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Background: Energy metabolism has been considered as one of the novel features of
neoplasms. This study aimed to establish the prognostic signature for pancreatic cancer
(PC) based on metabolism-related genes (MRGs).

Methods: We obtained MRGs from the Molecular Signatures Database (MSigDB) and
gene sequence data in the Cancer Genome Atlas (TCGA) databases. Then, differentially
expressed MRGs (DE-MRGs) were identified utilizing the R software. We built the
prognostic model via multivariate Cox regression. Moreover, external validation of the
prognostic signature was also performed. Nomogram was created to predict the overall
survival (OS). Next, this study analyzed the prognostic value, clinical relationship, and
metabolism-related signaling pathways of the prognostic signature. The role in tumor
infiltration was further evaluated. Eventually, the expression level of the three MRGs along
with the function of NT5E was validated.

Results: Twenty-two MRGs were chosen, eight of which were identified to be most
significantly correlated with the prognosis of PC. Meanwhile, a 3-MRG prognostic
signature was established, and we verified this prognostic model in two separate
external cohorts. What is more, the nomogram was used to predict 1-/2-/3-year OS of
PC patients. In addition, the immune cell infiltration and expression of immune checkpoint
were significantly influenced by the risk score. Finally, three MRGs were highly expressed
in PC cell lines, and NT5E was associated with the proliferation and migration ability of PC.

Conclusion: To sum up, the study established and validated a 3-MRG prognostic
signature for PC, and the signature could be utilized to predict the prognosis and assist
the individualized clinical management of patients with PC.

Keywords: pancreatic cancer, metabolism-related genes, prognostic signature, tumor immune
microenvironment, immunotherapy
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INTRODUCTION

Pancreatic cancer (PC) remains a rather challenging and
devastating disease that seriously threatens human life and
health, and recently, published data reveal that it is now the
sixth and fourth greatest contributor to death owing to cancer in
China and the USA, respectively (1, 2). Although chemotherapy
has made great strides in enhancing survival rates, it is dismaying
that the 5-year survival rate for PC is only 9%, the lowest of all
cancers (2). Therefore, challenges are still existing in the
treatment of PC. Given the special anatomical location of the
pancreas, PC is commonly symptom-free in the early stage,
which only becomes apparent when the surrounding tissues
are invaded or distant organs are metastasized (3). In the
current case, the exploration of novel prognostic indicators to
precisely predict the prognostic outcomes and guide appropriate
treatment for patients suffering from cancer, including PC, is
considerably urgent (4).

It is well known that tumorigenesis is strongly associated with
the activation of oncogenes and the deletion of cancer suppressor
genes, which is directly related to alterations in tumor
metabolism (5). Otto Warburg discovered that, even in an
oxygenated environment, tumor suppressor genes still chose to
restrict their energy metabolism primarily to glycolysis,
fermenting glucose into lactic acid to meet their energy needs
(6). After that, cellular metabolism was believed to be one
emerging feature of neoplasms (7). Many metabolism-related
pathways are activated and crosstalked in cancer cells to promote
cell survival, division, and unlimited growth (8). In addition, the
impact of metabolism on the tumor microenvironment (TME)
and immune regulation should not be overlooked (9). Altered
tumor metabolism leads to the accumulation of specific
metabolites in the TME and the increase in extracellular
acidification, which facilitates the formation of a pre-metastatic
ecological niche and creates a favorable environment for the
metastasis of tumors, including PC (5). Therefore, numerous
studies have developed novel metabolism-related prognostic
signatures for predicting the prognosis of cancer (10–13).
Unfortunately, no metabolism-related prognostic model is
available to systematically predict the outcome of patients with
PC. Thus, the construction of metabolic-based prognostic
signatures that can reliably predict the outcomes of PC has
remarkable clinical values.

Cancer cells obtain the ability to flourish by disrupting
immunosuppressive pathways and using multiple mechanisms,
such as recruiting various suppressive immune cells, secreting
immunosuppressive cytokines, and producing immunosuppressive
Abbreviations: TCGA, The Cancer Genome Atlas; GEO, Gene Expression
Omnibus; GTEx, Genotype-Tissue Expression; MsigDB, Molecular Signatures
Database; ICGC, International Cancer Genome Consortium; PC, pancreatic
cancer; MRGs, metabolism-related genes; DE-MRGs, differentially expressed
metabolism-related genes; FDR, false discovery rate; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; KM, Kaplan–Meier; OS,
overall survival; ROC, receiver operating characteristic; AUC, area under the
curve; HR, hazard ratio; CI, confidence interval; SDS-PAGE, sodium dodecyl
sulfate–polyacrylamide gel electrophoresis; PVDF, polyvinylidene fluoride; TME,
tumor microenvironment.
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metabolites, to induce and enhance immune escape (14, 15). This
saves the tumor from being cleared by the organism’s surveillance
system, leading to the development of this malignancy from its
origin to the abyss. Immunotherapy is an emerging cancer
intervention that alters an individual’s immune system to defeat
cancer through triggering a direct rejection response or interrupting
inhibitory pathways (16). The therapeutic paradigm of targeting
immune checkpoint by using monoclonal antibodies to inhibit
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4),
programmed cell death protein-1 (PD-1), and programmed cell
death protein Ligand-1 (PD-L1) has achieved encouraging results in
melanoma, lung cancer, and other malignancies (17). Nevertheless,
most phase I and phase II clinical trials failed to demonstrate any
clinical benefits on PC (18). The lacking efficacy of routine
immunotherapy may be caused by the inherently aggressive
biology of PC, abundant demyelinating stroma, poor
immunogenicity, and poor infiltration of effector T cells, which
pose serious challenges to the success of immunotherapy (19). The
hypothesis has been put forward that the future of PC
immunotherapy may be combined with chemotherapy,
radiotherapy, or co-inhibition of different immune checkpoints
(20–22). Of course, whether this will benefit a considerable
number of patients with PC demands plenty of in-depth studies
to confirm.

