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Pulmonary hypertension (PH) is a clinical condition characterized by progressive

elevations in mean pulmonary artery pressures and right ventricular dysfunction,

associated with significant morbidity and mortality. For resting PH to develop, ∼50–70%

of the pulmonary vasculature must be affected, suggesting that even mild hemodynamic

abnormalities are representative of advanced pulmonary vascular disease. The definitive

diagnosis of PH is based upon hemodynamics measured by right heart catheterization;

however this is an invasive and resource intense study. Early identification of pulmonary

vascular disease offers the opportunity to improve outcomes by instituting therapies

that slow, reverse, or potentially prevent this devastating disease. Multimodality imaging,

including non-invasive modalities such as echocardiography, computed tomography,

ventilation perfusion scans, and cardiac magnetic resonance imaging, has emerged

as an integral tool for screening, classifying, prognosticating, and monitoring response

to therapy in PH. Additionally, novel imaging modalities such as echocardiographic

strain imaging, 3D echocardiography, dual energy CT, FDG-PET, and 4D flow MRI are

actively being investigated to assess the severity of right ventricular dysfunction in PH.

In this review, we will describe the utility and clinical application of multimodality imaging

techniques across PH subtypes as it pertains to screening and monitoring of PH.

Keywords: pulmonary hypertension, echocardiography, computed tomography, scintigraphy, magnetic resonance

imaging

KEY POINTS

• Pulmonary hypertension is a devastating disease and early detection improves morbidity
and mortality.

• Echocardiography, computed tomography, nuclear imaging, and magnetic resonance imaging
are non-invasive imaging studies for screening, classification, prognostication, and monitoring
of pulmonary hypertension.

• New non-invasive imaging techniques such as strain imaging, 3D echocardiography, dual energy
CT, and 4D flowMRI are emerging techniques that can assist in the diagnosis and monitoring of
pulmonary hypertension.
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INTRODUCTION

Pulmonary hypertension (PH) is an insidious, highly morbid,
and heterogeneous disease that is characterized by elevations
in pulmonary arterial pressures and is classified into five
groups based on etiology (1–3). Early diagnosis and referral
are associated with better clinical outcomes, however the time
from symptom onset to diagnosis is often greater than 2
years (4–6). PH is exclusively diagnosed using confirmatory
invasive right heart catheterization (RHC) to measure mean
pulmonary artery pressure (mPAP), pulmonary capillary wedge
pressure (PCWP), and pulmonary vascular resistance (PVR)
(7). Currently, PH is defined by a mPAP >20 mmHg, a
threshold which was recently decreased from ≥25 mmHg based
on epidemiologic data demonstrating the distribution of mPAP
among healthy individuals and the significant impact of mildly
elevated pulmonary pressures on morbidity and mortality (8).

While RHC is the only method to directly measure pulmonary
and right heart pressures, it is invasive, resource intensive, and
carries procedural risk (9). As a result, in 2015, the European
Society of Cardiology/European Respiratory Society guidelines
recommended the use of a variety of non-invasive imaging
modalities to screen and risk stratify patients (10). The standard
of care for screening and classifying PH includes transthoracic
echocardiogram (TTE), chest computed tomography (CT),
ventilation perfusion (VQ) scan, RHC, and increasingly cardiac
magnetic resonance imaging (CMR). Multimodality imaging is
useful for screening, classifying, prognosticating, and monitoring
effectiveness of therapy in PH. This review seeks to describe the
current imaging modalities used in diagnosing and monitoring
the various forms of PH along with several novel imaging
modalities that may soon be incorporated into clinical practice.

METHODOLOGY

We conducted a search utilizing Medline/PubMed from
November 1989 to June 2021 to identify relevant articles.
Search terms included: pulmonary hypertension AND
echocardiography OR magnetic resonance OR computed
tomography OR nuclear OR cardiovascular imaging. Identified
articles were then evaluated, including screening of references.
Review articles, meta-analyses, and major medical society
guideline documents were also assessed. Finally, selected articles
were included if felt to be relevant in the authors’ opinion.
Data from these articles were abstracted and guided this
narrative review.

RESULTS

We identified 46 articles on echocardiography, 19 on
computerized tomography, 7 on nuclear medicine techniques
including scintigraphy, and 45 on magnetic resonance imaging
in PH.

