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Abstract: Metal matrix composites (MMCs) present extraordinary characteristics, including high
wear resistance, excellent operational properties at elevated temperature, and better chemical
inertness as compared to traditional alloys. These properties make them prospective candidates
in the fields of aerospace, automotive, heavy goods vehicles, electrical, and biomedical industries.
MMCs are challenging to process via traditional manufacturing techniques, requiring high cost and
energy. The laser-melting deposition (LMD) has recently been used to manufacture MMCs via rapid
prototyping, thus, solving these drawbacks. Besides the benefits mentioned above, the issues such as
lower ultimate tensile strength, yield strength, weak bonding between matrix and reinforcements,
and cracking are still prevalent in parts produced by LMD. In this article, a detailed analysis is
made on the MMCs manufactured via LMD. An illustration is presented on the LMD working
principle, its classification, and dependent and independent process parameters. Moreover, a brief
comparison between the wire and powder-based LMDs has been summarized. Ex- and in-situ
MMCs and their preparation techniques are discussed. Besides this, various matrices available for
MMCs manufacturing, properties of MMCs after printing, possible complications and future research
directions are reviewed and summarized.

Keywords: 3D printing; laser-melting deposition; wire- and powder-based laser-melting depositions;
metal matrix composites; mechanical properties of metal matrix composites

1. Introduction

Additive manufacturing, abbreviated as AM, is the reverse of subtractive manufacturing
technologies and defined by ASTM F2792 as “a procedure of joining the materials usually layer
by layer to form 3D objects using a computer aided design (CAD) model” [1]. There are various
AM processes these days. However, they can be classified into two major categories: direct- and
indirect-AM methods [2]. In direct-AM techniques, a laser beam is used as the heat source to melt the
powder or wire feedstock. Thus, parts with higher density, purity, and excellent mechanical properties
can be produced with less energy and time in comparison to indirect-AM processes [2–5]. Indirect-AM
processes are mainly composed of green bodies and binder materials, which are mixed to manufacture
a 3D structure. Usually, the process is followed by a sintering process to eliminate the binder material.
In the end, they are densified by conventional manufacturing processes [2]. Table 1 summarizes the
different AM processes classified based on direct- and indirect-AM methods.
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Table 1. Classification of AM Processes.

AM Processes Processes Layer Forming
Principle

Forming
Material

MMCs
Application References

Direct-AM
Process

1. Selective laser
sintering (SLS)

Partially melting
by laser Powder Yes [6,7]

2. Selective laser
melting (SLM)

Complete melting
by laser Powder Yes [8,9]

3. Laser-melting
deposition (LMD)

Complete melting
by laser Powder/Wire Yes [10,11]

Indirect-AM
Process

1. Fused deposition
modelling (FDM) Extrusion Filament Yes [12,13]

2. Stereolithography
(SLA)

Photo curing via
laser scanning

Resin and
powder No [14,15]

3. Direct inkjet
printing (DIP) Inkjet printing Powder

suspension No [16,17]

4. Layer-wise slurry
deposition (LSD) Slurry deposition Slurry Yes [18,19]

5. Laminated object
manufacturing
(LOM)

Sheet binding and
laser cutting Sheet Yes [20,21]

Every AM process involves the following steps to achieve a 3D printed object [22]:

i. Initially, CAD software is used to build a 3D model, which is to be printed.
ii. This CAD model is converted into stereolithography (STL) format (stereolithography, principally

recognized AM practice, implemented as a standard in AM industry). This file is the wedge-shaped
illustration of a 3D CAD model.

iii. The file from the step (ii) is sliced into several thin cross-sectional layers using a slicing software.
In this step, the building orientation is defined.

iv. Following on, the actual part is printed by a machine using CNC (Computer Numerical Control)
codes based on the sliced file. These CNC codes define the smooth, and jerk-free movements of
the deposition head, resulting in higher efficiency and better-quality depositions [23,24].

v. In the final step, post-processing steps such as surface treatments, sintering, or finishing,
are usually required.

Metal matrix composites (MMCs), also known as ceramic reinforced metal matrix composites,
are the mixture of metal matrix and ceramic reinforcements [22]. MMCs possess better
thermo-mechanical properties and excellent chemical inertness as compared to traditional
metals [2,25–28]. They are used under extreme operating conditions such as high load, elevated
temperature, and extensive wear operations [2,25,29,30]. MMCs have gained wide popularity in the
aerospace, biomedical, electronics, and various engineering applications [2,31–35]. They are difficult
to process by conventional machining techniques due to high hardness and melting point [2,36–38].
Laser Additive Manufacturing (LAM) has opened, in the last few years, novel opportunities to develop
MMCs for practical applications. Among the developed LAM techniques, SLS and LMD have been
used to manufacture MMCs efficiently. Equipped with high energy density laser beams, LMD machines
demonstrate their capability to process MMCs with high hardness and melting point. Another unique
feature of the LMD is “cladding”, i.e., coating of a surface with a layer of metal or MMCs. This process
is usually carried out on the surfaces of bulk (new/worn-out) materials with the emphasis on enhancing
the surface characteristics or obtaining the desired biological, frictional, or chemical characteristics for
a given material [2,31–35].

There are various established manufacturing methods, such as casting or milling for the production
of MMCs. To their difference, LMD offers the possibility to synthesize the in-situ MMCs starting from
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powder precursors, to build a 3D object. Thus, some technological steps are eliminated, with a potential
cost reduction of the fabricated part. Pressing or stirring during casting, therefore, become obsolete.
Moreover, a big advantage for this synthesis route is the versatility when it comes to MMCs composition:
the multilayer structures can be built efficiently using the same printing process. The high laser energy
assists in attaining a very high temperature, resulting in dense parts. The synthesis of MMCs by LMD
is not without defects. Since the metal is in a liquid state during laser irradiation, there is no control
over the distribution of the particles in bulk after solidification. Moreover, effects such as cracks or
pores can be widespread in LMD printing of parts.

