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Quantitative imaging biomarkers (QIBs) provide medical image–derived intensity, texture, shape, and size
features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical trans-
lation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission
tomography images are prone to measurement errors owing to differences in image processing factors such
as the tumor segmentation method used to define volumes of interest over which to calculate QIBs. We illus-
trate a new Bayesian statistical approach to characterize the robustness of QIBs to different processing fac-
tors. Study data consist of 22 QIBs measured on 47 head and neck tumors in 10 positron emission
tomography/computed tomography scans segmented manually and with semiautomated methods used by 7
institutional members of the NCI Quantitative Imaging Network. QIB performance is estimated and compared
across institutions with respect to measurement errors and power to recover statistical associations with clini-
cal outcomes. Analysis findings summarize the performance impact of different segmentation methods used
by Quantitative Imaging Network members. Robustness of some advanced biomarkers was found to be simi-
lar to conventional markers, such as maximum standardized uptake value. Such similarities support current
pursuits to better characterize disease and predict outcomes by developing QIBs that use more imaging infor-
mation and are robust to different processing factors. Nevertheless, to ensure reproducibility of QIB measure-
ments and measures of association with clinical outcomes, errors owing to segmentation methods need to be
reduced.

INTRODUCTION
Quantitative imaging biomarkers (QIBs) provide medical image–
derived intensity, texture, shape, and size features that have
potential use in the characterization of disease and prediction of

clinical outcomes. In the evolving field of radiomics, large num-
bers of potentially informative novel and diverse QIBs are
extracted and studied for the personalization of disease treat-
ment, particularly in oncology (1, 2). Examples of single
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institution–based studies of imaging biomarkers include brain
cancer (3, 4), head and neck cancer (5–8), lung cancer (9–13), na-
sopharyngeal carcinoma (14), prostate cancer (15, 16), and sar-
coma (17). Other research has focused on performance of QIBs
across multiple institutions, such as the analysis provided by
Castelli et al. (18) regarding the predictive value of quantitative
fluorodeoxyglucose positron emission tomography (FDG PET) in
45 studies of head and neck cancer.

Despite the growing body of radiomics research and the
established use of some imaging biomarkers, such as metabolic
tumor volume (MTV), few new QIBs have been adopted for clini-
cal decision-making. Cancer Research UK and the European
Organisation for Research and Treatment of Cancer, with NCI
involvement, recently convened a consensus group to make rec-
ommendations for accelerating the clinical translation of imag-
ing biomarkers. To that end, the group published a roadmap for
navigating 3 main domains through which biomarker develop-
ment passes: 1) discovery, 2) validation, and 3) qualification (19).
In general, discovery is the process of identifying biomarkers
associated with a disease or disease outcome of interest in a lim-
ited patient population; whereas, validation and qualification are
formal assessments of biomarker performance and clinical utility
in a broader population. Biomarker validation can be further di-
vided into 2 complementary tasks, namely, technical validation
and clinical validation, which focus on the quality of measured
biomarker values and measured associations with disease,
respectively. A third, qualification domain involves establish-
ment of the fitness of biomarkers for specific clinical applica-
tions. Application of appropriate statistical methods is essential
for the development of new clinically applicable QIBs. In particu-
lar, this process requires proper statistical estimation of measure-
ment accuracy and precision for each of technical and clinical
validation and proper statistical design and analysis of clinical
trials for establishment of clinical utility.

In this paper, we use a new statistical approach for technical
and clinical validation of QIBs derived from head and neck can-
cer FDG PET scans to investigate the impact of tumor segmenta-
tion variability across multiple institutions on the estimation of
study power to design clinical trials (20). The approach uses a
hierarchical Bayesian model to estimate systematic and random
QIB measurement errors and simultaneously estimate the effects
of these errors on study power to predict clinical outcomes.
Specifically, our study is focused on 22 radiomic QIBs that were
previously investigated regarding their ability to predict outcome
in the treatment of head and neck cancer (21). The QIBs are
derived from lesion segmentation resulting from an FDG PET/CT
segmentation challenge involving 7 institutional members of the
NCI Quantitative Imaging Network (QIN) (22, 23). All participat-
ing QIN members routinely use different approaches for lesion
segmentation. Thus, the network provides an ideal setting within
which to study the impact of segmentations on radiomic QIBs
across methods and institutions. While our work focuses on
errors because of using different segmentation tools, the used
statistical methods are broadly applicable to other settings in
which scanner, operator, or other image source differences con-
tribute to QIB measurement errors.