Echocardiography
TTE is the most common imaging modality used to screen for
PH and is the mainstay for screening, monitoring of therapeutic

response, and prognostication (11). As most deaths from PH
are from right heart failure, recognizing the presence, and
quantifying the degree of right heart dysfunction, is helpful in
monitoring disease progression and prognostication. In addition
to conventional two-dimensional (2D) TTE, speckle-tracking
strain imaging and three-dimensional (3D) echocardiography are
more specialized techniques that are increasingly becoming part
of the standard of care in monitoring right heart structure and
function. Representative echocardiographic images are shown in
Figure 1.

Screening for Pulmonary Hypertension
Screening for PH using conventional TTE primarily relies upon
assessment of the right ventricular systolic pressure (RVSP),
which ismeasured from the tricuspid regurgitant (TR) jet velocity
and size/collapsibility of the inferior vena cava (IVC) to estimate
right atrial pressure (RAP) (12). Using the modified Bernoulli
equation, RVSP= 4V2 + RAP with V equaling the maximum TR
jet velocity (13). For RVSP measurements > 40 mmHg, a right
heart catherization is recommended (14). However, RVSP has
been shown in numerous studies across various PH subgroups to
poorly correlate with systolic pulmonary artery pressure (sPAP)
measured by RHC. These studies have routinely shown that RVSP
is ± 10 mmHg different to the true sPAP in approximately
50% of cases (15–18). Additionally, the ability to capture and
quantify the TR jet velocity can be technically challenging and
is estimated to be feasible in only 75% of cases (19). RVSP can be
combined with other non-invasive measures to evaluate the need
for a RHC in suspected PH (20). Additional RV hemodynamics
can also be obtained including PA end-diastolic pressure using
end-diastolic pulmonic regurgitation peak velocity, mean PA
pressure, and pulmonary vascular resistance. Lastly, early closure
of the pulmonic valve due to rapid pressure equilibration of the
RV and PA in midsystole can be detected using both M-mode or
pulse waved Doppler signal, known as the “flying W” sign (21).

Assessment of the Right Heart
The American Society of Echocardiography has standardized
measurements of right-sided cardiac structure and function
(13). Measurements include the right atrial and ventricular
area, fractional area change (FAC) as a surrogate of right
ventricular ejection fraction (RVEF), tricuspid annular plane
systolic excursion (TAPSE), RVSP, and the presence of a
pericardial effusion. A right atrial area measured at the end
of systole >18 cm2 has been independently associated with
elevated right ventricular (RV) end-diastolic pressure (RVEDP)
and mean RAP with a sensitivity of 89% and specificity of 82%
(13, 22). The RV diameter at the base is considered enlarged
when it is>42mm.However, this measure only weakly correlates
with the gold standard RV volume assessment via CMR (23,
24). Measurements based off estimations of the 2D RV area
or volume, such as FAC or RVEF, are similarly flawed when
compared to CMR techniques (25, 26) due to the complex shape
of the right ventricle (27). Eccentricity index, or interventricular
septal morphology, is a useful echocardiographic tool and
assesses the interventricular dependency of the RV:LV from the
parasternal short-axis view and is an important component of the
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FIGURE 1 | Echocardiographic images are shown in a scleroderma patient with severe pulmonary hypertension on stable therapies. (A) Apical 4 chamber view

demonstrates severe right atrial enlargement with bowing of the interatrial septum from right to left suggestive of elevated right atrial pressures. The right ventricle is

severely dilated and hypertrophied with a prominent moderator band. The left ventricle is hypertrophied and small. (B) Parasternal short-axis is shown in the same

patient with marked RV enlargement and evidence of RV pressure overload distorting the normal circular short-axis geometry of the LV. There is a small posterior

pericardial effusion present. (C) Tricuspid annular plane systolic excursion (TAPSE) utilizes M-mode techniques to measure the longitudinal motion of the basal right

ventricular wall segment during systole as an estimate of right ventricular systolic function. TAPSE is mildly reduced at 1.5 cm (normal >1.6 cm) however fractional

area change was 24% (moderate-severely reduced). (D) Right Ventricular Longitudinal Systolic Strain (RVLSS) is a recent echocardiographic advancement based on

ultrasound-myocardial tissue interactions. Each segment of the RV in this example corresponds with a strain curve with the white dotted line representing an average

of the segmental strain for the regional curves in this view. Regional RV free wall strain is reduced in the basal and midventricular wall segments with less reduction in

the apical segment. Global strain is an average of the three RV free wall segments and is −14.3%. (E) Right Ventricular Systolic Pressure utilizes the peak tricuspid

velocity to calculate the peak right ventricular systolic pressure using the modified Bernoulli equation. RVSP= [peak gradient (mmHg) = right atrial pressure + (4 ×

Peak velocity 2)]. In this example, RVSP = 57 mmHg + 15 mmHg = 72 mmHg. (F) Right atrial pressures are estimated from the IVC diameter made in subcostal view

at end-expiration. In this example, the IVC is severely dilated at 3.2 cm with minimal respiratory variation suggestive of markedly elevated right atrial pressure of

15 mmHg.