The transcriptomic data of common MRGs were utilized to
build a prognostic signature, which was validated in two separate
external cohorts. Subsequently, nomograms of the predictive
model predicting 1-/2-/3-year OS were plotted, and the risk
score was an independent prognostic factor for patients of PC.
Besides, we operated the Gene Set Enrichment Analysis (GSEA)
to find the metabolism-related signaling pathways primarily
enriched by the prognostic signature. The study showed
distinct differences in the tumor-related immune cell
infiltration and immune checkpoints levels within the lower-
and upper-risk groups. After that, the expression levels of three
MRGs in PC cell lines were confirmed to be upregulated
unanimously. Additionally, the NT5E was shown to affect the
proliferative and migrative properties of PC cells. In short, this
research focused on MRGs to establish one novel metabolism-
related prognostic signature in PC, which could be used to guide
survival risk stratification of PC to more precisely manage
patients with PC.
MATERIALS AND METHODS

Data Collection
The transcriptomic data, simple nucleotide variant (SNV), and
matching clinical information for PC were obtained from TCGA
(https://portal.gdc.cancer.gov/), GEO (https://www.ncbi.nlm.
nih.gov/geo/), and the International Cancer Genome
Consortium (ICGC, https://dcc.icgc.org/) database. Then, to
increase the comparability and the scientific validity of the
TCGA data, the Genotype-Tissue Expression (GTEx) dataset
of normal pancreas samples was obtained for differentially
expressed analysis on the UCSC Xena (https://xenabrowser.
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net/) website. Meanwhile, MRGs were extracted from the
“c2.cp.kegg.v7.4.symbols” set of metabolic pathway-related
genes on the MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb/). Subsequently, MRGs that were coexistent in the
TCGA and GSE62452 datasets were extracted for subsequent
analysis. To keep the gene expression levels in the training and
testing sets at the same standard, a log2(x + 1) transformation
was performed in the datasets from TCGA with ICGC cohort
(PACA-AU and PACA-CA) and the datasets from TCGA with
GSE57495 for the construction and validation of the prognostic
signature (23).

Enrichment Analysis of MRGs
DE-MRGs in PC compared to normal pancreas tissue were
obtained using the R (version 4.0.5) package “limma.” Besides,
the threshold for DE-MRGs screening was set to |logFC| > 1,
adjusted p < 0.05. The volcano map of MRGs in TCGA was
plotted using the “ggplot2” package, and the heatmap of MRGs
appearing simultaneously in the TCGA and GSE62452 datasets
were mapped using the “pheatmap” package. To have a clearer
knowledge of the functional properties of the commonMRGs and
the potential signaling pathways involved, the genes were enriched
with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) utilizing the “clusterProfiler” package.

Constructing the MRGs Prognostic
Signature
Samples with <30 days of follow-up and unclear clinical
characteristics were removed to avoid compromising the
reliability of this study. One hundred seventy-one PC samples
were retained in the TCGA dataset for the construction of the
prognostic signature. First, DE-MRGs significantly associated
with OS of PC were identified by univariate Cox analysis, setting
p < 0.01 as statistically significant. The eligible MRGs were
applied to the next step of prognostic signature construction.
In this study, the least absolute shrinkage and selection operator
(LASSO) Cox regression method, running via the “glmnet”
package, was employed to avoid the prognostic signature
overfitting. Then, further multivariate Cox regression analysis
of the MRGs detected by the LASSO algorithm was conducted to
construct a 3-MRG prognostic signature. For per patient, the risk
score is the product of the expression level and the corresponding
coefficient of the prognostic signature genes, i.e., risk score =
∑(coefficienti* expression of signature genei), coefficient,
representing the weight of the corresponding MRG. What is
more, we grouped the patients as lower- and upper-risk groups
according to median risk values. We used log-rank to test the
Kaplan–Meier (KM) survival analysis to compare outcome
differences within low- and high-risk groups. Additionally,
receiver operating characteristic (ROC) curves were plotted by
the “timeROC” package to estimate the predictive accuracy of the
prognostic signature.

Validation of the Prognostic Signature
For validating the universal applicability of this MRGs
prognostic signature, two separate external cohorts, the ICGC
Frontiers in Oncology | www.frontiersin.org 3
cohort (PACA-AU and PACA-CA) and the GSE57495 dataset
were selected for external validation. The risk score equation
from the training cohort was utilized to work out risk scores for
individual patients in the validation cohorts. That is to say,
individuals from the validation cohorts were classified as low-
and high-risk groups according to the threshold of risk values
within the training cohort, drawing KM survival curves and ROC
curves immediately afterward as described previously.

Relationship of Risk Score With
Clinicopathological Features
This study further verified the expression of three MRGs with the
Human Protein Atlas (HPA) online database (https://www.
proteinatlas.org/). Next, the univariate and multivariate Cox
regression analyses were introduced to determine if this risk
score might be related to the prognosis and whether it can act as
an independent prognostic factor independently of clinical
features (age, gender, histological grade, and pathological
stage). Forest plots were drawn with the “forestplot” R
package, displaying the p-value, HR, and 95% CI for every
variable. On the other hand, a nomogram incorporating the
risk score with clinical features was constructed using the R
package “rms” to predict the 1-/2-/3-year OS of a given patient.
The decision curve analysis (DCA) was plotted with “ggDCA”
package. In addition, the correlation between the expression of
these MRGs together with the risk score and several main
clinicopathological features has been explored in subsequent
work. Furthermore, time-dependent ROC curves were
conducted to assess the prediction performance via comparing
the risk score with clinicopathological characteristics. In the end,
we generated a heatmap indicating the link between the risk
score with clinicopathological features and the expression of
three MRGs.

Metabolism-Related Pathways Enriched
by Risk Score
Based on mRNA data from 171 PC tissues in the TCGA
database, the three MRGs were ranked according to the degree
of differential expression in samples from low- and high-risk
groups, respectively, using GSEA software (version 4.1.0) to
identify potential up- and downregulated metabolism-related
signaling pathways. What is more, the sensitivity of PC
patients to clinically used chemotherapeutic agents for PC was
analyzed using the R software package “pRRophetic.”

Mutation Landscape Map
The “maftools” R package was utilized to calculate the mutation
frequencies of all genes in the SNV data from the TCGA. The
comparison of whether the top 20 genes with the highest
mutation frequencies were significantly different among the
separate risk groups was presented in the form of a waterfall
plot. Next, patients with four classical PC driver genes KRAS,
CDKN2A, SMAD4, and TP53 (24) wild or mutant type were
compared to determine whether their risk scores differed. Aside
from this, we compared whether there were differences in tumor
mutation burden (TMB) in patients with different clinical
January 2022 | Volume 11 | Article 757791
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characteristics and risks. In the end, the “survminer” package
was applied to analyze the survival status of patients with
different TMB.