Application to FDG PET imaging is of substantial interest for
QIB development, because it is an established imaging approach

for the quantification of cancer tumor burden (24–26). QIB
extraction from FDG PET images involves several steps, includ-
ing image acquisition and reconstruction. In addition, for many
QIBs, segmentation of all tumors is required for calculating QIB
values. Tumors may be segmented in a number of ways.
Standard clinical practice is manual segmentation by trained
experts (eg, radiation oncologists). Alternatively, a number of
segmentation tools have been developed to help decrease human
effort and increase segmentation consistency. These tools range
from being semiautomated to fully automated (27). Although
QIBs derived from tumor segmentations can be profoundly
impacted by variation and bias in segmentation methods, exist-
ing studies provide little insight into the impacts of different
methods on derived QIBs. In this work, we study this relevant
issue.

Errors in PET-derived QIBs have been studied previously,
primarily in terms of repeatability and reproducibility. Traverso
et al. (28) performed a systematic review of 41 full-text articles
to assess consensus regarding the robustness of commonly uti-
lized radiomics QIBs for PET, CT, and MRI. The authors encoun-
tered error metric reporting of intraclass correlation coefficient
(ICC) in 14 studies, correlation coefficient in 12, and various
other descriptive statistics in 9. Bailly et al. (29) assessed variabil-
ity of QIBs in relation to their dependence on different PET/CT
reconstruction methods with coefficient of variation and percent
deviation. Dice coefficient, ICC, and confidence interval half
widths were used by Altazi et al. (30) to evaluate PET CT radiomic
features in patients with cervical cancer. Kalpathy-Cramer et al.
(31) report concordance correlation coefficients for the assess-
ment of radiomic features from lung nodules in a multi-institu-
tional study. Lu et al. (32) summarized reliability of radiomic
features across image acquisition settings with R2. Although the
aforementioned studies use univariate or ANOVA-based statistics
to estimate error, there are very few examples of simultaneous
estimation of systematic and random errors. Beichel et al. (33)
did use linear mixed effects regression to compare quality and
variability of tumor volume measurements from the same QIN
PET segmentation challenge analyzed herein. However, the
Bayesian approach used in this study more generally analyzes
the impact of all segmentation approaches simultaneously, pro-
vides estimates of study power, and includes 22 radiomic features
and, therefore, illustrates a new statistical approach for QIB vali-
dation and qualification.

Our Bayesian statistical approach and QIN challenge appli-
cation are described in the following section. Thereafter, analysis
results are given to offer comparisons of measurements from
challenge participants. Finally, a discussion is provided of the
results and their implications for the current and future state of
radiomic biomarker assessment and development.

METHODOLOGY
Quantitative Imaging Biomarkers
QIBs were derived from FDG PET/CT scans of patients with head
and neck squamous cell carcinoma acquired at The University of
Iowa Hospitals and Clinics (UIHC). Scans were collected, curated,
and uploaded to TCIA (34) [collection: QIN-HEADNECK (35)] as
part of the NCI QIN (22). A QIN segmentation challenge was
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conducted in which a subset of 10 diverse pretreatment scans
containing 47 lesions were segmented manually by 3 experi-
enced radiation oncologists at the UIHC and by the following
QIN sites: Columbia University Medical Center, H. Lee Moffitt
Cancer Center and University of South Florida, Memorial Sloan
Kettering Cancer Center, Simon Fraser University (Canada),
University of Pittsburgh, The University of Iowa, and The
University of Washington Medical Center. Sites were allowed to
use segmentation tools of their choosing. Tools included both

commercially available software and academic, in-house-devel-
oped segmentation algorithms. Deidentified summaries of the
methods are given in Table 1. Further details of the challenge
scanner acquisition and segmentation methods as well as evalua-
tions of segmentation performance are given by Beichel et al.
(33).