To the best of our knowledge, this paper is the first review of literature related to 3D printing of
MMCs by energy deposition techniques. We are gathering for the first-time data in literature related to
additive manufacturing methods for these special materials, their mechanical properties after printing
and which are the present and future trends. We organized the paper in three sections. In Section 1,
different LAM processes have been described. The main emphasis has been laid on the LMD technique
regarding working principle, and classification of the process parameters. The second section can be
recognized as the core of the article. The following areas have been identified regarding MMCs: the
difference between ex- and in-situ MMCs, various mixing techniques, powder- and wired-based LMDs,
potentially identified matrices, properties of MMCs, multiple applications, potential challenges with
their solutions, and future research direction. The third section provides the conclusion of this study.

2. Laser Additive Manufacturing (LAM) Processes

Figure 1 shows the classification of direct LAM techniques based on the laser-material interaction
mechanisms. The LAM processes are classified into three basic methods: (a) selective laser sintering
(SLS), (b) selective laser melting (SLM), and (c) LMD [22,39,40].
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As this study is focused on the MMCs by LMD, therefore, an emphasis has been put on the
LMD process.

Laser-Melting Deposition (LMD) Process

Figure 2 presents the schematic explanation of the LMD process. Initially, the substrate is irradiated
via a laser beam [41], generating a melt pool that captures and melts the powder particles blown by a
nozzle. In LMD, various metal and ceramic powder particles can be mixed homogeneously to prepare
different composites with better mechanical, structural and thermal properties [28,42–56]. The powder
particles are carried and mixed by a jet of gases such as argon and helium [57]. As the laser source
departs, the molten pool solidifies via heat dissipation by the conduction, convection, and radiation.
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The deposition head, containing the powder nozzle and optics for laser beam delivery, travels along
the defined path, thus, forming a layer on the substrate. Afterwards, the deposition head moves
upwards to the one-layer thickness for the deposition of the following layer. In the LMD, the first layer
is partially re-melted, serving as a new “substrate”, thus, helping in the formation of the second layer.
The same step is repeated until a 3D shape based on the CAD model is produced [5,51].
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The LMD process can be classified into three techniques: (a) direct metal deposition (DMD),
(b) laser-engineered net-shaping (LENS), and (c) direct light fabrication (DLF) [22]. It is important to
note that the DMD, developed by Mazumder’s group [58], provides continuous closed-loop feedback
to control the dimensional accuracy during the printing process. Therefore, a feedback setup is an
exclusive characteristic that differentiates DMD technology from the rest of the technologies [58].
Table 2 introduces the classification of the LMD processes based on the deposition rate and technique,
layer height, dimensional precision, and surface roughness.

Table 2. Types of the LMD process.

Method Feedback
Loop

Deposition
Technique

Layer
Height
(µm)

Deposition
Rate

(cm3/min)

Dimensional
Precision

(mm)

Surface
Roughness

(µm)
References

DMD Available
Cladding via
laser beam

250–254 0.99–4.00 N/A 38–40 [59]

LENS Not
available 129–381 N/A XY-aixs = ±5,

Z-axis = ± 0.40 59–93 [60]

DLF Not
available 195–200 1.0 ±0.13 18–20 [61]

The process parameters play a significant role in LMD process. Figure 3 classifies the process
parameters: (a) controllable, and (b) uncontrollable parameters [62]. The controllable parameters can
be tackled directly; however, the uncontrollable parameters can be adjusted indirectly through the
controllable parameters [63–69].

A correlation between the growth along with the z-axis and layer thickness is essential as
the misalliance between the deposited layer height and z-plane increment will cause extra-energy
consumption and disturb dimensional accuracy, hence, resulting in poor quality part [2,52]. Figure 4
shows the relationships between growth, along with the z-axis and layer thickness. A good correlation
between the z-axis increment and layer thickness will, therefore, result in uniform layer thickness,
and the laser energy will be stable for all the layers, resulting in consistent properties of the whole
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fabricated part [2,52]. Hence, an optimum selection of operating parameters is necessary for proper
use of energy density for dimensional control stability, as shown in Figure 4.
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3. Metal Matrix Composites (MMCs)

MMCs are usually composed of a minimum of two types of materials, a metal matrix and
a dispersed phase of metal, ceramic, or polymer [2]. They can be classified into ex- and in-situ
MMCs [22,70]. Figure 5a presents the ex-situ MMCs process, in which the reinforcements, usually
particulates, are manufactured and mixed externally into the metal matrix. In such MMCs,
the reinforced in the form of particulates are repeatedly splintered and cold-welded, thus, making
them potential candidates for the SLS process. On the other hand, Figure 5b exhibits that in-situ
MMCs are manufactured by a chemical reaction between the halide salts and metal matrix, which are
thermodynamically more stable than ex-situ MMCs. In-situ MMCs show compatible, strong interfacial
bonding and better mechanical properties as compared to ex-situ MMCs. Such MMCs are the potential
candidates for SLM and LMD processes. There are various advantages of the MMCs, but potential
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difficulties, including gas entrapment, particle accruement, and micro- and macro-cracks, play obstacles
to produce fully dense MMCs.
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3.1. MMCs Mixing Techniques

In the literature, various MMCs mixing techniques are available. The central perspective of these
processing techniques is to achieve a standardized dispersal of the reinforcements within a matrix to
achieve a defect-free microstructure. Table 3 collects the various MMCs mixing techniques.

Table 3. Mixing techniques for MMCs.

Technique Name and Description Essential Features References

• Stir Casting

This technique involves the integration of ceramic particulate
(reinforcements) into a liquid metal matrix by stirring
mechanically and allowing the mixture to solidify.

(a) The dispersion of reinforcements is
limited up to composites’ 30 wt.%.

(b) The reinforcement will not be
homogeneous in the matrix if it is
more than 30 wt.%.

(c) The clustering of reinforcement is
difficult to avoid.

(d) Wettability is challenging to maintain.
(e) Segregation of reinforcing particles

during floating takes place due to the
density difference between the matrix
and reinforcements.

(f) Low-cost process.

[71–75]

• Rheocasting

In this process, the reinforcing particulates are mixed into the
matrix, usually a metal. The given matrix is in between the
solidus and liquidus temperature. The reinforcing particles
are entrapped within the matrix, mechanically.

(a) An adequate bonding is achieved
between the reinforcing particles and
liquid matrix.

(b) It results in better distribution of
reinforcing particles, less porosity,
improved wettability, and lower
volume shrinkage.

(c) It is a most reasonable method for
fabricating the composites with
discontinuous fibers or particulates.