ESC/ERS recommendations for PH screening (11). The presence
of RV hypertrophy may also be seen in chronic pressure/volume
overload states.

Due to the inaccuracy of RV area and volume assessments
using 2D echocardiographic techniques, other measurements are
used to estimate RV function. Tricuspid annular plane systolic
excursion (TAPSE) measures the movement of the tricuspid
annulus toward the apex between diastole and systole in M-
mode. A measurement ≤1.7 cm is considered abnormal (28).
TAPSE has been shown to closely correlate with RVEF on
CMR and RHC (29). However, TAPSE measurements should be
interpreted with caution in patients with severe TR as they have
been shown to be less accurate in that setting (30). The Tei index,
or myocardial performance index (MPI) of the RV, is measured
using either color or tissue Doppler imaging and is a ratio of
isovolumic time, both in contraction and relaxation, to ejection
time (31, 32). Systolic wave velocity (S′) is another measure of

myocardial contraction measured from tissue Doppler imaging
and has been validated in an epidemiologic study of healthy
individuals to define normal values (33). Abnormal tissue
Doppler S′ velocity is defined as <9.5 cm/s.

Prognostication
As right heart failure is the primary cause of death among
individuals with PH, assessment of abnormalities in the
right ventricle by echocardiogram offers significant prognostic
information. RA area and estimation of right atrial pressure have
been demonstrated to be associated with mortality secondary
to right heart failure (34). RVSP has been found to be an
independent predictor of mortality in PH (35, 36) and while
neither sensitive nor specific, the presence of a pericardial
effusion has been shown to predict mortality in PH patients
(34, 37, 38).
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Recently, the REVEAL registry has included
echocardiographic assessment of pericardial effusion in
prognostic risk assessment of PAH (REVEAL risk score).
Regarding RV functional assessments in individuals with known
PH, reduced TAPSE has been shown to have a nearly four-fold
increased risk of death (39) with every 1mm decrease in
TAPSE increasing the unadjusted risk of death by 17% (40).
Myocardial performance index is associated with clinical status
and mortality, as well as change in clinical status over time in
response to therapy (31, 41).

Speckle-Tracking Echocardiography (Echo Strain

Imaging)
Strain imaging is being increasingly incorporated into clinical
practice as a measurement of RV systolic function (42). Strain (ε)
is the deformation of cardiac tissue from an applied force with ε=

(Lsystole-Ldiastole)/Ldiastole with L being length (42) and multiplied
by 100 resulting in a percentage ofmyocardial deformation across
the cardiac cycle. A positive number indicates lengthening, and a
negative number indicates shortening. Strain imaging provides a
feasible non-invasive technique to assess cardiac mechanics for
the detection of subclinical ventricular dysfunction.

Using 2D echocardiographic techniques, there are two
methods by which strain can be calculated: tissue Doppler
imaging (TDI) and speckle tracking echocardiography (STE).
TDI-derived strain calculates the rate at which a particular
segment of the myocardium moves toward or away from the
transducer (43). TDI is less commonly used since it is highly
angle dependent and requires high frame rates. In contrast, STE is
angle-independent and performed by measuring the movement,
or deformation, of ultrasound pixels over the cardiac cycle. It is
particularly helpful in the right heart as it tends to preferentially
measure speckles at the endocardial border whose longitudinal
fibers account for 80% of RV contraction. STE-derived strain can
be reported across the RV free wall regions or as an average of
visualized segments known as global longitudinal strain (GLS)
and is expressed as a percentage and a more negative number
signifies a more shortening of the myocardial segment during
systole. Worsening strain refers to a less negative number (a
lower absolute value) than expected or diminished deformation
along the longitudinal axis. GLS typically represents the basal,
midventricular, and apical RV free segments however it may
also include the basal, midventricular, and apical segments of
the interventricular septum. The latter approach, however, is less
favored due to inability to isolate RV and LV contributions (42).
The most common measurement of strain in the RV is GLS,
however individual longitudinal segmental strain is also being
investigated in PH (44).