Risk Score With Tumor Immune Infiltration
and Immune Checkpoint Expression
Seven methods including TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC were
employed to evaluate cancer immune infiltration to reveal the
association between risk score with cancer immune infiltration
(25). Pearson correlation analysis was used to evaluate the
associations within infiltrating immune cells. The distinctions
of immune infiltration cells between the low- and high-risk
groups were then compared with the help of the “vioplot”
package. Previous studies have suggested that the expression
pattern of immune checkpoints may influence the efficacy of
immunotherapy (26). We investigated the differentially
expressed 47 immune checkpoints like PD-1 (also named
PDCD1), PD-L1 (or named CD274), and CTLA-4 in low- and
high-risk groups to reveal the potential role of this risk score in
immunotherapy response.

Western Blotting
The steps of Western blotting were carried out as mentioned
previously (27). Rabbit antihuman CYP2C18 (ProteinTech
Group, Rosemont, IL, USA) and INPP4B (ZEN-Bioscience,
Chengdu, China) epitopes polyclonal antibodies and mouse
anti-human NT5E and b-actin (ProteinTech Group,
Rosemont, IL, USA) epitopes monoclonal antibodies were
selected as primary antibodies. Meanwhile, a horseradish-
peroxidase-labeled secondary antibody (ProteinTech Group,
Rosemont, IL, USA) was used as a secondary antibody for
Western blotting.

Quantitative Real-Time PCR
RNA extraction and quantitative real-time PCR (qRT-PCR)
procedures were performed following the description in a prior
study (28). PCR primers for CYP2C18, INPP4B, and NT5E were
purchased from SangonBiotech (Sangon, Shanghai, China).
Primer sequences were shown as follows: CYP2C18, 5′ -GAG
TTT TCT GGA AGA GGA A-3′ (forward) and 5′ -GCA TTG
GTT TTT CTC AAC TCC T-3′ (reverse); INPP4B, 5′ -GCT
GGA TTG GTT TGT GGT TTT A-3′ (forward) and 5′ -TAG
CAT TCC AAT TTC ATC GCT G-3′ (reverse); NT5E, 5′ -ACA
ACC TGA GAC ACA CAC GGA TG-3′ (forward) and 5′ -TTC
GGG AAA GAT CAT ACA CCA CAT GG-3′ (reverse); b-actin,
5′ -CCT GGC ACC CAG CAC AAT-3′ (forward) and 5′ -GGG
CCG GAC TCG TCA TAC-3′ (reverse). The expression of
CYP2C18, INPP4B, and NT5E was standardized by the
internal control b-actin. Meanwhile, fold changes in CYP2C18,
INPP4B, and NT5E were calculated in a manner of the 2−DDCT.

Paclitaxel Sensitivity Analysis
Cells were seeded onto 96-well plates, treated with paclitaxel, and
incubated for 72 h. After incubation, the CCK-8 reagent (10 ml)
was added to each well and incubated for another hour. The
absorbance at 450 nm of the color produced in each well was
Frontiers in Oncology | www.frontiersin.org 4
measured with a microplate reader to calculate the number of
viable cells. Cells receiving the different treatments were
inoculated in 96-well plates. The CCK-8 reagent was added
every 24 h, respectively, until 72 h after inoculation and then
incubated at 37°C for 1 h before testing the absorbance at
450 nm.

Cell Transfection
The NT5E shRNA lentiviral vector (hU6-MCS-CBh-gcGFP-
IRES-puromycin) was purchased from GeneChem (Genechem
Co., Ltd, Shanghai, China). The transfection of Capan-2 and
MIA PaCa-2 cells was conducted according to official guidelines.

Validation In Vitro
The colony formation assays were performed to assess the
differences in the proliferative capacity of the differently treated
cells. The cells from different groups were digested and
inoculated in six-well plates (Jet Biofilter Co., Ltd., Guangzhou,
China) with 1,000 cells per well. The medium was changed every
3 days and incubated continuously for 10–14 days. After visible
colonies were formed, they were immobilized with 4%
paraformaldehyde and then stained with crystalline violet
(Solarbio Life Sciences, China). To evaluate cellular migration
and invasion capacity, the wound healing assays and the
Transwell assays were performed. As for wound healing
experiments, cells from the different treatment groups were
digested and inoculated in six-well plates. A straight line was
drawn on the surface of each well with a 100-ml sterile pipette
after the cells had grown to approximately 95%. The wound area
was photographed using an inverted microscope (Nikon DS-RI2,
Japan) at 100× magnification for 0 and 24 h, respectively. For
Transwell assays, 800 ml of medium containing 10% fetal bovine
serum (Corning, USA) was added to the lower chamber, and 200
ml of serum-free medium containing 20,000 cells was loaded into
the upper Matrigel-coated chamber. Cells that had crossed the
membrane were fixed with 4% paraformaldehyde after 24 h
incubation, washed with phosphate-buffered saline (PBS) and
then stained with crystal violet. Images of the cells were taken
with an inverted microscope at 200× magnification.

Animal Experiments
Eight-week-old female BALB/c nude mice (HFK Bioscience Co.,
Ltd., Beijing, China) were fed in the animal laboratory in a
specific pathogen-free level environment. A total of 5 × 106

Capan-2/NT5E knockdown Capan-2 cells were suspended in 300
ml of PBS and injected into the left axilla of the nude mouse. The
subcutaneous tumor volume was measured weekly with the
formula: V = 0.52 × L × W2, where L and W denote the long
and short axes of the tumor, respectively.

Statistical Analysis
The vast majority of statistical analyses and figure outputting was
processed with Perl software (version 5.34.0, https://www.perl.
org/) and R version 4.0.5 (https://www.r-project.org/).
Differential expression of genes was analyzed with the
Wilcoxon test, and the two-tailed Student’s t-test was
introduced to analyze the relative expression levels of MRGs.
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The log-rank test was employed for Kaplan–Meier survival curve
comparisons. The p < 0.05 was accepted as considered statistical
significance if not otherwise mentioned. *p < 0.05, **p < 0.01;
***p < 0.001; ns, not significant.
RESULTS