(d) It yields better distribution and
integration of the reinforcing particles
within the matrix as compared to the
stir casting process.

[76,77]
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Table 3. Cont.

Technique Name and Description Essential Features References

• Squeeze casting

In this technique, the pressure is applied and maintained
until the molten metal solidifies. The applied pressure assists
in grain refinement that ultimately enhances the mechanical
properties of the final product.

(a) In this technique, the rapid
solidification of the part is achieved.

(b) Excellent strength and ductility are
obtained due to the rapid
solidification process.

(c) Gas porosity and shrinkage cavities
are drastically reduced, resulting in
excellent properties.

[78–81]

• Powder metallurgy

In this technique, a blending of fine powder particles,
compacting into an anticipated form. Mostly, material
heating is also involved.

(a) It is usually used for matrices with a
high melting point.

(b) It avoids segregation and brittle
product formation.

(c) It can produce complex shapes with
satisfactory dimensional accuracy.

(d) It yields minimum material loss.
(e) Less secondary machining operations

are needed.
(f) The manufactured parts are relatively

defect free.
(g) It can incorporate a high-volume

fraction of reinforcement.

[82,83]

• Advanced shear technology

This process uses the melting-condition advanced shear
technology technique. A sufficient quantity of shear stresses
is applied to the particles, within the liquidus metal, to get
over the cohesive force and the malleable strength of the
given mixture. It consists of the following mixing steps:

(a) Near-net shaped MMCs are produced
with homogeneously
distributed reinforcements.

(b) It can yield MMCs with
suitable microstructures.

(c) The standardized dispersal of the
reinforcement within the matrix
is achieved.

(d) Excellent mechanical properties are
usually achieved, as compared to
other techniques.

[84,85]Step I: Distributive mixing Step II: Dispersive mixing

It employs the conventional
mechanical stirring to
pre-mix the metal matrix
with the reinforcing particles.
The equipment is the same
as stir casting.

In this step, adequate shear
stress is applied to overcome
the average tensile strength
of the agglomerated
structures.

• Ultrasonic assisted casting

It is a well-known process to produce lightweight nano-metal
matrix composites (NMMCs) with excellent reinforcement
distribution. However, NMMCs present severe problems
regarding the uniform dispersion in liquid metal that induces
clustering. This drawback can be solved by integrating the
ultrasonic system with the casting process.

(a) It can produce parts with better
mechanical and machining properties
as compared to any other
casting process.

[78,86]

• Friction stirring process

It is a technique that can change the microstructure and
mechanical properties through plastic deformation.

(a) It provides low production cost in a
short time.

(b) It needs a simple and
inexpensive setup.

[87,88]

In the case of LMD, the matrix and reinforcements, both are added in the powder form. Therefore,
in this literature, more focus has been put on the powder metallurgy. Lanfant et al. [89] developed
MMCs using Ti (matrix) + Al2O3 (nano-reinforcements) via the LMD process. A combination of Impakt
powder and conventional powder feeding system was used to directly inject the Al2O3 nanoparticles
into Ti-matrix to increase the hardness, locally. Mechanical tests were carried out; the results showed
that the addition of Al2O3-nanoparticles (0–14 wt.%) within Ti-matrix could exponentially increase the
hardness from 100 HV to 650 HV. Liu et al. [90] considered the tensile properties of TA15 titanium
(matrix) + TiC (10 vol.% reinforcement) at high temperatures. These MMCs were pre-mixed in the
form of powder blends. It was found that the MMCs exhibited higher tensile strength (UTS) and
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lower elongation as compared to the monolithic matrix alloys at 873 K. The UTS decreased from 625
to 342 MPa as the temperature increased from 873 to 973 K. In contrast, the elongation of the MMCs
increased from 7% to 18%.

Liu et al. [48] manufactured titanium matrix composites (TiC + TA15) by the LMD process. Initially,
the TiC + TA15 in powder form was mixed with an acetone solution, and then the slurry was dried in
an electric oven up to 393 K for two hours to eliminate the acetone solvent. The results are shown in
Figure 6, which indicates that the specimen containing TiC (5 vol.%) presented better yield strength
(YS) and UTS. In contrast, the tensile properties of the composites declined with the further increment
of TiC (10 and 15 vol.%). The declination in the UTS of the composites is accredited to the premature
failure of the TiC reinforcements. It can also be seen that pure TA15 presented better elongation (%) as
compared to the composite ones.
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Cooper et al. [91] manufactured MMCs with the addition of Al2O3 + SiC + TiC (5 wt.%) in the
Inconel 625 matrix by the LMD process. A ball mill was used to mix the powders, at a speed of 150 rpm
for one hour, until the powders appeared well-mixed visually. On the one hand, the material hardness
increased up to 130%. On the other hand, the number of pores and cracks increased with the addition of
SiC. In contrast, no appreciable effect upon material’s hardness was found with the addition of Al2O3.

3.2. Metal Matrix Composites (MMCs) Deposited by Wire and Powder Particles Feedstock

The LMD process can be further classified based upon the type of feedstock material. Figure 7
presents the two deposition techniques derived from the LMD process. In Figure 7a, the powder is fed
coaxially along the laser beam while the lateral wire feeding into the melt pool can be observed in
Figure 7b [92].
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provided in Ref. [92].

Processes, as mentioned earlier, own some pros and cons, which are summarized in Table 4 [93–97].

Table 4. Comparison between the powder and wire-based LMDs.

Powder-Based LMD Wire-Based LMD
References

Pros Cons Pros Cons

• Various materials
can be processed.

• Complex shapes
can be built.

• Functionally
graded materials
are manufactured.

• It results in high
porosity percentage.

• Material cost
is high.

• Deposition
efficiency is less.

• Powder particles
lead to serious
health issues.

• Material waste is
lesser as compared to
powder-based LMD.

• The deposition rate
is high.

• The feedstock is less
expensive than
powder-based LMD.

• The material’s feed rate
cannot be controlled.

• It requires high energy.
• The dilution rate, in the

substrate, of the
deposited material is
higher than
powder-based LMD.

[93–97]

The pros and cons of combined powder- and wire-based LMDs are presented in Table 5 [92].

Table 5. Integration of powder- and wire-based LMDs.

Powder +Wire-Based LMDs
References

Pros Cons

• Higher deposition efficiency.
• Higher energy valorization.
• Optimum resource consumption.

