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Abstract

Background: In accordance with the Theory of Structural Dissociation of the Personality (TSDP), studies of dissociative
identity disorder (DID) have documented that two prototypical dissociative subsystems of the personality, the ‘‘Emotional
Part’’ (EP) and the ‘‘Apparently Normal Part’’ (ANP), have different biopsychosocial reactions to supraliminal and subliminal
trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors.

Methods: Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different
perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate
ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of
healthy non-simulating controls.

Results: Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased
perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns
for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures
involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the
left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate
the mental construction of past and future episodic events.

Conclusion: DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain
structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to
genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that
the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and
inconsistent with the idea that DID is caused by suggestion, fantasy proneness, and role-playing.
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Introduction

Consistent clinical observations and retrospective findings

indicate that dissociative identity disorder (DID) [1] is intimately

related to severe traumatization, including emotional neglect [2].

This conclusion is supported by the results of prospective

longitudinal research of dissociation [3,4,5]. Whereas most

theories of DID include traumatization as one of the causal

factors of the disorder [6], the sociocognitive model of DID

involves the idea that the disorder is caused by suggestion, fantasy

proneness, and role-playing [7,8,9,10,11,12,13]. However, studies

showing that DID can be caused by these factors is lacking, and

patients with DID are not particularly fantasy prone [14]. Also,

mentally healthy women [15], high and low fantasy prone women

[14], and actors [16] motivated and instructed to simulate two

different prototypes of dissociative parts were unable to simulate

the psychophysiological and neural activation patterns of these

dissociative parts in women with DID.

Socioculture contexts affect any mental disorder [2], including

dissociative disorders. However, there are no studies with DID

patients showing that true positive cases are manufactured during

(suggestive) psychotherapy, and that these patients’ memories of
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childhood abuse are generally due to suggestion. Studies with DID

patients have in fact disconfirmed the idea that the disorder results

from the causes that the sociocognitive model of DID proposes

[14,15,16]. For a discussion of this subject see Sar et al.: [17].

Several studies have compared psychobiological reactions of

different dissociative parts in DID, but advances in the field

critically depend on theoretical predictions with respect to the kind

of biopsychosocial differences that exist among different types of

dissociative subsystems or ‘‘parts’’ of the personality as a whole

biopsychosocial system [18]. The Theory of Structural Dissocia-

tion of the Personality (TSDP) offers such hypotheses [2,19,20].

The two major prototypes of dissociative parts that TSDP

distinguishes are metaphorically referred to as ‘‘Emotional Parts‘‘

(EP) and ‘‘Apparently Normal Parts‘‘ (ANP). As ANP, DID

patients aim to fulfill functions in daily life, and in this context they

try to mentally and behaviorally avoid traumatic memories and

other trauma-related stimuli, commonly including EP. ANP, thus,

has not or not sufficiently personified traumatic experiences and

memories, can have a degree of amnesia regarding the traumatic

past, and is to some degree depersonalized and bodily numbed. As

EP, DID patients are fixated in traumatic memories, that is, in

non-integrated sensorimotor and emotional reenactments of

traumatizing events. There are two major subtypes of EP [19].

One subtype tends to engage in active mammalian defenses (e.g.,

freezing, flight, attachment cry) and strong emotions, such as

intense fear, in reaction to actual or perceived threat. These

reactions involve dominance of the sympathetic nervous system.

As this subtype, DID patients are generally self-conscious,

emotional (e.g., fearful), body-oriented, and hyperaroused. The

other subtype of EP predominantly engages in passive mammalian

defense (death feigning, also described as tonic immobility) to

actual or perceived threat. This kind of defense would imply a

degree of parasympathetically mediated hypoarousal, emotional

numbing, and bodily anesthesia. Phenomenologically, ANP is

predominantly characterized by dissociative symptoms that can be

categorized as negative dissociative symptoms (functional losses),

and EP (subtype active defense) by positive dissociative symptoms

(e.g., re-enactments of traumatic experiences). Patients with DID

commonly include more than one ANP and more than one EP.

Some of their dissociative parts involve mixed features of ANP and

EP.

TSDP is supported by clinical and empirical evidence. For

example, in a Positron Emission Tomography (PET) study, DID

patients listened as ANP and as EP (subtype active defense) to

audiotaped descriptions of a neutral autobiographical memory

that these dissociative parts had in common, as well as to a

description of a traumatic memory that was only autobiographical

for EP [21,22]. ANP and EP (in Reinders et al. (2006) referred to

as neutral identity state (NIS) and trauma-related identity state

(TIS), respectively) had different psychophysiological and neural

reaction patterns to the trauma script. In line with TSDP, as ANP,

the patients had a brain activation pattern similar to patients with

depersonalization disorder [23] and PTSD patients with negative

dissociative symptoms to trauma-related stimuli [24,25] (i.e.,

anterior cingulate cortex (ACC), somatosensory association area).