Identification of DE-MRGs
Our workflow was summarized in the flowchart (Figure 1). To
determine mRNAs differentially expressed between PC and normal
samples, we integrated the datasets of TCGA (178 PC and four
normal tissues) and GTEx (167 normal pancreas tissues) as the
TCGA-GTEx dataset. The ICGC cohort (PACA-AU and PACA-
CA) was a combination of the PACA-AU cohort (262 PC cases)
and the PACA-CA cohort (84 PC cases). In addition, two GEO
databases were obtained from the GEO database: GSE62452 (69 PC
and 61 normal tissues) and GSE57495 (63 PC tissues). Based on the
predefined screening criteria (adjust p < 0.05 and |logFC| > 1.0),
5,886 genes were significantly differentially expressed in the TCGA-
GTEx dataset, consisting of 2,980 overexpressed genes and 2,906
low-expressed genes. Similarly, a total of 286 genes were found in
the GSE62452 dataset comprising 188 overexpressed genes and 98
downregulated genes. Figure 2A shows that a total of 766 MRGs
appeared in the TCGA-GTEx dataset, for which volcano maps were
plotted (Figure 2B). For another, the metabolism-related pathway
gene set contained 948 MRGs, ultimately preserving 22 common
MRGs (eight upregulated MRGs and 14 downregulated MRGs)
simultaneously existing in all three datasets (Figure 2C). The
heatmap of the 22 common MRGs is exhibited in Figure 2D.

Functional Enrichment of MRGs
The potential biological functions of the 22 common MRGs were
also explored through GO and KEGG enrichment analysis.
Frontiers in Oncology | www.frontiersin.org 5
Altogether, 116 GO terms along with 21 signaling pathways
(adjust p < 0.05) have entered into our view. Among them, the
top enriched GO terms were lipid digestion and triglyceride lipase
activity (Figures 3A, B). Besides, the top 5 significant GO terms
were shown in the chord charts (Figures 3C, D). On the other
hand, among those enriched KEGG pathways, the common
MRGs were strongly related to fat digestion and absorption,
glycerolipid metabolism, pancreatic secretion, etc. (Figures 3E,
F). Meanwhile, the chord diagrams presented the top 5
significantly enriched KEGG signaling pathways (Figures 3G, H).

Establishing the MRGs Prognostic
Signature
To ascertain the prognostic MRGs, univariate Cox regression
analysis was initially applied to analyze the expression matrix
and clinical follow-up information of the TCGA cohort for 22
common MRGs. As shown in the results, nine MRGs (P4HA1,
ACSL5, EPHX2, CYP2C18, HK2, MBOAT2, INPP4B, DHRS9,
and NT5E) were remarkably correlated with the outcomes of PC,
among which only EPHX2 was a protective factor for PC
(Figure 4A; p< 0.01). MRG that may be highly intercorrelated
with other MRGs was then removed via LASSO Cox regression
analysis to avoid overfitting, which could confound the
prediction results (Figures 4B, C). In the end, one prognostic
signature was established to assess the prognostic risk for PC
patients on the basis of the multivariate Cox regression analysis.
As a result, the final metabolism-related prognostic signature was
made up of three MRGs: cytochrome P450 family 2 subfamily C
member 18 (CYP2C18), inositol polyphosphate-4-phosphatase
type II B (INPP4B), and 5′-nucleotidase Ecto (NT5E, or CD73,
Figure 4D). The predictive model was defined to be one
combination of the expression value of the three MRGs
weighted by their relative coefficients in the multivariate Cox
regression in the following way:
FIGURE 1 | The flowchart for analyzing MRGs-prognostic signature.
January 2022 | Volume 11 | Article 757791
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risk   score = (0:1426 ∗ expression   value   of  CYP2C18)

+ (0:3876 ∗ expression   value   of   INPP4B)

+ (0:3015 ∗ expression   value   of  NT5E)

The risk score was calculated for each patient according to the
prognostic model described above. The 171 patients were
categorized by median risk score as a low-risk group (n = 86)
and a high-risk group (n = 85). The scatter plots of risk score
ranged from lower to higher, and survival status plots are shown
in Figures 5A, B. Furthermore, the difference in expression of 3-
MRG between the low- and high-risk groups was displayed in the
heatmap (Figure 5C). As indicated in the survival curves,
patients from the low-risk group had significantly superior OS
to the high-risk group (Figure 5D). Besides, the areas under the
curve (AUC) values for predicting the 1-, 2-, and 3-year OS were
0.738, 0.689, and 0.659, correspondingly (Figure 5E).

Validation of the Prognostic Signature
To validate the metabolism-relevant prognostic signature,
the ICGC cohort (PACA-AU and PACA-CA) was used as the
validation cohort 1, and the GSE57495 dataset was the validation
cohort 2. Patients were then classified as a low- and a high-risk
group by the median-risk score of the training cohort. In the
validation cohort 1, the risk score, survival status, along with
heatmap of 3-MRG have been displayed in Figures 6A–C.
Frontiers in Oncology | www.frontiersin.org 6
Concordant with the outcomes generated by the training
cohort, the KM curves have revealed that individuals from the
higher-risk categories have exceptionally worse outcomes than
those in the lower-risk ones (Figure 6D). Besides, the predicted
AUC values for 1-/2-/3-year OS were 0.653, 0.659, and 0.688,
respectively (Figure 6E). Similar results in validation cohort 2 are
presented in Supplementary Figures S1A–C. Overall, the
performance of the prognostic signature as a classifier was
proved as universally applicable.

Expression Levels of 3-MRG
We next employed the TCGA-GTEx dataset to analyze the
mRNA levels of the 3-MRG. It was shown to be greater in
levels of CYP2C18, INPP4B, and NT5E from PC than from
normal samples (p < 0.001, Figures 7A–C). Subsequently, 3-
MRG protein levels were assessed on the HPA website. As
indicated in Figure 7D, the protein level of INPP4B was
remarkably greater in PC than in normal tissues. The NT5E
was highly expressed in PC tissues along with exocrine glandular
cells of normal pancreas tissues and moderately expressed in
pancreatic endocrine cells (Figure 7E). In PC tissues, INPP4B
was highly/moderately expressed in 13 samples and low/non-
detected in six samples, while in pancreas tissues, INPP4B was
highly/moderately expressed in five samples. In PC tissue, NT5E
was highly/moderately expressed in 11 samples and low/non-
detected in one sample, whereas it was highly/moderately
A B

DC

FIGURE 2 | DE-MRGs in PC. (A, B) MRGs in the TCGA database are shown in the Venn diagram and volcano plot. (C) Common MRGs in the GSE62452 dataset
and TCGA database are shown in the Venn diagram. (D) Common MRGs are shown in the heatmap.
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expressed in three pancreas samples (Figures 7F, G). However,
the immunohistochemical results of CYP2C18 in PC and
adjacent normal tissues were not available.