• Difficulty in the integration of powder- and
wired-based LMDs.

• Staff training, evaluation and testing of
produced parts will cause a cost increment.

[92]

Farayibi et al. [98] investigated the LMD of Ti6Al4V (wire) + tungsten carbide (WC), in powder
form, fed concurrently into the melt pool generated on a Ti6Al4V substrate via the laser beam.
The WC particulates participated as the strengthening agent within Ti6Al4V, thus, improving the
deposited MMCs’ hardness and wear resistance. Figure 8 shows the microhardness of the deposited
material, in which the powder flow was increased (10–40 g/m), while the wire feed rate kept constant
(800 mm/min). It can be analyzed that with the increment in powder flow, the hardness of the deposited
MMCs rises significantly (600–1000 HV).
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Farayibi et al. [99] developed a new MMC using Ti6Al4V + titanium diboride in the powder form
via a satelliting method. The resulted mixture consisted of large Ti6Al4V particles, enclosed within finer
needle-shaped TiB structures, presented an improved hardness. The microstructural characterization
exposed that the composite consisted of TiB eutectic precipitates in an α+β-Ti-matrix. They contained
the incompletely melted Ti6Al4V + TiB2 particulates. The satelliting of TiB2 particles onto Ti6Al4V
surfaces notably enhanced the dispersion of the composite, which was characterized by the arbitrarily
oriented and uniformly distributed TiB needles within the microstructure. The composites’ hardness,
when fabricated by this technique, was in between 440 to 480 HV.

3.3. Different Laser Sources for In-Situ MMCs Syntheses by LMD

Various studies to manufacture MMCs by a unique laser source have been proposed.
Ramakrishnana and Dinda [100] manufactured MMCs using Al (82 wt.%) + W (18 wt.%) via the LMD
technique. A laser beam (diode laser Laserline LDM 2000-40, 978 nm) of 900 W, in combination with
three scanning speeds (1.5, 6, and 12 mm/s), was used for the MMCs fabrication. The hardness of the
developed MMCs increased up to 50% in comparison with pure aluminum. A finer microstructure
was found at 12 mm/s scanning speed as compared to 1.5 and 6 mm/s scanning speeds. Zhenglong
et al. [101] prepared TiB2 (particulate) + AA7075 (matrix) MMCs using the LMD technique. A laser
beam (IPG fiber laser, YLS-5000) with 800 W and 10 mm/m scanning speed was used in the process.
The results exhibited that the grain dimensions decreased after adding TiB2 due to heterogeneous
nucleation. In comparison to the unreinforced AA7075 sample, TiB2 + AA7075 MMCs showed an
elevated hardness. The hardness of the MMC with TiB2 (4 wt.%) was found to be 127.8 HV, while the
grain size was reduced up to 16.8 µm.

Li et al. [55] designed and fabricated novel MMCs using α-Fe, vanadium (V), victorium (VC),
and chromium carbides (Cr7C3, Cr23C6) via the LMD process. The V was used in 9, 12, and 15%
(wt.%), respectively. For fabrication, a ytterbium laser source with 2.2 kW and 8 mm/s scanning speed
was used. The results indicated that the VC particles provided adequate space for the heterogeneous
nucleation of α-Fe and Cr23C6, during the solidification of the molten material, which resulted in
refined grain structures. The microhardness of the three specimens was in the range of 521–603 HV.
The sample having V with 12 (wt.%), resulted in the lowest wear rate (5.011 × 10−6 mm3/Nm) among
all the tested samples.
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3.4. Matrices for MMCS

3.4.1. Titanium-Based MMCs (TMCs)

Titanium alloys have various aerospace, marine, biomedical, structural and industrial applications.
They owe excellent strength to weight ratio, malleability, formability, deterioration resistance,
and biological compatibility characteristics. However, these alloys yield reduced hardness and
wear attributes. A suitable way to increase the hardness and tribological characteristics of Ti-alloys
is to mix the Ti-matrix with tough precipitates to achieve Ti-based composites (TMCs). These can
be classified into two sub-categories based on the type of reinforcement: (i) continuous reinforced
TMCs (ii) discontinuous (particles) reinforced TMCs [102–104]. Table 6 summarizes the continuous
and discontinuous TMCs formation techniques regarding illustration, advantages, and disadvantages.

Table 6. Continuous and discontinuous TMCs formation techniques.

Continuous Reinforced TMCs Formation Techniques

Technique and illustration Pros Cons References

• Lay-up methodology
• It involves alternating

depositions: Woven fiber rugs +
0.90–0.16 mm thick Ti-alloy foils.

• It can accommodate high and
more extended fiber contents
in comparison with the
spray technique.

• The usage of
low-temperature resins
results in low tooling cost.

• It uses excessive foil and fibers.
• It results in homogenous fiber

dispersion and
fabrication difficulties.

[105]

• Induction plasma deposition
• It uses an inductive

high-frequency plasma to melt
and sprinkle the fine-grained
microstructures of Ti-matrix onto
a wound fiber drum.

• The fiber spacing is
highly maintained.

• Any metal matrix, which can
be transformed into powder,
is used in this process.

• A strict composition control
is needed. [106]

• Physical vapor accumulation
• It comprises the build-up of

matrix onto a solitary fiber layer
via vaporization of a metal
matrix using an electron beam or
magnetron sputtering.

• The distribution of fiber
is excellent.

• The complex shapes can
be produced.

• The production cost is high.
• Specialized skills are required.
• It is relatively a slow process.

[107]

• Tape casting
• It contains slurry formation;

then, the reinforcements are
coated with slurry and cut into
desired shapes.

• It requires consolidation
steps to obtain homogenous
material, which increases the
production cost.

• The contamination control is
difficult due to titanium reactive
nature and the presence of
polymeric additives.

[108]

Discontinuous Reinforced TMCs Formation Techniques

• Powder metallurgy
• It involves the homogenous

mixing of various
powders/halide salts to produce
ex-and in-situ TMCs

• A most suitable technique to
produce TMCs.

• The production cost
is reasonable.

• The production rate is high.

• Homogenous mixing is a
critical step.

• Sometimes the surface coating is
needed to reach
homogenous properties.

• The selection of reinforcement
presents a critical role in TMCs’
final features.