Forty-seven head and neck tumors in the 10 PET/CT scans
were segmented using 7 different methods by the challenge par-
ticipants. Each scan was segmented twice with a time interval

Table 1. Methods Used to Segment Tumors and Derive Quantitative Imaging Biomarkers in the QIN Segmentation
Challenge

Method Description Operator(s)

Manual Manual Segmentation 3 Radiation Oncologists

1 In-house software based on active contour segmentation PhD research scientist

2 In-house software using a graph-based optimized segmentation Radiation oncologist

3 Commercial software package Mirada Medical RTx Imaging physicist

4 Combination of commercial software packages VCAR and PMOD Medical physics postdoc

5 Commercial software package MIM Imaging physicist

6 Commercial software package PMOD Image analyst

7 In-house software based on 3D level-set segmentation Medical image analysis graduate student

Table 2. Descriptions of the Quantitative Imaging Biomarkers Compared in the QIN Segmentation Challenge E

QIB Description (Unit) Type

Max Maximum value in region of interest (SUV) C

Peak Maximum average gray value that is calculated from a 1 cm3 sphere placed within the region of interest (45) (SUV) C

Mean Mean value in region of interest (SUV) C

MTV Volume of region of interest (mL) C

TLG Total lesion glycolysis (mL) C

Min Minimum value in region of interest (SUV) I

Standard Standard deviation in region of interest (SUV) I

RMS Root mean square value in region of interest (SUV) I

First Quartile 25th percentile value in region of interest (SUV) I

Median 50th percentile value in region of interest (SUV) I

Third Quartile 75th percentile value in region of interest (SUV) I

Upper Adjacent First value in region of interest not greater than 1.5 times the interquartile range (SUV) I

Q1 Distribution Percent of gray values that fall within the first quarter of the grayscale range within the region of interest (%) I

Q2 Distribution Percent of gray values that fall within the second quarter (%) I

Q3 Distribution Percent of gray values that fall within the third quarter (%) I

Q4 Distribution Percent of gray values that fall within the fourth quarter (%) I

Glycolysis Q1 Lesion glycolysis calculated from the first quarter of the grayscale range within the region of interest (mL) I

Glycolysis Q2 Lesion glycolysis calculated from the second quarter (mL) I

Glycolysis Q3 Lesion glycolysis calculated from the third quarter (mL) I

Glycolysis Q4 Lesion glycolysis calculated from the fourth quarter (mL) I

SAM Standardized added metabolic activity (46) (mL) I

RA Rim average; mean of uptake in a 2-voxel-wide rim region around region of interest (SUV) I

Abbreviations: C, common clinical biomarkers; I, biomarkers provided by the 3D Slicer PET-IndiC extension.

Multisite Evaluation of Imaging Biomarkers

TOMOGRAPHY.ORG I VOLUME 6 NUMBER 2 I JUNE 2020 67



between initial and repeat segmentation. A challenge coordinator
at The University of Iowa collected the segmentations and derived
22 QIBs with the 3D Slicer software for medical image informatics,
image processing, and 3-dimensional visualization (36). The QIBs
derived from lesion segmentations are summarized in Table 2 and
include 5 of the most commonly used clinical biomarkers and 17
biomarkers available from the PET-IndiC extension (37) for the 3D
Slicer, which were assessed in the context of outcome prediction
by Beichel et al. (21). The PET-IndiC QIBs are generally designed to
characterize standardized uptake value (SUV) patterns within seg-
mented lesions by using descriptive statistics.

Statistical analysis focused on the quantification of random
and systematic differences in QIB measurements across segmen-
tation methods. For each method, descriptive means and stand-
ard deviations were computed on the population of segmented
images. Agreement between and variability within the methods
were estimated with a Bayesian regression modeling approach
(20). This approach was taken to ensure that statistical inferences
accounted for the study design, which included biomarkers
derived from 8 different segmentation methods applied to a com-
mon set of 47 lesions, manual segmentation performed by 3 dif-
ferent operators, semiautomated segmentations performed by 1
operator each, 2 segmentations performed per operator and
lesion. In brief, the statistical modeling of biomarker measure-
ment bi;j;k for lesion i, operator j, and segmentation k is com-
posed of the following series of mean and variance components:

bi;j;k �N mi;j;s
2
e
0

� �

mi;j �N mi;s
2
e
0 0

� �

mi �Nðm;s2
i Þ:

Biomarker measurements from multiple readers and/or
multiple segmentations of the same lesion are averaged to-
gether as mi. Within-lesion variance is s2

e ¼ s 2
e 0 þ s 2

e 0 0 for the
multiple readers and segmentations of manual segmentation
and is s2

e ¼ s2
e 0 for the single reader and multiple segmenta-

tions of other methods. Between-lesion variance is s2
i . The

modeled means and variances are allowed to vary by segmen-
tation method, denoted later with a subscript m. Thus, the
application of the Bayesian model to the data provided esti-
mates of mean differences between methods and differences
between and within-lesion variability. Systematic mean dif-
ferences were assessed relative to manual segmentation, the
current standard for image segmentation of head and neck
cancer. Systematic differences were estimated as the relative
biases in population mean QIB measurements from semiauto-
mated methods compared with manual segmentation:

RelativeBiasm ¼ mm �m0

m0
;

Figure 1. Boxplots showing the distribution of quantitative imaging biomarkers’ (QIB) means calculated for each of the
8 segmentation methods for 47 lesions.

Multisite Evaluation of Imaging Biomarkers

68 TOMOGRAPHY.ORG I VOLUME 6 NUMBER 2 I JUNE 2020



where mm is the biomarker mean for method m such that m ¼ 0
is manual segmentation. Agreement was estimated with the con-
cordance index (C-index) (38, 39). The C-index is a nonparamet-
ric, rank-based performance metric that can be interpreted as the
probability a randomly selected pair of lesions will have QIB
measurements with the same ordering on both segmentation
methods being compared. Values of 1 and 0.5 represent perfect
and chance concordance, respectively. Relative between-lesion
variability was estimated with ICC and coefficient of total varia-
tion (wCV), respectively. ICC is defined as the variance in bio-
marker values between lesions relative to the total variance and
is calculated as follows:

ICCm ¼ s2
im

s2
im

þ s2
em

;

where s 2
im

and s 2
em

are between- and within-lesion variances for
method m. Within-lesion variance is also known as repeat error
and is the variability observed from repeated measurements on
the same lesion. ICC values close to 1 indicate small repeat error
relative to the total error. wCV is defined as total variability rela-
tive to the population mean and has the following form:

wCVm ¼ s2
im

þ s 2
em

mm
:

Simulation studies were conducted to assess the impact of
segmentation methods on estimating associations between QIBs

and clinical outcomes, as described by Smith and Beichel (20).
The general approach taken in the simulations is to define true
relationships between manually segmented QIBs and a binary
outcome and then to assess the degree to which QIBs from other
segmentation methods can recover the true relationship.
Specifically, probability pð Þ of a hypothetical binary outcome
was defined in terms of a logistic relationship with manually seg-
mented QIBs, such that,

log
pi

1� p i

� �
¼ b 0 þ b 1xi;

where xi is a QIB for lesion i. The b regression coefficients were
chosen for the simulation study to reflect 50% prevalence of the
outcome and an odds ratio (OR) of 2 for a 1 standard deviation
increase in the manually segmented QIBs. Samples of 100 and
500 randomly selected lesions with their associated QIBs xið Þ
were generated, outcome probabilities p ið Þ calculated, and dis-
ease outcomes yið Þ simulated according the following Bernoulli
probability distribution:

yi �Bernoulli p ið Þ:

Then, logistic regression models were fit using the QIBs
measured with other (semiautomated) methods to estimate statis-
tical power to recover the true odds ratio (OR) of 2, a result useful
for the determination of sample size in designing clinical trials.
Also estimated from the simulations were method-specific biases

Figure 2. Boxplots showing the distribution of the QIB standard deviations calculated for each of the 8 segmentation
methods for 47 lesions.
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Bias ORmð Þ ¼ ORm � ORð Þ, variances Var ORmð Þð Þ, and root

mean square error RMSEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias ORmð Þ2 þ Var ORmð Þ

q� �
as

a combination of estimation accuracy and precision. Lower bias,
variance, and error indicate better estimation of the true OR
value.