Reduced RV function using STE GLS imaging predicts worse
clinical outcomes such as right heart failure and death in PH
across various subgroups (45–47). Additionally, a reduction
in RV free wall strain has also been shown to predict worse
outcomes in PH (48). Reduced strain is one of the earliest signs
of RV dysfunction as patients with less longitudinal deformation
had worse outcomes than matched controls with equivalent right
heart dimensions and TAPSE (49, 50).

For a strain analysis to be done, 2D echo image quality
must also be adequate at a frame rate of at least 70–90
frames per second. Strain imaging requires post processing
using dedicated software and can be performed utilizing CMR-
based techniques as well. Echo-derived strain requires specialized
software and ultrasoundmachines, which may result in increased
cost, however can typically be performed during real-time image
acquisition with minimal increase in patient exam time or
retrospectively on previously acquired images. There is also
a significant learning curve in strain analysis as automated
endocardial border definition must be verified manually by
experienced operators (51). Additionally, there is well-described
vendor-specific variability in strain measures (52) and the cutoff
values for normal and abnormal strain also depend on the
analytic software and modality, i.e., CMR vs. echo-derived
strain, being used. Longitudinal strainmonitoringmust therefore
ensure that patients’ images are analyzed using the same software
across time and should be performed by experienced operators.

Three-Dimensional Echocardiography
3D echocardiography is a state-of-the-art imaging strategy
increasingly being used in clinical practice (53). Estimations
of the RVEF have been found to be more closely correlated
to those measured by CMR (54–57). However, 3D echo
tends to underestimate the true RVEF (58). Despite this, the
accessibility of 3D echo is greater than CMR which makes
this an attractive alternative. In addition, strain imaging has
been combined with 3D echo to accurately predict RVEF
(59). 3D imaging can be performed during both 2D and
transesophageal echocardiography and is recommended in the
assessment of severe TR (60) for grading and determining
suitability for intervention.

Chest Computed Tomography Imaging
Acquiring a non-contrast chest CT scan is part of the standard
workup for the diagnosis of PH (10). The presence of lung
disease on a chest CT along with abnormalities on pulmonary
function tests can indicate PH secondary to lung disease (Group
3 PH). Along with its evaluation of the pulmonary parenchyma,
there are several findings that can screen for PH on CT. These
include the absolute size of the main pulmonary artery and its
relative size compared to the aorta. Chest CT with contrast is
also essential if acute pulmonary embolism is suspected as an
etiology of PH. New CT techniques such as dual energy CT are
also being investigated to measure lung perfusion qualitatively
and quantitatively. A representative image from a patient with
connective tissue disease- associated interstitial lung disease and
mixed PH is shown in Figure 2.

Pulmonary Artery Size
The diameter of the main pulmonary artery (mPA) and its size in
comparison to the ascending aorta correlate to mPAP on RHC.
In the Framingham Heart Study, the 90th percentile for mPA
diameter measured by CT was >29mm in men and >27mm
in women (61). Subsequent work has shown that a mPA >

29mm is correlated with elevated mPAP with a sensitivity and
a specificity of ∼80% and an r of 0.6 (62–66). A ratio of the
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mPA/ascending aorta >1 also correlated with elevated mPAP
with ∼70% specificity and sensitivity. The mPA size can be
enlarged in fibrotic lung disease which can confound its use as
a screen for PH in patients with these disorders. CT has not been
shown to predict PH as accurately as echo or CMR (67, 68) but its
sensitivity and specificity increase when it is combined with these
modalities for screening (69).

Dual Energy CT
Dual energy CT (DECT) is a technique that acquires CT
angiographic (CTA) images of the pulmonary vasculature at two
different energy levels after the administration of intravenous
iodine-based contrast. Due to the different attenuation properties
of iodine contrast at these two different energy levels, the quantity
of iodine inside the pulmonary vasculature, which can serve
as a surrogate for pulmonary perfusion, can be isolated and
measured. As CT scans are commonly used in the work up
of PH, DECT has the capability to be built into the screening
chest CT without extra radiation (70). DECT is primarily used
as a replacement for the V/Q scan in diagnosis of CTEPH,
but has also been investigated as a screening tool for PH and
a tool to assess the degree of PH. DECT has been shown to
have an 80% sensitivity in the diagnosis of CTEPH compared
to VQ scintigraphy (71–74) which is much improved compared
to standard CTAs (75). While this is the most useful and well-
understood utility of DECT, additional assessment of pulmonary
perfused blood volumes (PBV), representing the total amount of
iodine inside the pulmonary vasculature at a certain timepoint,
can be qualitatively and quantitatively used to screen for PH.
Patients with PH have a mosaic attenuation pattern on DECT
given the dysregulation of the pulmonary vasculature inherent
to the disease (76). Additionally, the total degree of PBV has been
shown to correlate with mPAP (77) along with the ratio of PBV to
the attenuation of the pulmonary artery (78, 79). However, many
of these findings are non-specific.