[109,110]

• Rapid solidification process
• In this process, “atomization”

technique is used;
reinforcements are added into
the molten material. It is mostly
used for in-situ TMCs.

• It is a
straightforward technique.

• The investment cost is lesser
than the other techniques.

• It requires high heat as an input.
• A difference in the

reinforcements and matrix
densities results in the MMCs
with non-uniform properties.

• The processing temperature can
affect the size and scale
of particulates.

[111–113]

In the last few years, the discontinuously strengthened Ti-composites have experienced rapid
expansion. They have an elevated strength, toughness, wear resistance, and thermal reliability as
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compared to pure Ti-alloys. Therefore, they are potentially considered for applications, including
aerospace and automotive. Different particulates have been selected for reinforcement so far such as
TiB2, TiN, B4C, ZrC [42,104], nano-SiC [114], TiB, TiC [115,116], Al2O3 [117], and Si3N4, which were
found unstable due to the formation of titanium silicide and carbon nanotubes [118–120]. For the
continuous fibers, TMCs using boron reinforcing fibers (coated with silicon carbide) were produced;
however, these fibers are expensive as compared to the other fibers, which leads to discontinuation of
TiB fibers [104,121,122]. Besides this, various researches have been carried out using SiC [123–127],
carbon [104,128,129], SCS-6 and Sigma [130,131] reinforced fibers.

Figure 9a displays the mechanical and physical properties of various discontinuous TMCs. It can
be seen that the TiB and graphene present the least and highest melting point, respectively, as compared
to the other discontinuous reinforcements (DRFs). It means that a low amount of laser energy will
be needed to melt down the TiB. In contrast, an opposite behavior can be observed for graphene.
Moreover, La2O3 presents the highest density, while graphene possesses the least density value. To the
best of our knowledge, the elastic modulus of TiB and La2O3 containing MMCs are not reported in the
literature, which identifies the potential area for future research. The B4C, SiC, TiB2, TiC, and TiN have
almost the same elastic moduli; but, the carbon nanotubes (CNTs) and graphene present the highest
elastic moduli as compared to the rest of DRFs. Similarly, the La2O3 has the highest thermal expansion
coefficient as compared to the rest of DRFs. Figure 9b shows a comparison of various continuous
reinforcements (CRFs) regarding their diameter and ultimate tensile strength (UTS). The two major
types of CRFs, including SiC and Al2O3, have been presented. The majority of the CRFs such as
SM 1140+, trimarc, SCS-ultra, and SM-6 belong to the SiC category, while sapphire belongs to the
Al2O3 type. The output explains that SCS-ultra, with a diameter of 140 µm, shows the maximum UTS.
In contrast, for the rest of the CRFs, a compromise should be reached between the particulate size and
UTS. By keeping in view the trend presented in the Figure 9, one can conclude that the proper selection
of DRFs and CRFs has to be made based on the specific requirements, and a compromise should be
made between the thermal and physical properties [104].
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3.4.2. Nickel-Based MMCs (NMCs)

Ceramic reinforced nickel matrix composites, also known as NMCs, usually possess high fatigue
and corrosion resistance with better hardness and wear resistance properties as compared to the
simple nickel matrix. They are considered to be prospective materials in aerospace, biological,
and petrochemical manufacturing due to above-mentioned properties. TiC strengthened NMCs via
LMD were produced by Hong et al. [132]. They found that the existence of TiC was beneficial to
refine grain size, from 34.1 µm to 27.2 µm. Moreover, the results displayed that the high energy
can lead to an effective Marangoni convection confined by the melt pool, which induces refined
and normalized spreading of TiC reinforcements. Thus, resulting in improved wear resistance and
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malleability. Furthermore, an increment in the thermal energy input per unit length resulted in uneven
columnar dendrites formation, declining the wear and tensile properties of NMCs. Li et al. [133]
produced Ni + TiC NMCs by LMD. A total of three TiC compositions, including 20, 40, and 60 (vol.%),
were selected. The influence of TiC vol.% on phase transformation, microstructure evolution, hardness,
and wear resistance, was analyzed. The analyses exhibited that the composites consisted of TiC + Ni
phases, demonstrating that TiC was produced through in-situ reaction. Moreover, TiC particulate
size increased from 3 to 10 µm, when the TiC (vol.%) was enhanced from 20 to 60%. In addition,
the hardness was improved from 365.6 HV0.3 to 1897.6 HV0.3, while the value of wear resistance
changed from 20 to 6 × 10−3 g.

3.4.3. Other Metal Matrix Composites

In the LMD process, the rapid heating and solidification lead to the warpage, delamination,
and cracks. Li et al. [134] carried out a study on the usage of invar. The experimental results showed
that TiC reinforced invar, with the 64 wt.% Fe and 36 wt.% Ni composition, has a low thermal expansion
coefficient, improved rigidity, and YS. Xiong et al. and Picas et al. [135–137] manufactured WC + Co
using LENS. An improved microstructure, wear resistance, and mechanical properties were found
with the addition of WC in Co. Choi and Maumder [138] reported a study on the manufacturing
of Fe + Cr + C + W MMCs via the DMD, thereby, producing an innovative wear-resistant material.
The results explained that the conformation and volume proportion of carbides could easily be handled
by regulating the pre-heating temperature, input power density, and scanning speed. The matrix
participation was carried out by M6C and M23C6 type carbides; the rhombus-shaped M6C carbides
showed better tribological properties. Zhong et al. [139] synthesized the Ni-Al intermetallic layers and
TiC (particulates) MMCs by laser cladding. The powder particles were added coaxially. The printed
layers were cracks free and metallurgically bond to the substrate. The microstructure of the layers
was mainly composed of β-Ni-Al phase and a few γ-phases. Moreover, un-melted dispersive
fine precipitates of TiC particles and refined β-Ni-Al phase matrix were found in the composites.
The hardness test shows that the microhardness for Ni-Al intermetallic layers was equal to 355 HV0.1,
and 538 HV0.1 for Ni-Al+ TiC matrix composites.

3.5. Properties of MMCs

MMCs present remarkable characteristics, which makes them applicable in the fields of aerospace,
automotive, heavy goods vehicles, electrical, and biomedical [140]. Few properties of MMCs are
reviewed below.