RESULTS
For descriptive comparisons, QIB means and standard deviations
were computed over the measurements obtained from each seg-
mentation method applied to the population of head and neck
tumors included in the QIN challenge. The distributions of these
method-specific population statistics are summarized with box-
plots in Figures 1 and 2. In the plots, QIB values are displayed on
the log scale to depict distributional variability relative to their
different measurement scales. Distributions of the population
means show how similar the methods are on average with respect
to their QIB measurements. Accordingly, method means are most
similar for the Max, Peak, and Mean clinical QIBs and similarly
for the root mean square (RMS), First Quartile, Median, Third
Quartile, and Upper Adjacent PET-IndiC QIBs. Similarities among
the methods in the overall variability of their QIB measurements
can be gauged by the distribution plots of population standard
deviations. As with the population means, methods are most sim-
ilar for the Max and Peak clinical QIBs. Otherwise, more dissimi-
larities are observed among the other clinical and PET-IndiC
QIBs. Also noteworthy are the mean and standard deviation

dissimilarities apparent in MTV measurements, indicating sensi-
tivity of volumetric measurements to segmentation method.
Method-specific estimates of the QIB means and standard devia-
tions can be found in Supplemental Table 1.

Distributions of between- and within-method variability are
summarized in Figures 3 and 4 with ICC and wCV, respectively.
The ICC plots show the agreement of semiautomated segmenta-
tion methods with manual segmentation. Consistent with the
population plots, there is near-perfect (ICC = 1) agreement among
all methods for Max and Peak. High degrees of agreement are
seen for Mean, Standard, RMS, First Quartile, Median, Third
Quartile, and Upper Adjacent. Q1–Q4 Distributions exhibit very
poor agreement; whereas the remaining QIBs have fairly good
agreement. Within-method variability as measured by wCV tends
to be low for many of the QIBs that have high agreement.
Notable exceptions are MTV and total lesion glycolysis and sev-
eral of the PET-IndiC QIBs that have moderate ICC but high wCV.
Method-specific estimates of QIB variability as well as agreement
are given in Supplemental Table 2.

Results of simulation studies are summarized in Figures 5
and 6 for N=100 hypothetical binary clinical outcomes. As
described in the methods, outcomes were repeatedly simulated
based on OR ¼ 2 for QIBs from manual segmentation. Bias, vari-
ability, and power were then calculated for ORs estimated with
QIBs derived from the other semiautomated segmentation meth-
ods. As such manual segmentation defines the true relationship
between QIBs and clinical outcomes, and the results quantify the
quality of estimates that can be obtained with the other methods.

Figure 3. Boxplots showing the distribution of intraclass correlation coefficients (ICCs) across segmentation methods.
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Taking into account both estimation bias and variability, RMSE
values plotted in Figure 5, and tabulated in Supplemental Table
3, show relatively low error for Upper Adjacent, RMS, Third
Quartile, Mean, Glycolysis Q4, Max, and Peak. Statistical power
to detect effects of the QIBs, at the 5% level of significance, is
summarized in the heatmap of Figure 6. The QIBs and methods in
the heatmap are ordered according to similarity measures from
hierarchical clustering of their powers. Dendrogram clustering of
the 2 are displayed to the top and right of the heatmap. Power is
generally inversely related to RMSE. Overall, the effects of clinical
QIBs, compared to those of PET-IndiC QIBs, were less affected by
the segmentation method. With respect to methods, QIB measure-
ments from segmentation method 2 are most similar to those from
manual segmentation. After that, the grouping of methods 3 and 7
are most similar to those of method 2. Method 4 produced the out-
lying values depicted as individual dots on the boxplots discussed
previously and has the lowest power. Accordingly, a clinical trial
planning to use segmentation method 4 would require a larger
sample size for most of the QIBs. Likewise, within a method, the
study power would vary depending on the biomarker for which a
trial is being designed.

Based on the previously discussed measures of agreement,
variability, and power, hierarchical clustering was used to iden-
tify QIB groupings for which the impact of segmentation was ei-
ther low, moderate, high, or extreme. Table 3 presents the
clustering results and summarizes performance measures aggre-
gated over the 7 semiautomated segmentation methods.