Clinical Value of Risk Score
As depicted in Figure 8A, age (p = 0.011), histological grade (p =
0.034), and risk score (p < 0.001) were remarkably associated with
the outcomes of patients according to univariate Cox analysis, all of
which were high-risk factors for PC. Furthermore, the results of the
multivariate analysis suggested that the risk score (p < 0.001), and
age (p = 0.005), can be recognized to be independent prognostic
Frontiers in Oncology | www.frontiersin.org 7
variables (Figure 8B). We then plotted the nomogram (C-index =
0.673), which was designed to score patients and predict their OS at
1, 2, and 3 years to appraise the clinical application of the risk score
(Figure 8C); meanwhile, we have also corrected for the predictive
performance of this nomogram, as the results suggested that the
predictive performance of the nomogram was satisfactory
(Figures 8D–F). In addition, the DCA curves showed that the
risk score model was superior to other clinical features in predicting
clinical benefit (Figure 8G). In the next step, the relationship
between risk score and MRGs with clinical characteristics was
investigated furthermore through assessing the potential clinical
A B

D

E F

G H

C

FIGURE 3 | Enrichment analysis. (A, B) The bar and bubble charts of GO terms are enriched in BP and MF. (C, D) The chord with cluster plots shows the top 5
GO terms and the corresponding enriched genes. (E, F) The bar and bubble plots of KEGG enriched terms. (G, H) The chord with cluster maps shows the top 3
KEGG terms and the corresponding enriched genes. The false discovery rate (FDR) <0.05 of all terms was significant.
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application of risk score with MRGs. There was a notable
association between NT5E and risk score and clinical factors,
where NT5E expression was significantly correlated with survival
status (p = 0.016) and histological grade (p = 0.012, Figures 9A, B).
Associations between risk score and survival status (p = 3.878e−04)
along with histological grading (p = 0.048) were also significant
(Figures 9C, D). On the other hand, time-dependent ROC curves
were also plotted to investigate other prognostic values of the
prognostic signature. The AUC values of 0.792, 0.733, 0.684,
0.675, 0.700, and 0.783 for risk score predicting 0.5-, 1-, 2-, 3-, 4-,
and 5-year OS, respectively, were significantly higher than other
clinical features (Figures 9E–J). The predictive value of this risk
score remarkably outperformed other traditional clinicopathological
characters. At last, the expression heatmap of the final 3-MRG in
the lower- and higher-risk categories and the corresponding clinical
information in the TCGA cohort are presented in Figure 10A.

Metabolism-Related Pathways Enriched
by Risk Score
Figure 10B demonstrates the top 5 up- and downregulated
metabolism-related signaling pathways. For one thing, the genes
from the high-risk group were largely enriched in the metabolism-
related pathways like glycosphingolipid biosynthesis lacto and
Frontiers in Oncology | www.frontiersin.org 8
neolacto series, glycolysis gluconeogenesis, biosynthesis of
unsaturated fatty acids, fructose and mannose metabolism, and
drug metabolism other enzymes. For another thing, the genes from
the low-risk group were largely enriched in the metabolism-related
pathways such as glycine serine and threonine metabolism,
tryptophan metabolism, glycosphingolipid biosynthesis ganglio
series, primary bile acid biosynthesis, and alanine aspartate and
glutamate metabolism. Patients in the high-risk group were more
enriched in signaling pathways such as glycolysis and lacto
biosynthesis, while those in the low-risk group were more
enriched in signaling pathways related to amino acid metabolism.
Figures 10C–E have revealed that patients from the higher-risk
group were considerably less sensitive to paclitaxel than those from
the lower-risk group, suggesting a horrible outcome in higher-risk
individuals may be involved in chemoresistance.

The Difference in Mutations Between
Different Risk Groups
Analysis of the SNV data from TCGA showed that a total of 124 of
the 158 samples harbored significant mutations. The most
frequent mutations were in the driver genes of PC (TP53,
KRAS, CDKN2A, and SMAD4), and the most common variant
classification was the missense mutation (Figures 11A, B). In the
A B

DC

FIGURE 4 | Establishing MRGs prognostic signature. (A) Recognition of the outcome-related MRGs in PC via univariate Cox regression analysis. p < 0.01 were
statistically meaningful. (B) The tuning parameter (lambda) is determined at the vertical line. (C) LASSO coefficient profiles of the 5-MRGs according to the tuning
parameter. (D) The 3-MRG prognostic signature was built via multivariate Cox analysis.
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FIGURE 5 | Risk score analysis of the 3-MRG prognostic model in the training cohort. (A–D) The risk curve, survival status of PC patients, heatmap of the 3-MRG
expression, and survival curves between lower and higher-risk groups are shown. (E) Time-independent ROC curves of the risk score for predicting the OS in the
training cohort.
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FIGURE 6 | Risk score analysis of 3-MRG prognostic signature in the validation cohort 1. (A–D) The risk score, survival status of PC patients, heatmap of the 3-
MRG expression, and survival curves between low and high-risk groups are shown. (E) Time-independent ROC analysis of risk score for predicting the OS in the
ICGC cohort (PACA-AU and PACA-CA).
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high-risk group, 56 patients harbored KRAS mutations, 53
patients carried TP53 mutations, 17 patients had SMAD4
mutations, and 20 patients harbored CDKN2A mutations. In
the low-risk group, 20 patients had KRAS mutations, 23 patients
harbored TP53 mutations, 8 patients carried SMAD4 mutations,
and 5 patients harbored CDKN2A mutations (Figures 11C, D).
Further analysis revealed that patients with mutated KRAS,
CDKN2A, and TP53 presented significantly higher risk scores
than those with wild type of the relevant genes (Figures 11E–H).
We also found that TMB was significantly higher in male patients
or patients with high risk (Figures 11I–N). Patients carrying H-
TMB had a significantly shorter survival time than those with L-
TMB. Survival analysis combining the risk and TMB subgroups
revealed that high-risk patients harboring H-TMB had the worst
prognosis, those at low risk of having H-TMB showed the second-
worst prognosis, and those at low risk of having L-TMB presented
the best prognosis (Figures 11O, P).