FIGURE 2 | Computed tomography (CT) images of the chest with and without

contrast are shown from a 64-year-old female with connective tissue disease,

severe interstitial lung disease, and mixed severe pulmonary hypertension are

shown. (A) Transaxial images are shown demonstrating an enlarged main

pulmonary arterial size at 3.2 cm when compared to ascending aorta size of

2.9 cm at the same level suggestive of pulmonary hypertension. There is no

evidence of pulmonary embolism with optimal contrast opacification. (B)

Transaxial images in the lung window demonstrate extensive bilateral diffuse

groundglass opacities and honeycombing. There is associated intralobular and

interstitial thickening and bronchiectasis consistent with patient’s known history

of connective tissue disease associated non-specific interstitial pneumonitis.

Scintigraphy and Nuclear Imaging
Ventilation-Perfusion (V/Q) Scans
V/Q Scintigraphy is part of the standardized diagnostic workup
of PH, specifically for diagnosis of WHO Group 4 chronic
thromboembolic pulmonary hypertension (CTEPH) (10).
CTEPH is defined as PH in the presence of mismatched perfusion
defects by V/Q scan as well as signs of thromboembolism on
CT and/or pulmonary angiography following 3 months of
therapeutic anticoagulation (10). This modality is considered to
be the standard of care in the initial evaluation for PH etiologies
due to high sensitivity and specificity in the diagnosis of CTEPH,
outperforming CTA alone (80–82).

Nuclear Medicine Techniques
Increased stress on the right heart in PH results in an increase
in myocyte glycolysis and can be measured with a radioactively
tagged glucose analog and measured by PET. Increased 2-deoxy-
2-[18F]fluoro-D-glucose (FDG) uptake in the RV is observed in
patients with PH and correlated with mPAP (83–85). Increased
FDG uptake has been found to be associated with clinical
worsening and death, and patients who respond to therapy
show decreased FDG uptake over time (86, 87). In addition,
alternatives to FDG, such as a radiotracer targeting mannose
receptors on macrophages, have been similarly observed to
detect PAH and respond to pulmonary vasodilator therapy
(88). Further, hybrid PET/MRI imaging has demonstrated that
a combination of RV ejection fraction and tracer uptake was
associated with clinical deterioration or death in PAH patients

FIGURE 3 | Positron emission tomography (PET) images are shown from a

52-year-old woman with emphysema and associated Group 3 pulmonary

hypertension presenting with acute exacerbation. 9.78 mCi 18F-FDG injected

at 119 mg/dl blood glucose level. Image acquisition 57 mins post injection. (A)

Maximum intensity projection image demonstrates FDG uptake in the

diaphragm, infrahyoid muscles, and intercostal muscles consistent with

increased work of breathing noted during examination. There is also diffuse

subcutaneous uptake, reflecting treatment with corticosteroids during the

exacerbation. (B) Transaxial images at the midventricular level demonstrate

abnormal uptake in the right ventricle. (C) Transaxial images at the level of the

main pulmonary artery (mPA) demonstrate enlarged mPA and abnormal FDG

uptake in the right ventricular outflow track.
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FIGURE 4 | Computed tomography (CT) and 99mTc-sestamibi single-photon emission computed tomography (SPECT) images from a 23-year-old woman with history

of D-transposition of the great arteries (D-TGA) status-post repair. (A) Transaxial CT angiogram image demonstrating the characteristic appearance of the pulmonary

artery and aorta after repair of D-TGA. (B) Non-contrast CT acquired at time of SPECT shows a stent in the pulmonary artery that was placed after the patient

developed severe pulmonary artery stenosis. (C) Short axis SPECT image shows normal radiotracer distribution in the left ventricle with extension of uptake into the

visualized portion of the right ventricle, consistent with pulmonary hypertension.

(89). Figure 3 demonstrates representative FDG-PET imaging
from a PH patient with emphysema.