Coefficients of variation computed from the segmentation-spe-
cific population means were 7.8%, 7.3%, 53.8%, and 27.7% in
the low, moderate, high, and extremely impacted biomarker
groups, respectively. Agreements to manual segmentation as
measured by absolute relative biases were 6.7%, 13.2%, 52.0%,
and 51.1%. The extreme group stood apart from the other as hav-
ing comparatively poor ICC of 0.603 and power of 26.9%.
Average ICC for the low through highly impacted groups was
markedly better at 0.993, 0.966, and 0.892, and powers were
85.1%, 78.1%, and 67.7%.

DISCUSSION
Segmentation Impact onQIBs
In this work, a unified Bayesian modeling approach was applied
to estimate QIB measurement errors and their effects on statisti-
cal power. It enables quantification and comparison of the effects
of different tumor segmentation methods on the panel of 22
QIBs. Clinical QIBs have long been used in clinical research and
practice to characterize disease and to assess disease progression.
A widely used example is the RECIST criteria for defining tumor
response in clinical trials in terms of change in imaged tumor
size (40, 41). Improvements in and increasing access to medical
imaging have fueled interest in other, more advanced QIBs indi-
cated in the panel of PET-IndiC QIBs. Unfortunately, QIB meas-
urements are subject to errors from multiple sources, including
scanner makes and models, settings, reconstruction algorithms,

Figure 4. Boxplots showing the distribution of QIB within-method coefficients (wCVs) of variability across segmentation
methods.
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segmentation methods, and biologic variability. Our approach
enables illustration of the effects of segmentation methods on
random and systematic differences as well as statistical power.

Segmentation of tumors defines volumes of interest within
which voxel intensities are used to calculate various QIBs that
quantify different properties of tumors. Typically, manual and
semiautomated tumor segmentation approaches—as used within
this work—are subject to various degrees and types of variation
in generated VOIs. An example for tumor segmentation differen-
ces between QIN sites is depicted in Figure 7. Intuition would
suggest that segmentation methods have less of an effect on QIBs
whose calculations are less dependent on accurate VOI defini-
tion. Indeed, several new segmentation methods have been moti-
vated by the insensitivity of biomarkers extracted from them. For
instance, Echegaray et al. (42, 43) propose “core samples” and
“digital biopsy” segmentation methods for which several inten-
sity and texture features were shown to be consistent with a ref-
erence standard. In our comparison of multiple segmentation
methods, QIB quantile measures (Max, Peak, First Quartile,
Median, Third Quartile, and Upper Adjacent) extracted primarily
from interior voxel intensities have particularly high agreement
of the population means and relatively high agreement of the
population standard deviations, high ICC, low wCV, low RMSE,
and high power. The measurements of mean-based QIBs (Mean,
Standard, RMS, and rim average [RA]) also exhibit relatively
high degrees of reliability. However, such relatively simple QIBs

might not be able to capture desirable characteristics of tumors,
such as texture. The remaining QIBs, which more broadly utilize
the VOI for QIB calculation, are more affected by the segmenta-
tion method, but might provide relevant information. Thus, it is
imperative to study the impact of tumor segmentation variability
on subsequent predictive modeling. For example, to discover a
relationship between QIB and outcome, more samples might
be needed for a segmentation method that is more prone to
segmentation variability than a method that is less prone to
variability.

Consequently, our technical performance assessments were
designed to assess impact on QIB measurements, because ulti-
mate interest is often on QIB performance in the prediction of
clinical outcomes, also known as clinical performance. To
address clinical performance, our Bayesian approach provides
simulation study results to characterize the effect of segmenta-
tion on the ability to recover associations between QIBs and a hy-
pothetical clinical outcome. Many of the quantile measures that
had good technical performance also had good clinical perform-
ance, that is, low RMSE and high power. A few exceptions were
the lower power of Median, First Quartile, and RA. In addition,
the low statistical power and high variation across segmentation
methods for MTV are noteworthy because many studies propose
to utilize MTV for outcome prediction.

Typically, segmentation methods are evaluated regarding
only their segmentation performance. Our statistical analysis

Figure 5. Boxplots of QIB root mean square error (RMSE) comparing method-specific odds ratios (ORs) estimated from
hypothetical binary clinical outcomes simulated fromQIB relationships defined by manual segmentations. RMSE is calcu-
lated as the square root of the estimated odds ratio bias squared plus its variance.