Risk Score With Tumor Immune Infiltration
and Immune Checkpoint Expression
In the PC sample of the TCGA dataset, the 22 immune cell
infiltration landscapes with a marked difference in the percentage
Frontiers in Oncology | www.frontiersin.org 10
of immunocytes among samples are observed in Figure 12A.
The correlation matrix showed the relationships between
different infiltrating immune cells in tumor samples. From
the correlation heatmap, the proportion of 22 infiltrating
immune cells was correlated gradually. T cells CD8 was most
strongly negatively correlated with T cells CD4 memory resting
(Pearson’s correlation = −0.55), and B cells naive was moderately
negatively correlated with macrophages M2 (Pearson’s
correlation = −0.52), whereas T cells CD4 memory activated
showed the strongest positive correlation with plasma cells
(Pearson’s correlation = 0.31, Figure 12B). In addition, the
results of the violin plot revealed that the low-risk group
included notably higher numbers of B-cell naive, plasma cell,
and T-cell CD8 infiltrates, while the high-risk group had
comparably higher numbers of T-cell CD4 memory resting,
dendritic cells activated, etc. (Figure 12C). Next, a heatmap of
the proportions of the 22 immune cell types showed that there
was an increased number of infiltrations of macrophage M0
and NK cells resting in the high-risk group, while the immune
score and stroma score, along with microenvironment score,
were lower, whereas the infiltrating number of B-cell, T-cell, and
cytotoxicity score was higher in the low-risk group (Figure 12D).
A B

D

E

F

G

C

FIGURE 7 | Comparing the 3-MRG mRNA levels in PC and normal pancreas tissues. (A–C) CYP2C18, INPP4B, and NT5E. Verifying the 3-MRG expression in PC
with normal tissues on the HPA database. Information about CYP2C18 was not available. (D–G) INPP4B and NT5E.
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On the other hand, the immune checkpoints with low expression
in the high-risk group were PDCD1, CTLA4, and CD28.
Conversely, TNFSF9, CD44, CD70, TNFSF4, CD276, and
HHLA2 were overexpressed in the high-risk group (Figure 12E).

Experimental Validation
The CYP2C18, INPP4B, and NT5E expression levels were
examined in six PC cell lines (AsPC-1, BxPC-3, Capan-2, MIA
PaCa-2, PANC-1, and SW1990) and normal pancreas epithelial
cells (HPC-Y5) was used as control. The levels of CYP2C18,
INPP4B, and NT5E were notably higher in six PC cell lines than in
the HPC-Y5 cell line (Figure 13A). On the other hand, similar
results were observed at the mRNA level (Figures 13B–D).
Previously, the NT5E was reported to be associated with the
prognosis of PC (29). Hence, we knocked down NT5E
expression to assess the effect of NT5E on the biological
behavior of pancreatic cancer. Western blotting was performed
to detect NT5E knockdown efficiency (Figures 13E–G). Colony
formation assays revealed that the proliferative capacity of Capan-
2 andMIA PaCa-2 cell lines was noticeably suppressed after NT5E
knockdown (Figures 14A, B). Wound healing assays indicated
that knockdown of the NT5E gene resulted in a significant
Frontiers in Oncology | www.frontiersin.org 11
reduction in migration of Capan-2 and MIA PaCa-2 cell lines
(Figures 14C–E). Moreover, Transwell assays demonstrated that
the invasive ability of Capan-2 and MIA PaCa-2 cell lines was also
dramatically restrained upon NT5E knockdown (Figures 14F–H).
The subcutaneous xenograft model was constructed to confirm the
effect of NT5E on PC growth in vivo. NT5E knockdown inhibited
the growth of xenograft tumor in vivo (Figures 14I–K), and
Western blotting detected the relative expression of NT5E
(Figure 14L). The above results suggest that NT5E may be an
important promoting factor for PC. As demonstrated by drug
sensitivity assays, enhanced sensitivity of Capan-2 andMIA PaCa-
2 cell lines to paclitaxel could be observed after knockdown of
NT5E, which indicated that the signature gene NT5E was involved
in mediating resistance to paclitaxel in PC (Supplementary
Figures S2A–D).
DISCUSSION

As of today, pancreatic cancer remains a very disruptive
malignancy at the global level with a rather poor prognosis. An
accurate prediction of OS in PC would facilitate the personalized
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C

FIGURE 8 | Independent prognostic value of risk score. (A) Univariate analysis. (B) Multivariate analysis. (C) Nomogram based on the signature for PC patients at 1/
2/3-year. (D–F) Calibration plots of the nomogram at 1, 2, and 3 years. (G) DCA of this prognostic signature.
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treatment regimen. However, nearly no reliable and valid
biomarkers to predict the prognosis of PC are currently
available, for which the need to identify credible biomarkers
and predictor patterns to foresee the outcome of PC is urgent. In
this study, we built and verified a novel prognostic signature with
MRGs based on outcome forecasting in PC patients.

To explore the value of metabolism-related genes for prognosis
prediction and treatment guidance in PC. Two research teams have
now established a metabolism-related prognostic signature in PC.
Huo et al. (30) developed a prognostic signature based on 15 MRGs
to predict the prognosis of PC patients. The proportion of CD8+ T
cells infiltrated was higher in low-risk patients from this model,
which predicted longer survival. Furthermore, the expression of PD-
L1 was positively correlated with the risk score, whereas high PD-L1
expression induced immune escape and a worse prognosis.
However, the authors did not conduct further studies on the
expression of numerous immune checkpoints to explore whether
risk stratification is a guide to immunosuppressive therapy. Tan’s
work (31) was more concerned with metabolic reprogramming,
which is one of the hallmarks of cancer, including enhanced lipid
metabolism and glycolysis (32, 33), and therefore established a
three-gene prognostic signature based on genes related to glycolysis
and lipid metabolism. The clinical therapeutic value of targeting the
signature gene c-Met for oncogenesis and metastasis and the
Frontiers in Oncology | www.frontiersin.org 12
association of CD36 with PC resistance to gemcitabine were
proposed. Unfortunately, the study did not further stratify the
patients with the help of the prognostic signature to more
precisely indicate the patients benefiting from c-MET-targeted
therapy or the patients resistant to gemcitabine. Finally, the
signatures established by both teams were based on bioinformatic
level analysis with no further exploration of the impact of signature
genes on the biological behavior of PC.