Single-photon emission computed tomography (SPECT)
utilizes multiple different radiotracers to evaluate cardiac
perfusion and function. Analogous to PET, patients with PH
will have evidence of thickening, enlargement, and metabolic
derangement in the RV. The most commonly used radiotracers
in modern cardiac SPECT are mitochondrial imaging agents
(e.g., 99mTc-sestamibi), and their increased uptake in the RV
is reflective of both increased RV mass and increased energy
production and use (90). Figure 4 is from a patient with a
pulmonary artery stenosis and increased 99mTc-sestamibi uptake
in the RV.

Cardiac Magnetic Resonance Imaging
CMR Quantitative Assessment of Structure and

Function
CMR is a non-invasive, non-radiating imaging technique that
allows for highly reproducible tissue characterization (90),
permits assessment of radial and circumferential RV strain,
and can distinguish ischemic-perfusion vs. fibrotic processes.
CMR provides the best three-dimensional characterization of
the RV and its dynamic relationship with the LV with high
interstudy reproducibility (91). CMR also generates accurate
3D measurements of the RV throughout the cardiac cycle (92).
Right ventricular mass, volume, and function can be accurately
assessed and quantified on CMR. Additionally, evaluation
of infiltrative disease processes relevant to development of
cardiomyopathy is possible. Reduced RV ejection fraction, and
RV end-systolic volume have been shown to be independent
predictors of mortality (93–95). Reduced stroke volume has also
been correlated with mortality (96), and improvements in stroke
volume are seen in response to therapy (97, 98). Representative
CMR images are demonstrated in Figure 5.

CMR Tissue Characterization and Perfusion Imaging
In the assessment of PH, CMR can be of particular value in
patients with rheumatologic etiologies allowing for identification
of occult lesions such as myocarditis, interstitial edema,

FIGURE 5 | Cardiac Magnetic Resonance (CMR) images are shown from a

38-year-old female with idiopathic pulmonary arterial hypertension. (A)

Four-chamber bright blood CMR image from end diastole shows a dilated and

hypertrophied right ventricle at a mean pulmonary pressure of 47 mmHg. End

systolic images show leftward bowing of the interventricular septum from

elevated right ventricular pressure. (B) Late systolic images show leftward

bowing of the interventricular septum from elevated RV pressure. (C) Short

axis CMR image shows marked hypertrophy of the right ventricular free wall

and septal bowing. (D) Short axis LGE image shows prominent enhancement

at the anterior and inferior RV insertion points (asterisks).

myocardial infarction, and diffuse endocardial fibrosis (99).
Assessment of native T1 and post-contrast T1 mapping allows
for the accurate differentiation between the acute and chronic
phases in many rheumatologic disorders. Understanding to what
extent either ischemic injury or inflammation contributes to
myocardial damage and fibrosis is also important in therapeutic
interventions (100).

Late gadolinium enhancement (LGE) is a well validated
approach for the evaluation of focal myocardial scarring and
is the gold standard for in vivo assessment of replacement
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macroscopic fibrosis (99). CMR techniques can detect fibrosis in
as little as 1 cm3 of tissue with excellent agreement with histologic
studies (99, 101). Native T1 mapping and extracellular volume
(ECV) quantificationmay bemore sensitive than LGE techniques
at detecting low-grade inflammation and diffuse myocardial
fibrosis (102). In fact, in a recent study, rheumatologic patients
were found to have higher T1 and T2 values, as well as expanded
ECV compared with control subjects, with the most significant
differences between native T1 and T2, independent of the
presence of LGE (103). The extent and location of LGE in the
RV can also indicate presence of RV stress. Delayed enhancement
from gadolinium (10–20 mins after injection) is associated with
cardiac fibrosis (104). Delayed enhancementmass at the insertion
points of the RV is a sensitive and specific marker for PH
(105–108). The extent of delayed enhancement mass into the
interventricular septum is associated with worse RV function and
clinical outcomes (109–111).

Quantification of myocardial perfusion utilizing CMR
is observer-independent and highly reproducible (112).
CMR perfusion imaging may allow for the investigation of
characteristic disease-specific findings beyond the hemodynamic
derangements in loading conditions in PH. In a study of
CMR perfusion imaging in PAH patients associated with
the autoimmune disorder systemic sclerosis (SSc-PAH) vs.
those with idiopathic PAH (IPAH), RV and LV perfusion was
significantly reduced and inversely correlated with RV workload
and ejection fraction (113). Reduction in RV myocardial
perfusion reserve was significantly correlated with worse
hemodynamic profile and decreased RV function suggesting
that reduced myocardial perfusion reserve may contribute to
RV dysfunction in patients with PAH (113). CMR markers of
RV remodeling and fibrosis, including RV and LV ventricular
mass index, LGE and RV myocardial perfusion index, were also
predictive of survival and improved with PAH-specific therapies.