Multisite Evaluation of Imaging Biomarkers

72 TOMOGRAPHY.ORG I VOLUME 6 NUMBER 2 I JUNE 2020



approach enables the selection of methods regarding their suit-
ability for specific QIBs. Method 4 stands out as having notice-
ably lower power than the other methods. In general, power
varies differentially across QIBs and methods, thus helping
explain why a QIB may be identified as statistically significant in
one research setting but not in another when different segmenta-
tion methods are used.

Implications
The illustrated statistical approach can aid QIB development by
providing estimates of technical and clinical performance for
biomarker validation and of statistical power for clinical trial
design. The application considered involves development of QIBs
derived from different semiautomated segmentation methods.
Such computer-aided analysis of medical images has the poten-
tial to advance the development of QIBs by decreasing the time
needed to extract them and by increasing the consistency of their
measurements. Image analysis methods are advancing rapidly
with several semiautomated tools currently available for the seg-
mentation and quantification of FDG PET images. Given the
range and freedom of choices that exist, understanding the
effects of different tools on the technical and clinical perform-
ance of QIBs derived from them is essential. To that end, the tech-
nical and clinical performance analysis results provided by the

present study represent a baseline and provide a starting point
for future improvements in imaging biomarker quantification.
Furthermore, our analysis explores performance within a mul-
tisite (QIN challenge) setting in which different segmentation
tools are used. Results show degrees of systematic and random
differences between sites that highlight the need for improved
consistency of segmentation tool algorithms and their applica-
tion. Multiple courses of action should be considered to
improve consistency. Tool application guidelines and training
are important at the user level. In addition, tool consistency
could be improved with application-specific method develop-
ment and benchmarking against publicly available and clini-
cally relevant data sets.

Improved consistency of computer-aided tools will increase
the utility of QIBs for disease characterization and response
assessment. This is particularly relevant for multicenter clinical
trials and the field of radiomics in general where images may
be processed quantitatively by different operators and at
different institutions. Future adoption of standards for tool de-
velopment and statistical assessment as well as reduced
requirements for user operability would benefit image analysis
in such decentralized applications. The current state, however,
is quite heterogeneous with respect to technologies, operators,
and assessments.

Figure 6. Heatmap summary of
method-specific powers to detect
OR associations between hypothet-
ical binary clinical outcomes simu-
lated from relationships defined by
manual segmentation. QIBs and
methods are ordered according to
the similarity of their powers as
measured by hierarchical
clustering.
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Limitations
The QIN challenge data analyzed in this study has some notable
limitations. First, its scope is limited only to the effect of segmen-
tation method on QIB measurements. Other factors such as scan-
ner type, settings, and reconstruction algorithm will also affect
the measurements. All images were obtained at the same institu-
tion so as to reduce the effects of image acquisition differences
on results obtained in the QIN challenge. Second, the challenge
results may not generalize to non-head and neck cancers, as sta-
bility of biomarker measurements has been observed to differ
across cancer types (44). These 2 limitations are characteristic of
the data source and not the statistical approach, which can be
applied to estimate measurement error and predictive perform-
ance in other settings in which additional sources of measure-
ment error are present. Third, there is no absolute ground truth
segmentation for head and neck tumors. Instead, manual

segmentation was used as a surrogate ground truth, or reference
standard, for the calculation of agreement (C-index) and for the
simulation studies to estimate RMSE and statistical power. To
mitigate variability in this reference standard, manual segmenta-
tions were performed by 3 expert radiation oncologists at 2 sepa-
rate time points and combined to derive reference QIB
measurements for each tumor. Fourth, a synthetic simulation
study was conducted to assess clinical performance rather than
using actual clinical outcomes from patients. The advantage of
this approach is that the true relationship between QIBs and
simulated outcomes is known and can thus be used to estimate
RMSE and power. Moreover, simulation is a valid and commonly
used approach for the design of clinical trials. The disadvantage
is that the statistical model used in the simulation may not fully
reflect the complexities of true relationships between QIBs and
clinical outcomes.