In the current study, a 3-MRG prognostic signature was
established using LASSO Cox and multifactorial Cox regression,
which could differentiate between PC patients with different risks.
The risk score was an independent prognostic factor for PC, and a
nomogram containing clinical features was constructed on this
basis. Given that paclitaxel occupies a very critical role in the clinical
management of PC, the sensitivity to paclitaxel was lower in high-
risk patients, who had higher expression of NT5E. NT5E gene
silencing can dramatically enhance paclitaxel sensitivity in Capan-2
and MIA PaCa-2 cells. It was hypothesized that NT5E may be
involved in mediating chemoresistance in high-risk patients.
According to our prognostic model, patients in the low-risk
group may benefit more from treatment with paclitaxel than
those in the high-risk group. One application of our model was to
provide a theoretical basis to guide clinical decisions on
chemotherapy regimens for patients with PC. This is a
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FIGURE 9 | Association between risk score and MRGs expression with clinical features of PC. (A, B) NT5E. (C, D) Risk score. (E–J) The ROC curve analyses of the
prognostic variables in the TCGA cohort of 0.5, 1, 2, 3, 4, and 5 years, respectively.
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complement of this research to those two relevant publications in
terms of conceptual and practical aspects. In the high-risk group, the
frequency of mutations in PC driver genes was dramatically higher
than those in the low-risk group. High risk was also associated with
high TMB, where patients at high risk with high TMB exhibited the
worst outcomes. There were considerable differences in the
Frontiers in Oncology | www.frontiersin.org 13
abundance of tumor-infiltrating immune cells and in the
expression of the immune checkpoint profile among different risk
groups. Ultimately, the biological role of the signature gene NT5E in
PC was rigorously validated by experiments in vitro and in vivo,
which took this study a step forward, which is what this study
exceeds these two relevant publications in practical advance.
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FIGURE 10 | (A) The heatmap showed the 3-MRG expression in the prognostic signature based on different risk, clinicopathological characteristics, and survival
status in the TCGA cohort. (B) GSEA revealed the top 5 up- and downregulated metabolism-related signaling pathways enriched in low- and high-risk groups. (C–E)
The IC50 showed the chemosensitivity of cisplatin, gemcitabine, and paclitaxel in the low- and high-risk groups.
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In recent years, a substantial number of studies have been
devoted to the identification of molecular subtypes of tumors,
and NT5E was found to be differentially expressed in different
subtypes of PC. In Collison’s work (34), the NT5E gene was
found to be upregulated in a highly aggressive quasi-
mesenchymal subtype. Similarly, Bailey et al. (35) revealed that
NT5E gene expression was upregulated in gene programs 2
(GP2) of the mutant TP53 knockout squamous cell subtype.
The two subtypes refer to the same PC subtype (quasi-
Frontiers in Oncology | www.frontiersin.org 14
mesenchymal and squamous cell subtype) as defined by the
TCGA pan-cancer analysis (35). Other metabolic subtyping/
stratification studies have also yielded associations between a
glycolytic metabolism in PDAC with mesenchymal features and
poor prognosis, where a lipogenic phenotype is associated with
epithelial features and better prognosis (36). More recently, the
work by Gao et al. has identified that INPP4B was enriched in a
metabolic gene enriched subtype (C1) and was more highly
expressed in patients at high risk of this subtype, which had a
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FIGURE 11 | (A, B) Waterfall plot for the TCGA patients. (C, D) Waterfall plot for the patients in the high- and low-risk group. (E–H) Relationship between genes
(CDKN2A, KRAS, SMAD4, and TP53) status and risk score. (I–N) The association of clinical characteristics and risk scores with TMB. (O, P) Kaplan–Meier survival
analysis of patients with different TMB with/or different risks.
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worse prognosis (37). There is an association between human
cytochrome P450 (CYP) enzyme activity with the risk of multiple
cancers. However, the correlation between CYP2C18 and cancer
risk has not been reported (38).

Overall, KEGG enrichment suggested that all PC patients in
TCGAwere predominantly enriched in pathways associated with
lipogenic metabolism, which was relevant to epithelial (classical)
subtype characteristics with better prognostic (36, 39).
Nevertheless, there is pronounced metabolic heterogeneity in
PC patients, and enrichment analysis in general for all patients
may not elicit accurate conclusions (40). Therefore, patients may
Frontiers in Oncology | www.frontiersin.org 15
benefit more from further patients subtyping or stratification to
locate patients with similar metabolic patterns and target their
metabolic characteristics. With further risk stratification of
patients, a shift in metabolic pattern towards glycolysis was
noted in high-risk patients, accompanied by increased lactate
production. This conversion was accompanied by an enrichment
of the glycolysis-related genes LDHA and ENO2, which are
responsible for catalyzing the final step of aerobic glycolysis,
facilitating the glycolytic process by transforming pyruvate into
lactate (41). Acidification of the extracellular microenvironment
through increasing lactate production promotes tumor invasion
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FIGURE 12 | Assessment of tumor-infiltrating cells and immunotherapy value. (A) The bar chart reveals the percentage of 22 infiltrating immune cells from the TCGA
cohort. (B) The correlation matrix shows correlations between infiltrating immune cells in tumor samples. (C, D) Violin plot and heatmap present the differentially
infiltrated immune cells in lower- and higher-risk groups. (E) The differential expression of immune checkpoints between low- and high-risk groups.
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and metastasis (42). Such patients were mainly tightly related to
the mesenchymal (QM-PDA) subtype, showing a more
aggressive capability and markedly worse prognosis (36, 39).
Various preclinical studies have shown that blocking LDHA to
reduce glycolysis could inhibit tumor growth and metastasis,
presumably indicating LDHA as a potential therapeutic target
(43–46). In Rajeshkumar’s work, treatment of pancreatic cancer
cells carrying mutated TP53 with FX11, a small molecule
inhibitor of LDHA, was revealed to have decreased metabolic
activity, increased apoptosis, and attenuated tumor growth (42).
In the high-risk group, the tumors were primarily glycolytic,
carrying a higher proportion of TP53 mutation frequencies,
which may imply a potential metabolic vulnerability to
glycolytic inhibitors (e.g., FX11) in this group of patients. This
is a further confirmation of the value of our model for risk
stratifying patients for treatment guidance.