CMR Strain Imaging
With high spatial and temporal resolution, CMR allows for
quantification of global RV function across three coordinate
directions (circumferential, radial, and longitudinal), as well
as precise analysis of RV regional myocardial function. A
variety of approaches to strain imaging with CMR are clinically
available, including use of line tags and spatial modulation
of magnetization (SPAMM), use of radiofrequency pulses
to conduct displacement encoding with stimulated echoes
(DENSE), and use of through-plane tags by strain-encoding
(SENC), to name a few (114–116), although only a subset
have been reliably applied to a PH population. SENC is
technique with low intra- and inter-observer variabilities (117),
and is based on the acquisition of two images with different
frequency modulation, or low-tuning (LT) and high-tuning (HT)
images in the slice-selection direction representing static and
contracting tissues, respectively. Fast-SENC RV longitudinal and
circumferential strain has been utilized in PH patients allowing
for characterization of RV regional function with a unique
pattern of reduction in RV circumferential shortening (118).

Reductions in longitudinal strain correlate with RVEF and NT-
proBNP in PH (119) and have a higher sensitivity and specificity
to detect low RVEF when compared to circumferential strain.

Similar to STE-derived strain, CMR strain can be measured
using dedicated sequences such as SENC or post-processing
of cine images using feature-tracking. While CMR-derived
myocardial tissue tagging and SENC have quantitative value,
these modalities have not gained widespread clinical use due
to expertise needed in specific sequences, additional scanning
time, and the required time and cost for complex post-processing
analysis (120). Ohyama et al. recently employed an alternative
method of CMR strain known as multimodality tissue tracking
(MTT), which similar to STE, utilizes tissue patterns obtained
from cine CMR images and automatically tracks them frame
to frame using an automated matching software algorithm.
Findings from 30 PH patients demonstrated close correlation
between MTT and SENC with high reproducibility suggesting
that quantification of regional cardiac deformation using CMR
cine images is feasible without the additional limitations of other
CMR strain techniques. CMR and STE-basesd longitudinal strain
have good inter-modality agreement while both SENC- and FT-
derived circumferential strain, especially in the presence of LGE,
is better detected using CMR techniques (121).

CMR Flow and PA Vasoreactivity
2D and 4D flow characterization through the RV is a novel
technique to investigate the hemodynamics of the RV and
pulmonary artery. CINE phase-contrast MRI can be used to
quantify blood’s velocity. When velocity in one direction is
measured through a 2D plane it is called 2D flow MRI. However,
it can underestimate the peak velocity if it is not orthogonal to the
flow of interest and it cannot measure complex flow patterns with
direction change. 4D flow MRI (3D CINE phase-contrast MRI)
can analyze this through post-hoc 3D flow analysis (122). Flow
through the pulmonary artery has been found to be qualitatively
and quantitatively different in PH. Patients with PH have been
found to have a reduced velocity of blood flow through the
pulmonary artery correlating with higher pulmonary vascular
resistance (123–126). The pulmonary artery is also noted to be
less distensible in patients with PH, which may predict mortality
(127–129). There is a greater retrograde blood flow through the
PA in patients with PH (130) thought to be secondary to a
turbulent vortex. The length of time of which the vortex is present
during the cardiac cycle correlates with mPAP (131–133).

Endothelial dysfunction of the pulmonary vasculature
is thought to be the central underlying pathophysiologic
mechanism of PH and results in decreased relaxation of the
PA (134). PA endothelial function is typically measured by
invasive assessment of changes in PA in cross-sectional area and
flow in response to an endothelial-dependent stress (135, 136).
Previous work from our group utilizing the novel combination
of 3T MRI methods with isometric handgrip exercise (IHE), a
well-established endothelial-dependent stressor, demonstrated
a non-invasive method of measuring coronary endothelial
dysfunction with high reproducibility (137, 138). In recent
work from our group, we demonstrated the feasibility of the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 January 2022 | Volume 8 | Article 794706

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Farrell et al. Imaging in Pulmonary Hypertension

TABLE 1 | Characteristic imaging findings are summarized across imaging modalities.