3.5.1. Mechanical Properties: Hardness, Ultimate Tensile Strength (UTS), Yield Strength (YS),
Elongation, and Wear

MMCs present superior properties including hardness, YS, and UTS in comparison to the
base alloys. Li et al. [141] manufactured MMCs through the LMD by feeding the WC powder
particulates along with titanium wire into the melt pool generated by the laser beam. Major process
parameters, including wire feeding rate, powder flow, and the laser power were used in the analyses.
The microhardness of the MMCs was 500 HV0.2, which is much higher than the titanium alloys
(320 HV0.2). It indicates that the presence of the WC + TiC phases within the printed layer
improved the hardness and abrasive resistance. Bi et al. [142] carried out the deposition of
inconel 625 + TiC nano-powders using the LMD. The mechanical properties were investigated.
Three different compositions of TiC + inconel 625, including 0.25/99.75, 0.50/99.50 and 1.00/99.00 (wt.%),
were synthesized. The hardness, UTS, YS, and elongation are shown in Figure 10a. It can be seen that the
hardness, UTS, and YS increased proportionally with the increment in the quantity of TiC particulates
(wt.%). However, elongation presented random behavior with the increment in TiC particulates (wt.%).
The maximum elongation was exhibited by 0.50/99.50 composition. Gopagoni et al. [143] processed Ni
(80 wt.%) + Ti (10 wt.%) + C (10 wt.%) MMCs via LENS technique. The manufactured MMCs showed
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the eutectic TiC and FCC-TiC structures. The tribological and mechanical analyses were conducted.
The stationary friction coefficient was found equal to 0.50, inferior to pure Ni. Moreover, the hardness
increased substantially up to 370 VHN, proving them a potential candidate for surface engineering
operations. Crack-free functionally graded MMCs composed of TiC particulates + Ti6Al4V were
manufactured by Wang et al. [56] using LMD. A volume fraction of TiC in between 0–30 (% wt.) was
used to analyze the effect of TiC (vol.%) on the microstructure and mechanical characteristics of MMCs.
They found that the hardness gradually increased with the increment in TiC (vol.%), which can be
attributed to the presence of eutectic + TiC phases. When TiC increased up to 5 (vol.%), the tensile
strength enhanced by 12.3% as compared to the Ti6Al4V alloy. Nevertheless, the tensile strength and
elongation of the produced MMCs decline as the volume fraction of TiC surpass by 5%. It can be
explained that the number of stiff un-melted TiC particulates, amount and dimension of dendritic TiC
phases raised with the increment in TiC. These results are presented in Figure 10b.
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Figure 10. (a) Influence of Nano-TiC particulates on the hardness, ultimate tensile strength,
yield strength, and elongation, and (b) the consequence of TiC (vol.%) on Tensile strength, elongation,
and hardness; based on the data provided in Ref. [56,142].

Hong et al. [144] used the LMD to manufacture inconel 718 + TiC MMCs. The influence of the
laser energy over the unit length (80–160 kJ/m) on the microstructures and hardness, was analyzed.
The TiC experienced a tremendous transformation as the laser energy density increased from 80 to
120 kJ/m. The comparatively coarse polyhedral TiC particulates resulted when the laser energy was
up to 100 kJ/m. As the laser energy increased beyond 100 kJ/m, completely liquified smooth TiC
particulates were produced. Furthermore, when the laser energy increased beyond 160 kJ/m, the TiC
particulates were significantly refined. However, a direct relationship was observed between laser
energy input and microhardness for the produced MMCs, as given in Figure 11a. Sateesh et al. [145]
manufactured MMCs using pre-heated nickel phosphide coated with SiC reinforced particles via the
LMD process, under inert nitrogen atmosphere. An inclination in the hardness, UTS, YS, and elongation
was observed with the increment in SiC (wt.%). These properties decline dramatically beyond 3 (wt.%)
addition of SiC. For a given laser scanning speed and power, the increment in SiC (wt.%) resulted in
excessive un-melted SiC particles, leading to the declination of hardness, UTS, YS, and elongation,
as shown in Figure 11b.
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Figure 11. (a) Analyses of laser energy input over the unit length on microhardness, and (b) influence
of SiC reinforcement (wt.%) on hardness, ultimate tensile and yield strengths, and elongation; based on
the data provided in Ref. [144,145].

Zhang et al. [146] used the LMD to manufacture Ti + TiC MMCs with various pre-mixed ratios of
TiC (10, 20 and 40 vol.%) The mechanical testing, including UTS, YS, elongation, hardness, and wear,
were conducted. The results are presented in Figure 12. It can be observed that the UTS slightly deviates
with the accumulation of TiC; meanwhile, YS declines quickly, which is caused by the existence of solid
and stiff TiC particulates. The hardness and wear resistance of the produced MMCs raised with the
increment in TiC volume fraction due to the strengthening effect of the particulates and the optimum
bonding between TiC and Ti. Based on the excellent adhesion between TiC + Ti MMCs, such coatings
can be deposited on the surfaces, where superior wear resistance is required. The LMD process inherits
the high laser energy density; moreover, Ti showed an excellent affinity to the Oxygen + Nitrogen,
which was absorbed quickly in the interstitials. The combination of the aforementioned facts leads to
strength increment. Furthermore, a declination in the elasticity was observed in the MMCs.
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Table 7 provides a summary of the above-mentioned mechanical properties.
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Table 7. Summary of MMCs mechanical properties.

Study
by MMCs by LMD Hardness

(HV)

Ultimate Tensile
Strength

(MPa)

Yield
Strength

(MPa)

Elongation
(%)

Wear Loss
(µm2) References

Li et al. WC + Ti-wire 500 - - - - [141]

Bi et al.

Inconel 625 + TiC
particulates

(0.25/99.75; 0.50/99.50;
1.0/99.0)

285; 310;
312; 320 840; 930; 980; 990 530; 650;

642; 690
16; 19; 28;

21 - [142]

Gopagoni
et al.

Nickel (80 wt.%) +
Titanium (10 wt.%) +

Carbon (10 wt.%)
370 - - - - [143]

Wang
et al.

TiC particulates (0; 5; 10;
15; 20; 30 vol.%)

+ Ti6Al4V

375; 425;
427; 432;
475; 477

1100; 1200; 1100;
1000; 900; 700 - 5; 1; 0.8;

0.7; 0.5; 0.1 - [56]

Hong
et al.