Table 3. Summary of Performance Metrics for QIBs Grouped by Segmentation Impact E

QIB by
Segmentation Impact

Population
Mean CV

Average Absolute
Relative Bias

Average
wCV

Average
ICC

Average
Power

Low

Max 0.060 0.039 0.033 0.996 0.866

Peak 0.068 0.048 0.019 0.997 0.864

Standard 0.146 0.139 0.096 0.988 0.822

Upper Adjacent 0.039 0.041 0.042 0.993 0.854

Group Mean (SD) 0.078 (0.047) 0.067 (0.049) 0.048 (0.033) 0.993 (0.004) 0.851 (0.020)

Moderate

Mean 0.063 0.143 0.061 0.975 0.829

RMS 0.058 0.126 0.057 0.980 0.839

First Quartile 0.085 0.176 0.078 0.947 0.727

Median 0.070 0.144 0.067 0.967 0.788

Third Quartile 0.049 0.098 0.054 0.984 0.841

RA 0.111 0.106 0.072 0.940 0.660

Group Mean (SD) 0.073 (0.022) 0.132 (0.029) 0.065 (0.009) 0.966 (0.018) 0.781 (0.074)

High

MTV 0.559 0.370 0.367 0.910 0.703

TLG 1.054 1.542 0.528 0.861 0.623

Glycolysis Q1 0.380 0.333 0.414 0.891 0.677

Glycolysis Q2 0.269 0.248 0.371 0.910 0.726

Glycolysis Q3 0.284 0.254 0.341 0.920 0.747

Glycolysis Q4 0.479 0.392 0.454 0.915 0.700

SAM 0.559 0.370 0.367 0.910 0.703

Group Mean (SD) 0.538 (0.281) 0.52 (0.459) 0.409 (0.064) 0.892 (0.031) 0.677 (0.063)

Extreme

Min 0.232 0.672 0.108 0.894 0.434

Q1 Distribution 0.459 1.191 0.268 0.521 0.237

Q2 Distribution 0.176 0.148 0.149 0.389 0.113

Q3 Distribution 0.318 0.339 0.180 0.556 0.198

Q4 Distribution 0.198 0.203 0.253 0.655 0.362

Group Mean (SD) 0.277 (0.115) 0.511 (0.431) 0.192 (0.068) 0.603 (0.188) 0.269 (0.129)

Abbreviations: CV, coefficient of variation; wCV, within coefficient of variation; ICC, intraclass correlation coefficient.

Multisite Evaluation of Imaging Biomarkers

74 TOMOGRAPHY.ORG I VOLUME 6 NUMBER 2 I JUNE 2020



CONCLUSIONS
QIBs are becoming increasingly important in the characteriza-
tion, treatment, and prognostication of disease. Clinical markers
such as maximum SUV and tumor volume have a long history of
use. The simplicity of their calculations lend themselves well to
widespread adoption. However, that simplicity may limit their
utility as prognostic indicators. Thus, there is interest in more
advanced markers that utilize texture, shape, and intensity infor-
mation from imaged tumors. Such features can be more prone to
measurement errors owing to differences in segmentation meth-
ods or other image acquisition or processing steps. The used sta-
tistical approach can help quantify QIB measurement error in
real-world (eg, multi-institutional) settings for which they are
being developed. Results from the approach could be used to
prioritize QIBs that are less sensitive to measurement error, to
identify standardizations needed in the process by which QIBs
are derived, or to determine statistical power for clinical trial
design. For example, our finding that PET-IndiC features
Standard, RMS, First/Third Quartile, Upper Adjacent, and RA

have technical performance similar to maximum SUV and tu-
mor volume suggest that these more advance markers can be
measured as reliably and precisely as standard clinical makers.
Over all of the markers analyzed, we observed a wide range of
performances and thus conclude that errors due to segmenta-
tion methods need to be reduced. Therefore, we recommend
establishment of reference imaging data set collections and
reference segmentations against which segmentation methods
can be benchmarked and tuned to ensure harmonization of
QIBs. The presented findings summarize the current state of
QIB variability and systematic differences owing to segmenta-
tion methods used by NCI QIN members. Moreover, the statis-
tical analysis of technical and clinical QIB performance offers
an approach that could be used in the future to develop QIBs
in other disease and imaging settings.

Supplemental Materials
Supplemental Tables 1–3: https://doi.org/10.18383/j.tom.
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