ANP had highly similar reaction patterns to the neutral and the

trauma script, which also indicates low emotional involvement in

the trauma script. As EP (subtype active defense), patients were

deeply emotionally and bodily engaged in this script. In contrast

with ANP, EP had activation in many brain areas (i.e., insular

cortex, amygdala, basal ganglia, cerebellum) also observed in

PTSD patients who were confronted with a personalized trauma

script and who reacted with positive symptoms such as subjective

and physiological hyperarousal [26,27,28]. As EP but not as ANP,

DID patients showed a significant increase in heart rate and blood

pressure and a significant decrease in heart rate variability in

reaction to the trauma script. In sum, EP was psychobiologically

hyperaroused, and ANP was underengaged. The same paradigm

was repeated with healthy matched controls [14]. Neither high nor

low fantasy prone, mentally healthy women instructed and

motivated to simulate ANP and EP had the psychophysiological

and neural activation patterns of the genuine ANP and EP in DID

patients. This finding contradicts the sociocognitive model of DID

[7,8,9,11,13,29].

With main effect and conjunction analyses [30,31], Reinders et

al. (2006) demonstrated that ANP and EP were associated with

two different neural networks that are independent of the type of

the memory script they listened to. The authors suggested that

these networks might be involved in functioning as two different

prototypes of dissociative parts. If this idea holds, ANP and EP

should have different neural characteristics when instructed to rest,

that is, to relax, close their eyes, and lay immobile on the back in

the narrow enclosed MRI space with their head fixed, and without

the distraction of a more specific task. According to TSDP, this

assignment is emotionally challenging for DID patients most of

whom have been chronically abused and emotionally neglected.

The situation would be particularly demanding for them as EP.

The experimental procedure could trigger trauma-related mem-

ories on which EP is fixated, and that ANP attempts to avoid.

The study of resting-state neural activity has recently become an

important area of neuroimaging. Of special interest is the so called

default mode network (DMN), a set of brain areas consisting of the

medial prefrontal cortex (MPFC), posterior cingulate (PCC) in

addition to midline parietal structures, lateral parietal regions, and

medial and lateral temporal lobes [32,33,34]. The DMN is

activated in response to rest instructions and is deactivated during

the execution of goal-directed tasks [35,36,37,38,39,40,41].

Converging evidence suggests that the DMN is critical for general

self-referential actions, such as autobiographical memory, self-

reflection, self-awareness (i.e. introspection), and stimulus-inde-

pendent thought [42,43,44,45].

The main goal of the current study was to examine and

compare brain perfusion patterns for ANP and EP (subtype active

defense) in DID patients following rest instructions. Rest

instructions, that is, instructions to relax and close the eyes, do

not imply that the participants are actually resting. The term

resting-state thus merely refers to the state that rest instructions

elicit.

No study to date investigated so called resting-state perfusion

differences in ANP and EP in DID. However, a Single-Photon

Emission Computed Tomography (SPECT) study yielded bilateral

orbitofrontal hypoperfusion and left lateral hyperperfusion during

rest for a type of dissociative part in DID described as the ‘‘host’’

compared to healthy volunteers [46]. No significant perfusion

differences were observed between the host, defined as the

dissociative part of the personality that is most of the time present

during a usual day [47], and an ‘‘alter’’, a different type of

dissociative part. We suspect that in most cases, the ‘‘host’’ was an

ANP, but it is unclear if the ‘‘alter’’ involved a second ANP, an EP

prone to engage in active or passive mammallian defense, or an

ANP/EP mixture. If the ‘‘host’’ and the ‘‘alter’’ involved two

ANPs rather than an ANP and an EP (subtype active defense), this

might explain why Sar et al. [46] did not find different patterns of

brain activity for the tested dissociative parts. A different but not

incompatible possibility is that SPECT is insufficiently sensitive to

measure perfusion differences in response to rest instructions. In

the current study, we used more sensitive arterial spin labeling

(ASL), which generates PET-like images without the need of a
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radioactive tracer [48]. ASL provides a quantitative CBF

measurement, and is therefore particularly useful in the investi-

gation of individual differences in brain metabolism [49].

In addition to the comparison of brain perfusion patterns for

ANP and EP in DID patients, the current study also investigated

neural activation patterns for ANP and EP in healthy simulating

controls (SIM) in order to test the idea that DID involves

suggestion and role-playing rather than a trauma-related condition

[9,29]. According to TSDP, simulating an ANP and EP and being

a genuine ANP and EP constitute different mental states. It can be

expected that in contrast to DID simulating controls, DID patients

engage as ANP and EP in self-referential actions following rest

instructions.