Inconel 718 + TiC
(Laser energy = 80; 100;

120; 160 kJ/m)

375; 400;
410; 450 - - - - [144]

Sateesh
et al.

Ni-P + SiC (0; 1; 3;
5 wt.%)

300; 350;
390; 375 800; 900; 910; 300 400; 400;

410; 200
12; 14; 15;

2 - [145]

Zhang
et al. Ti+TiC (10; 20; 40 vol.%) 260; 301;

336; 503 585; 575; 590; - 520; 520;
515; -

19; 2.5; 1.5;
-

309,022.1;
196,579.5;
125,786.7;
107,735.6

[146]

3.5.2. Creep Behavior, Erosion Resistance and Thermophysical

Liu et al. [147] analyzed the creep performance of TA15-Ti + TiC particulates (10.8 vol.%) MMCs at
873 and 923 K, respectively, deposited by the LMD. The creep resistance of the MMCs improved notably
due to the accumulation of TiC reinforcing particulates in comparison to the monolithic TA15-Ti alloy
designed in between 723 to 773 K. The creep life for TA15-Ti + TiC MMCs at 873 and 923 K, is shown
in Figure 13a. The rupture of the TiC + TA15 MMCs was originated due to the particles’ cracking,
interfacial debonding and voiding, which becomes dominant with the temperature elevation. Jiang and
Kovacevic [148] performed a study on the behavior of TiC + H13 tool steel MMCs, manufactured by
LMD. The influence of TiC (vol.%) on erosion resistance was analyzed. Figure 13b shows the erosion
rates of the coated layers at different impact angles. For all the coatings, it can be observed that the
impact angle influenced the erosion rate considerably. For the 30◦ impact angle, the lowest erosion rate
was observed, followed by a 90◦ impact angle. The maximum erosion was found at 45◦ and 60◦ angles.
Moreover, TiC with 80 (vol.%) presented the least erosion resistance, while the coating with 40 (vol.%)
showed the highest ones.

Lei et al. [149] used the LMD for Sip + 6063Al MMCs for 5, 12, 20 and 30 (wt.%) Si contents.
The thermophysical properties of MMCs were investigated. The results are shown in Figure 14.
They found that with the increment in Si (wt.%), the thermal conductivity of the MMCs declined due
to the decrease in an α-Al phase, which exhibits the high-level conductivity. The thermal expansion
coefficient presented an opposite behavior as compared to the thermal conductivity.
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3.6. Applications of MMCs

The literature survey revealed the following main areas proposed by various studies.

3.6.1. Biomedical

MMCs have outstanding load-bearing and wear resistance properties, which make them interesting
for implant applications [150]. TiN and SiC reinforced TMCs [151,152] have been proved for excellent
biocompatibility. Hence, they are used for cladding on the metallic substrates to upgrade the
biocompatibility of implants. In vitro testing was carried out to assess the biocompatibility of the
deposited layers. The results showed an excellent cell to material interaction, and no toxicity was
found. It showed that they could be used for load-bearing implants such as hip, knee and shoulder
joints [151,152]. Moreover, orthopedic bone prototypes and meshed cranial prostheses implants were
successfully developed for biomedical applications [57,153,154].

3.6.2. Wear Resistance

In MMCs, the ceramic reinforcements within the matrix play as the load-bearing element,
which can confine the plastic distortion, thus, preventing the matrix from deterioration. It makes
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MMCs a potential candidate for wear-resistant applications [5,155]. The depositions of TiN reinforced
MMCs on a Ni-Ti substrate by LMD, in a nitrogen atmosphere, increased the substrate’ wear resistance
by a factor of two [156]. TiB + TiN MMCs were prepared on a Ti-substrate using pre-mixed boron
nitride (BN) + Ti6Al4V powders by the LMD. With the increase in the BN content up to 15 (wt.%),
the surface hardness increased from 543 to 877 HV, thereby, increasing the wear resistivity of the
deposited layers [157]. The deposition of WC/W2C + Ni MMCs on steel substrate was carried out via
LMD. It was found that an inclination in the WC/W2C content and a declination in carbide dimension,
can enhance the wear resistance of MMCs up to 200 times more than the pure Ni matrix [158]. The dry
friction, along with better contact load, is an increasing demand for aerospace and heavy industries.
In simple words, only the high wear resistance is not sufficient. For this difficulty, WC/Co (ceramic
reinforcement) + Cu-Sn (solid lubricant) were manufactured by the LMD process. The developed
structures presented better wear resistance and low frictional characteristics [159].

3.6.3. Corrosion and Erosion Resistance

MMCs are used to increase electrochemical corrosion and erosion resistance. For this purpose,
Ni2Si composites were deposited on a steel substrate by the LMD technique [160]. Immersion and
anodic polarization tests were conducted, which proved the deposited layer intermediated better bio-
and electrochemical corrosion resistance. The novel layers of TiC + Satellite 6, WC + Co, MoSi2 +

stellate 6, and MoSi2 + steel matrix composites, were deposited on a metallic substrate to improve
erosion wear rate [161].

3.6.4. Industrial

LMD technology has recently been used to repair brake disks and turbo-engine parts [162]. In one
of the recent studies, LMD was demonstrated as a potential candidate to repair steel dies using the
Fe-Cr and Fe-Ni layers [163]. Moreover, various applications of the LMD have been determined
in the fields of aeronautics and refractory [164]. Furthermore, LMD technique has been tested for
the manufacturing of multiple parts, including turbine and compressor blades [165], nozzle guide
vanes [166], jet engines [167], casting dies [168], Z-notches [169], bearing seats, valves, shafts, cylinders
and rods [170], and seals [171].

3.7. MMCs by the LMD: Strengths, Challenges and Their Potential Solutions

On the one hand, MMCs produced by LMD show excellent hardness, toughness and frictional
properties. On the other hand, MMCs loose ductility, YS, and UTS with the addition of ceramic
particulates. Mechanical properties of MMCs primarily depend on the adhesion between ceramic
reinforcements and metal matrices along with the interface. Zheng et al. [172,173] used an effective
strategy to overcome such difficulties, by encapsulating ceramic particles within metallic coatings
to strengthen the inconel-625 + Ti-6Al-4V MMCs. This method prevents the bunching of ceramic
particles within MMCs, thus, effectively reducing the voids and cracks formation in between metal
and ceramic intersection. There are various hindrances for obtaining the fully dense and homogenized
MMCs. The dense MMCs are restricted due to micro/macro-cracks, gas entrapment, and particulate
accumulation during the printing process.

