 1a

X/X 25 119 Reference

X/A5.1 or A5.1/A5.1 96 300 1.91 (1.05–3.48) 0.02

Model 2b

X/X 25 119 Reference

X/A5.1 or A5.1/A5.1 96 300 1.48 (0.77–2.86) 0.24

MICA A5.1 Polymorphism (Additive Model) p-trend

Model 3a

X/X 25 119 Reference

X/A5.1 65 176 2.02 (1.11–3.68)

A5.1/A5.1 31 124 1.51 (0.71–3.22) 0.06

Model 4b

X/X 25 119 Reference

X/A5.1 65 176 1.57 (0.82–3.02)

A5.1/A5.1 31 124 1.05 (0.45–2.46) 0.94

a Adjusted for age (continuous variable), sex (males vs. females), education (no college vs. some college), smoking status (never, former or current), alcohol

consumption (no consumption, 1–6 servings per week or 7+servings per week), and diabetes status (yes vs. no)
b Multivariate model a additionally adjusted for s-MICA levels

https://doi.org/10.1371/journal.pone.0217868.t003
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released into the serum compared to the other functional variants of the MICA protein, result-

ing in higher circulating concentrations of s-MICA [12,16,17]. In line with this mechanism,

our study showed that participants who were either homozygous or heterozygous for the A5.1

allele had significantly greater levels of s-MICA, compared to those who lacked the A5.1 allele

[17,22]. Our exploratory findings of higher s-MICA levels in participants with the MICA-129

Val / Val polymorphism, another MICA SNPs which modulates s-MICA shedding[24,27], also

highlights the importance of MICA polymorphisms on s-MICA shedding.

Further, our findings of a positive association between the A5.1 polymorphism and pancre-

atic cancer risk are concordant with biological mechanisms explaining MICA shedding into

circulation and its interaction with immune cells. In cancer, the interaction between mem-

brane-bound MICA and NKG2D activates anti-tumor NK and T cell responses[6,8,12–16,43].

However, when human tumor cells release s-MICA into circulation, this not only hinders the

recognition of MICA expressing tumors by the immune system, but also leads to a systemic

downregulation of NKG2D expression on the surface of γδ T cells and αβ CD8+ T cells,

thereby further limiting the anti-tumor activity of these immune cells[12,15,44–46]. Partici-

pants with at least one copy of the A5.1 allele would express low levels of membrane-bound

MICA and higher levels of s-MICA, which may compromise the ability to alert the immune

system of neoplastic change and lead to poor or no activation of immune cell response (by NK

and CD8+ T cells) against tumor cells[17].

To the best of our knowledge, our study is the first study that documented an association

between A5.1 polymorphism and pancreatic cancer. Other strengths of this population-based

study include the simultaneous measurement of MICA polymorphisms and s-MICA levels in

the same study, a large number of pancreatic cancer cases and controls, and the ability to

adjust for potential confounders. However, there are some limitations in the present study.

First, the response rate for both cases and controls was slightly less than 60%.This response

rate is typical for controls in population-based studies and higher than response rates for cases

in many other studies of pancreatic cancer since it is difficult to enroll pancreatic cancer cases

due to the very short average survival of patients[33,35,36]. With response rates at this level,

selection bias must always be considered; however, we cannot suggest a biologically plausible

reason why respondents would differ in a systematic way from non-respondents with regards

to MICA genotype and MICA levels either among cases or controls. Lastly, as in any case-con-

trol study, recall bias could arise because diabetes and other covariates were self-reported

[33,35,36]. However, recall bias would most likely not influence the findings of our study since

the MICA genotype and MICA levels were objectively measured and the associations were

minimally affected by confounders (as shown in Fig 2).

In summary, our results are in line with our hypothesis that participants with the A5.1

MICA polymorphism have higher s-MICA levels and are predisposed to pancreatic cancer

development. Although MICA molecules are not specifically tumor associated antigens, they

appear to play a functional role in pancreatic cancer. Further studies are warranted to validate

our finding and examine this association in multi-ethnic population settings to determine if

the mechanisms of action of functional MICA variants are shared among different popula-

tions[17]. These findings are important to elucidate the role of immune surveillance in pancre-

atic cancer, and potentially could lead to devising novel screening strategies for high-risk

groups and new treatment for pancreatic cancer patients.
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modifiers. S1 Table presents the association between the MICA A5.1 genotype and pancreatic

cancer risk by strata of age category, sex, education, diabetes history, smoking history and alco-

hol consumption.
a Adjusted for sex (males vs. females), education (no college vs. some college), smoking status

(never, former or current), alcohol consumption (no consumption, 1–6 servings per week or 7

+servings per week), diabetes status (yes vs. no).
b Adjusted for age (continuous variable), education (no college vs some college), smoking sta-

tus (never, former or current) and alcohol consumption (no consumption, 0–6 servings per

week or 7+ per week) and diabetes status (yes vs. no).
c Adjusted for age (continuous variable), sex (males vs. females), smoking status (never, former

and current) and alcohol consumption (no consumption, 1–6 servings per week or 7+servings

per week) and diabetes status (yes vs. no).
d Adjusted for age (continuous variable), sex (males vs. females), education (no college vs

some college), smoking status (never, former and current) and alcohol consumption (no con-

sumption, 1–6 servings per week or 7+servings per week).
e Adjusted for age (continuous variable), sex (males vs. females), education (no college vs some

college), alcohol consumption (no consumption, 1–6 servings per week or 7+servings per

week) and diabetes status (yes vs. no).
f Adjusted for age (continuous variable), sex (males vs. females), education (no college vs some

college), smoking status (never, former and current) and diabetes status (yes vs. no).
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(dominant model) and pancreatic cancer risk. S2 Table presents the association between the

distribution of other short tandem repeat MICA genotypes (A4, A5, A6 and A9) and pancre-

atic cancer risk.
a Adjusted for age (continuous variable), sex (males vs. females), education (no college vs.

some college), smoking status (never, former or current), alcohol consumption (no consump-

tion, 1–6 servings per week or 7+servings per week), diabetes status (yes vs. no).

(DOCX)

S3 Table. Association between circulating MICA levels (s-MICA) and the MICA-129 geno-

type distribution (additive models). S3 Table presents the association between the distribu-

tion of mica129 SNP (rs1051792) genotypes and soluble MICA levels among pancreatic cancer

cases and controls.
a MICA-129 polymorphism (rs1051792) was investigated as the change from the Adenosine

nucleotide to the Guanine, resulting in a change from the Methionine codon to a Valine

codon at codon 129 in exon 3 of the α 2-heavy chain domain in the MICA gene.
b Adjusted for age (continuous variable), sex (males vs. females), education (no college vs.

some college), smoking status (never, former or current), alcohol consumption (no consump-

tion, 1–6 servings per week or 7+servings per week), diabetes status (yes vs. no).
c There were no pancreatic cancer cases with detectable s-MICA and Met-Met genotype.

(DOCX)

S4 Table. Association between the genotype distribution of MICA SNPs (additive model)

and pancreatic cancer risk. S4 Table presents the association between the distribution of

other MICA SNP genotypes (rs1051792, rs1051794, rs1051798, rs1051799, rs1063635,

rs1131896, rs1131898, rs1140700) and pancreatic cancer risk.
a The genotypes have been converted to "0" for reference, "1" for heterozygous, "2" for homozy-

gous alternate, and " " for missing. All genotypes with a quality score less than 20 have been set
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