Considerations based on TSDP and the mentioned empirical

foundation lead us to hypothesize that (i) there are perfusion

differences for DID patients and DID simulating controls. In

particular, we predicted that (ia) compared to the actors, DID

patients show relatively higher activation in areas which

commonly exhibit increased neural activity following rest instruc-

tions (default mode activity), i.e. MPFC, PCC/precuneus, medial

and lateral parietal areas, and medial and lateral temporal regions.

Looking at the comparison from the other side, we hypothesized

that (ib) actors compared to DID patients elicit less default mode

activity because simulating an ANP and EP involves a goal-

directed task. We furthermore hypothesized that in response to the

described rest instructions, (ii) ANP and EP in DID have different

patterns of brain perfusion and that (iii) comparisons of ANP and

EP simulating controls yield different neural reactivity patterns

than comparisons of ANP and EP in DID patients.

Methods

Participants
Fifteen female DID patients were included in the current study,

which was part of a larger study in DID patients and DID

simulating controls [16]. We enrolled Swiss and German patients,

who were recruited from private practitioners of psychiatry and

psychotherapy and psychiatric outpatient departments. All partic-

ipants fulfilled the diagnostic criteria of DID according to DSM-IV

[1]. For the sake of the study, the clinical diagnoses were

independently checked by experts in dissociative disorders using

the German version of the Structured Clinical Interview for DSM-

IV Dissociative Disorders (SCID-D) [50], the (SKID-D) [51]. The

therapy of the participating patients had to have progressed to a

treatment phase involving integration-focused exposure to trau-

matic memories [2,52]. Exclusion criteria were comorbid psycho-

sis, drug abuse or addiction, antisocial or histrionic personality

disorder, and a neurological or organic brain disease. Thirteen

patients were medicated at the time of the measurement,

predominantly with antidepressant medication. Two patients were

free of medication.

The DID simulating control group (SIM) consisted of 15 female

actors, who were instructed and motivated to simulate ANP and

EP during the resting-state experiment. They were carefully

informed about the characteristics of ANP and EP using written

information on TSDP. They also watched a video showing a DID

patient, who alternates between ANP and EP. The actors were

instructed to create an ANP and EP using a list of properties (e.g.,

name, sex, age). Of particular importance was that ANP should be

a dissociative part without personalized memories of traumatizing

events and EP a dissociative part with personalized traumatic

memories. The actors were requested to practice simulating ANP

and EP as often as they deemed necessary to effectively simulate

ANP and EP, but at least three times before the MRI

measurement.

There were no significant differences between the DID and

SIM group in age (DID: M = 43.3 years, SD = 9.1; SIM: M = 43.2

years, SD = 10.4; t(28) = 0.019, p.0.05) and educational level

(DID: M = 4.1, SD = 1.5; SIM: M = 4.7, SD = 1.2; t(26.099) = 2

1.341, p.0.05; the educational level was assessed by a 7-point

Likert scale based on the common European educational system).

To ensure that none of the actors had a PTSD and/or major

depression, the controls completed the German version of the

Posttraumatic Diagnostic Scale (PDS) [53] and the Beck Depres-

sion Inventory II (BDI-II) [54].

Each subject was informed about risks and inconveniences

associated with the experiment. All subjects gave written informed

consent. The local ethics committee (cantonal ethical commission

of Zurich) approved the study in compliance with the Helsinki

Declaration.

Experimental Design and Procedure
The subjects were instructed to relax with their eyes closed and

to stay motionless during the fMRI measurement (e.g., [34]). All

participants of the DID and SIM group were first tested as ANP

and next as EP, because starting with the less anxious dissociative

part might be less demanding for DID patients. The switch

between the different dissociative parts of the personality took

place outside the scanner, if needed with minimal guidance from

the research clinician. Because each dissociative part includes his/

her own conception of self [55], and because the participating

patients had developed the ability in treatment to switch on

request between the participating ANP and EP, it was possible to

ask these dissociative parts to ‘‘come forward’’ or ‘‘step back’’

during the experiment. For example, when the EP was to be

tested, addressing this part by her name, she was invited to ‘‘come

forward’’. If she had brought a personal object with her (e.g., a

cuddle toy), the patient was asked to hold this object in her hands

to support the switching process. Meanwhile, addressing the ANP

by her name, she was asked to ‘‘step back’’. To check for

inadvertent switches to and co-activation of one or more different

dissociative part than the intended ANP or EP, we asked the

participants after each run what part had been present during the

measurement. One ANP and two EP runs had to be repeated due

to a switch to and/or a co-activation of an unintended dissociative

part.