Moreover, if the initially deposited layers are poorly bonded to the substrate, the following layers
deposition will result in an up-warp, hence, resulting in manufacturing failure [174]. Due to rapid
heating and solidification in the LMD process, cracks are usually induced due to the large thermal
gradient [175]. These cracks decrease the lifetime of the fabricated parts. The cracks can cause the
catastrophic failure of the deposited layers under cyclic loading [103]. Therefore, it is extremely
important to manufacture fully dense parts [28,176,177]. Various methods can solve the problems as
mentioned above: (a) Process optimization [178,179], (b) integrating the LMD process with assisting
technology such as ultrasonic vibration [180,181], (c) pre/post-heating the substrate to decrease thermal
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gradient [182,183], (d) adding rare earth oxides to change the melt pool dynamics [184,185] and (e)
tailoring the novel structures [186,187].

3.8. Future Research Directions in MMCs

Based on the current review, a few potential areas still need attention from the researchers. In the
LMD process, strong bonding between the deposited MMCs layers with the substrate is of great
importance to fabricate bulk parts. One of the ways to achieve the desired strength is “process
optimization.” However, in situations where process optimization fails, integrating an assisting
technology such as ultrasonic vibration with LMD can be a decent alternative to secure an optimum
bonding between the deposited layers and substrate.

Moreover, the post-processing needs special tools and high energy, thus, increasing the fabrication
cost. This high cost limits the availability of MMCs to niche applications. There is a need to find out a
balanced solution between better thermo-mechanical properties and low production cost, which can
promote the MMCs effectively.

Depending on the amount of the dispersed phase within the composition, MMCs can display
new properties or an enhancement of the existing ones. By simultaneous addition of matrix and
reinforcement in powder form, might result in new materials with exciting properties. In addition,
parts with complex architecture such as multilayered structures or gradient composition can be easily
obtained via in-situ MMCs. Another area to explore is to manufacture the exact composition of
MMCs via different laser sources as it may affect microstructure, mechanical, thermal and electrical
properties significantly.

LMD is not suitable for the parts with fine geometry in the range of hundred-microns. On the other
hand, SLM is a technique appropriate for metal parts with lattice structures and complex geometries.
However, LMD scanning heads future developments can allow the obtaining of sub-mm resolutions.
Hence, an increase in resolution for the MMCs printing via the LMD is a new area to be explored.

The newest trend in 3D printing is the use of enhanced topology. The CAD/CAM user specifies
the part size, restrictions and the acting forces into the dedicated software. With this data, the software
calculates and proposes the best shape regarding user’s requirements and the maximum resistance
to the forces that will act upon it. However, the shape offered by the software is most of the time,
unconventional and convoluted. Conventional casting or pressing techniques are often inappropriate
for producing it, while 3D printing, in this case, is a suitable choice for building such parts. LMD printing
method can advance this field even more by involving MMCs.

4. Conclusions

LMD process, depending on the experimental setup can be classified into three sub-categories:
(a) DMD, (b) LENS, and (c) DLF. Every process has its own pros and cons and is selected depending on
requirements of specific applications.

In the LMD technique, process parameters can be classified in two main categories: (a) controllable
and (b) uncontrollable. The controllable parameters, such as laser power, scanning speed and powder
flow rate, can be tackled directly. In contrast, the uncontrollable parameters, including layer thickness,
process time and surface roughness, can be indirectly adjusted through the controllable parameters.
Furthermore, a good correlation between the z-axis increment and layer thickness is necessary for
uniform layer thickness and the optimal energy utilization. The operating parameters define the
melting degree and properties of the fabricated parts. In addition, the side effects caused by high
thermal stresses, resulting in part distortion can be lessened by process optimization. Hence, a proper
selection of operating parameters is necessary to achieve high-quality parts.

MMCs are usually composed of a minimum of two types of materials, a metal matrix and a
dispersed phase of ceramic, or polymer. The most widely used materials for matrices are titanium,
nickel, invar, cobalt, and aluminum. Extensive research has been conducted on titanium matrix as
it is a bioinert material that can be used in implantology. Invar, cobalt, and aluminum provide the
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potential research area to be further explored. Common reinforcements are hard ceramics such as
carbides, nitrides, borides, oxides and graphene, mostly in form of microparticles.

MMCs deposited by LMD present extraordinary features such as high strength at elevated
temperature, improved hardness, better fatigue, and creep characteristics in comparison to the
traditional alloys. It makes them potential candidates for advanced technological applications that
require in situ manufacturing of parts. In contrast, the opposite behavior for elongation percentage
has been observed. UTS and YS show random behaviors. It can be explained that the interfacial
bonding between the matrix and reinforcement is mandatory to achieve better UTS and YS. A weak
adhesion, between the two phases restricts the load transfer from the matrix to reinforcement, thus,
causing a declination in UTS and YS. Moreover, a wise selection of reinforcement and their fraction
(wt.%) in combination with the metal matrix is necessary to achieve optimum physical, thermal,
and mechanical properties.

During the fabrication of MMCs by LMD, cracks are usually caused by the enormous thermal
gradient. These cracks decline the mechanical properties and shorten the lifetime of the fabricated
parts. Process optimization, pre-heating, or introducing an assisting technology, has reduced the
cracking problems.

LMD printing using MMCs still has a lot of open themes for future research. The problem of
interface between the matrix and the dispersed phase is not yet solved. There is the emergence
of new software that will revolutionize 3D printing by allowing the print of parts with enhanced
topology. The research is underway for the complex architecture of parts using multilayers and gradient
compositions of MMCs; there is still a potential for the discovery of new materials and properties.

The authors express their confidence that by joining two cutting edge research fields such
as 3D printing and synthesis of prospective superior materials represented by MMCs will ensure
not only years of research and possible breakthroughs for both scientific communities but also the
emergence of new products with benefits for humanity: lighter vehicles, longer-lasting mechanical
tools, more resistant implants and prostheses, better sports equipment, new construction materials and
components for aeronautics and space programs.
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