Imaging modality Characteristic findings in pulmonary hypertension

Echocardiography Abnormal hemodynamics

Right ventricular systolic pressure > 40 mmHg and/or mean pulmonary arterial pressure > 20 mmHg

Abnormal pulmonary vascular resistance > 2 Wood Units

Dilated inferior vena cava with or without respirophasic variation: IVC diameter ≤ 2.1 cm that collapses >50% suggests

normal RAP of 3 mmHg; IVC diameter >2.1 cm that collapses <50% equivalent to RAP of 15 mmHg. In indeterminant

cases, an intermediate value of 8 mmHg may be used

Systolic flow reversal in hepatic veins suggestive of elevated right ventricular end-diastolic pressure

Abnormal right heart chamber size and function

Distortion of interventricular septal morphology suggestive of pressure volume overload

Enlargement of the right atrium in chronically elevated right ventricular filling pressures

Abnormal TAPSE ≤ 1.7 cm, tissue Doppler S’ < 9.5 cm/s, fractional area change <35%

Presence of right ventricular hypertrophy

Globally reduced right ventricular longitudinal strain with or without regional abnormalities

Abnormal regurgitant lesions

Presence of pulmonary and/or tricuspid regurgitation

Chest Computed Tomography Imaging Enlargement of main pulmonary artery in comparison to ascending aorta at same level > 1

Evaluation of lung parenchyma which may be abnormal in Group 3 pulmonary hypertension

Assessment for acute pulmonary embolism using contrast imaging

Assessment of chronic thromboembolic pulmonary hypertension in Group 4 disease

Scintigraphy and Nuclear Imaging Abnormal Ventilation-Perfusion (VQ) Scan

Presence of mismatched perfusion defects by VQ scan as well as signs of thromboembolism on CT and/or pulmonary

angiography following three months of therapeutic anticoagulation

Abnormal FDG-18 uptake

Increased FDG-18 uptake in the right ventricle and pulmonary artery

Cardiac Magnetic Resonance Imaging Abnormal right heart chamber size and function

Increased right atrial and ventricular volumes

Abnormal interventricular septal morphology suggestive of pressure/volume overload

Presence of right ventricular hypertrophy

Reflux of contrast into the hepatic veins

Decreased right ventricular function

Abnormal CMR-derived strain along both longitudinal and circumferential axis

Abnormal tissue characterization

Abnormal native T1 mapping and expanded extracellular volume suggestive of tissue inflammation seen in acute phase

Presence of late Gadolinium enhancement which can be seen at insertion points of the right ventricle and within the right

and left ventricles

Suggestive of fibrosis and tissue remodeling

Abnormal perfusion

Reduced right and left ventricular perfusion is inversely correlated with pulmonary pressures, and right ventricular workload

and ejection fraction

Abnormal flow and pulmonary arterial vasoreactivity

Reduced pulmonary arterial blood flow velocity correlates with increased pulmonary vascular resistance

Decreased pulmonary arterial distensibility

Abnormal pulmonary artery vasoreactivity suggestive of endothelial dysfunction

non-invasive measurement of PA vasoreactivity in HIV patients
with pulmonary vascular disease (139, 140).

CONCLUSION

Echocardiography, CT, nuclear imaging, and CMR are useful
for non-invasively screening, classifying, prognosticating, and

monitoring effectiveness of therapy in PH. Characteristic
findings for each modality are further summarized in Table 1.
The standardized algorithm using echocardiogram, CT scan,
and VQ scan in the initial diagnosis and classification in
PH can also be supplemented by CMR methods. While
multiple modalities exist and can complement each other in the
investigation of PH, a well-designed clinical approach should
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account for expertise and availability of necessary imaging
equipment and analytic software in a value-based framework
focused on patient-specific clinical needs and prioritizing the
minimization of imaging redundancy. Novel imaging techniques
such as strain imaging, 3D echo, DECT, FDG-PET, and 4D
flow MRI can evaluate for the severity of PH and can be used
in conjunction with standard imaging modalities to monitor
for disease progression and response to therapy. While RHC
is the gold standard in the diagnosis and monitoring of
PH, it can be supplemented by these non-invasive imaging
modalities to ensure that it is selectively and appropriately
used. Earlier detection of PA and RV dysfunction using these
common imaging modalities can lead to earlier diagnosis
and treatment of PH which has been shown to improve
clinical outcomes.
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