Cancer is caused by the accumulation of somatic mutations in
oncogenes and tumor suppressor genes (47). KRAS mediates
Frontiers in Oncology | www.frontiersin.org 16
downstream signaling of growth factor receptors, and its
mutational activation drives over 90% of pancreatic cancers
(48). Oncogenic mutations in KRAS are involved in regulating
alterations of cell metabolism, mainly in the form of increased
uptake of glucose, a shift from oxidative phosphorylation to
aerobic glycolysis, and enhanced levels of lactate (49, 50). All
these alterations would result in enhanced proliferation,
migration, and invasion of PC cells (51, 52). This study
indicated that more KRAS mutations were carried by patients
from the high-risk group who were more likely to exhibit
aggressive metastasis. Liang and colleagues demonstrated that
SMAD4 mutations induce upregulation of phosphoglycerate
kinase 1 (PgK1) expression in PC, the first ATP-generating
enzyme in the glycolytic pathway (53). Nuclear PgK1
preferentially drives cell metastasis via mitochondrial oxidative
phosphorylation (54). An earlier study by Oshima suggested that
mutations in SMAD4 were significantly associated with tumor
size, lymphatic infiltration, and lymph node metastasis, whereas
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FIGURE 13 | Validation of the 3-MRGs levels via WB and qRT-PCR. (A) The protein levels of the three MRGs in six PC cell lines and pancreatic epithelial cells.
(B–D) The mRNA expression of the three MRGs in six PC cell lines and pancreatic epithelial cells. (E–G) Confirmation of NT5E knockdown efficiency by WB.
*p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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CDKN2A mutations were associated with lymphatic infiltration
and extensive postoperative metastasis. High-risk patients
screened by our prognostic model had a higher frequency of
SMAD4 and CDKN2A mutations (although the former were not
significant), suggesting that this group of patients may be more
susceptible to lymphatic infiltration or metastasis and extensive
postoperative recurrence. Studies have indicated that TP53
inactivation was associated with the malignant progression of
PC (35, 55). In another study, Morton and colleagues revealed
that only TP53 mutant PC cells exhibited invasive activity
Frontiers in Oncology | www.frontiersin.org 17
compared to TP53 gene deletion (56). In conclusion,
mutations in genes may allow cancer cells to acquire more
aggressive properties by altering their metabolic pattern.

A correlation between infiltrating immune cells in the TME
with the prognosis of many cancers (e.g., ovarian cancer, kidney
cancer, colorectal cancer, breast cancer, and pancreatic cancer)
has been increasingly observed (30, 57). The CD8+ and CD4+ T
cells, dendritic cells (DCs), regulatory T cells (Treg), and tumor-
associated macrophages (TAMs) are mainly present in TME
(58). It is generally accepted that the presence of T-cell
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FIGURE 14 | Validation of the function of NT5E via colony formation assay, wound-healing assay, Transwell assay, and animal experiments. (A, B) Colony formation
assays. (C–E) Wound-healing assays. (F–H) Transwell assays. (I–K) Animal experiments. (L) Confirmation of NT5E knockdown efficiency in vivo by WB. N,
negatively control; K, NT5E knockdown. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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infiltration predicts a better prognosis (59, 60). This study also
identified significantly lower infiltration of CD8+ T cells in high-
risk patients, consistently predicting a worse prognosis for these
patients. Studies have suggested that T cells entering a resting
state would reduce the proliferation of CD8+ T cells in lymph
nodes, preventing them from recognizing cancer cells, which
effectively mitigated the body’s immune response and promoted
further proliferation of cancer cells (61, 62). In the high-risk
group, the proportion of CD4+ T-cells memory resting was
dramatically higher, possibly reducing the proliferation of
CD8+ T cells, which prevented the organism’s immune system
from recognizing the cancer cells and producing an effective
immune response. In this case, the cancer cells were permitted to
continuously proliferate. In addition, the TAMs were suggested
to be associated with poor prognosis and rapid disease
progression (63, 64). Xu et al. (65) proposed that M0
macrophages were an independent predictor of poor prognosis
in patients with PC after finding an accumulation of M0
macrophages in the tumor tissue. The prognostic value of M0
macrophage infiltration was further confirmed by the current
study, where the level of M0 macrophage infiltration was
markedly higher in high-risk patients with a worse prognosis.
Besides, dendritic cells activated in this study exhibited a greater
level of infiltration in the high-risk group, which may facilitate
the metastasis and immune escape of cancer cells by upregulating
the immunosuppressive WNT pathway (65, 66). Overall, the
infiltration levels of several immune cells related to the prognosis
of PC patients differed significantly in the current study, and the
TME may act on tumor metastasis and immune escape through
these immune cells. The identification of genes aberrantly
expressed in tumors is important for the development of
individualized therapies, which could improve treatment
outcomes (67). The expression levels of PD-1 and CTLA4 are
highly correlated with the prognosis of patients receiving
immunotherapy. Liu et al. revealed that high serum PD-1 and
CTLA4 levels predicted better outcomes for LIHC patients
treated with cytokine-induced killer cell (CIK) immunotherapy
(68). PD-1 was highly expressed in older cancer patients.
Similarly, PD-1 and CTLA4 levels were higher in black
patients than in Caucasian or Asian patients, who may have
had better outcomes with immunotherapy (68). The
combination of anti-PD-1 and CTLA4 immune checkpoint
inhibitors in several cancers demonstrated better efficacy than
monotherapy (69–72). Analysis of immune checkpoint
expression profiles revealed that PD-1 and -CTLA4 had higher
expression levels in the low-risk group of patients, inferring
therapeutic opportunities for novel immune modulators in low-
risk patients. This result also highlighted the importance of our
model in guiding the clinical personalized treatment of patients.

Admittedly, a few limitations exist during the current work.
Initially, our prognostic model was based on mRNA expression
levels for predicting patient prognosis, but the protein levels of
genes may be more closely aligned with the real conditions of
patients in actual clinical situations. Validation of the association
between protein expression levels of signature genes with patient
prognosis is currently not achievable due to the unavailability of
clinical specimens and corresponding survival information;
Frontiers in Oncology | www.frontiersin.org 18
therefore, this very critical component will need to be refined
in later clinical work. Second, the reliability and stability of our
prognostic signature have to be proven on a large PC research
center with prospective studies. Third, the bio-functions of the
other two MRGs in PC remain to be further verified through a
series of experiments.
CONCLUSION

A novel prognostic signature based on 3-MRG and a prognostic
nomogram to predict 1-/2-/3-year OS for PC. Molecular features
based on this signature offered fresh perspectives on the
malignant development of PC. The difference between immune
cell infiltration and the level of immune checkpoint expression in
PC could be an important guide to the prognosis and treatment
of PC patients. NT5E is of crucial importance for the malignant
behavior of pancreatic cancer. This prognostic signature may be
of great value in the prognostic assessment and treatment
guidance for PC patients.
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