Image Acquisition and Data Preprocessing
The data of the DID and SIM group were obtained at the

University Hospital of Zurich with a 3-T Philips Achieva whole-

body magnetic resonance imaging equipped with an eight-channel

Philips SENSE head coil. Resting regional cerebral perfusion

(rCBF) images were acquired with a pseudo-continuous ASL (p-

CASL) sequence with background suppression (saturation of the

imaging slice preceding the labeling and inversion pulses 1680 ms

and 2760 ms after the saturation pulse) and a single shot echo-

planar imaging (EPI) readout (TR/TE = 4180/12 ms, SENSE

factor 2.5) [56]. The duration of the labeling was 1650 ms and the

image was acquired after a delay of 1525 ms. The sequence

consisted of 23 slices of 6 mm slice thickness acquired in ascending

order with a 363 mm2 in-plane resolution. During a single run, 35

pairs of control/label image volumes were measured over a total

scan time of 5 minutes. An additional M0 image was acquired for

measurement of the magnetization of arterial blood (same

sequence as ASL without labeling or background suppression,

TR = 10 s). A 3D MPRAGE T1-weighted anatomical scan was

acquired for anatomical reference and post-processing.
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The data of three actors and one patient were excluded due to

huge movement artefacts and low signal quality. One patient had

fallen asleep during the ANP and had switched several times

during the EP run. One patient was not able to undergo the MRI

measurement, and the data of one patient were lost due to a

storage failure at the MRI center. The final brain imaging

statistical analysis was performed with data of 11 participants in

the DID group and 12 in the SIM group.

Resting-state rCBF maps were calculated using in-house

programmed MATLAB scripts performing a simple pair-wise

subtraction of control and label images [56]. Further analyses were

performed with the statistical parametric mapping software SPM8

(http://www.fil.ion.ucl.ac.uk/spm). rCBF maps were normalized

to the EPI template [57], which transformed them into MNI space

(new voxel size = 26262 mm3). The normalized rCBF maps were

spatially smoothed with an 8-mm full width at half-maximum

(FWHM) Gaussian kernel.

The preprocessed data were analyzed using a flexible factorial

design that consisted of two independent variables resulting in a

262 ANOVA with repeated measures on the second factor:

Group (two levels: DID/SIM), Type of dissociative part of the

personality (two levels: ANP/EP). The second factor will be

referred to as Type in the rest of the article. In order to correct for

biological variation in total cerebral blood flow, the mean gray

matter (GM) CBF was included in the analysis as a covariate of no

interest. The mean GM signal per subject was calculated over a

GM mask obtained from the segmentation of the 3D T1 image by

thresholding the GM probability images at 0.5. Only the GM

signal was taken into account, as a previous study revealed that

GM perfusion showed most variability between sessions [58].

We performed a whole-brain voxel-wise analysis. The study

design allows the calculation of various effects, i.e. main effect of

Group, main effect of Type, and interaction effect Group by Type.

An uncorrected statistical threshold (i.e., voxel level of significance

uncorrected (unc.) for multiple testing) of p,0.005 was set for the

main effects and interaction effect. The minimum cluster-size was

set at 10 voxels.

Our main hypotheses were tested using one-sided t-tests. The

participants were measured as ANP and EP in the patient group

(DIDanp/DIDep) and in the control group (SIManp/SIMep).

Group differences between the patients (DID) and actors (SIM)

were assessed with a two-sample t-test based on the mean

perfusion map of ANP and EP of every single participant (DID-

SIM). Two planned comparisons consisting of Type effects

between groups (DIDanp-SIManp; DIDep-SIMep) and two

planned comparisons consisting of Type effects within groups

(DIDanp-DIDep; SIManp-SIMep) were performed. All five t-tests

were one-sided, thus were performed twice to assess positive rCBF

differences in one and in the inverse contrast. To keep statistical

thresholding of a priori defined regions conservative enough, we

used a Bonferroni correction for these subsequent tests (p,0.005/

5 = p,0.001). Thus, all t-tests were fixed to a p,0.005 and

corrected for the number of tests. A similar approach has been

used in Schlumpf et al. (2013).

An explicit binary mask provided by FSL (http://www.fmrib.

ox.ac.uk/fsl) was applied at the level of the statistical interference

to remove extracranial voxels. The mask was normalized to MNI

space and had the same dimension and voxel size as the rCBF

maps. Only the most significant finding of a brain area and first

peak of a cluster are reported in the Table 1 to 4. The cluster

locations were labeled using the Harvard-Oxford cortical and

subcortical structural atlases [59] and by visual inspection on a

high-resolution T1-weighted image in FSL. Subregions in the

cingulate cortex were named according to Vogt’s division based on

cytoarchitectonic characteristics [60]. The results are restricted to

activations in the GM, as white matter perfusion measurements

are still challenging with ASL [56].

Results

Repeated Measures ANOVA
Significant rCBF differences for the Group main effect,

independent of Type, and for the Type main effect, independent

of Group, were found. In addition, significant perfusion differences

were observed due to an interaction effect between Group and

Type (see Table 1).

Group differences
Group differences are given in Table 2. In line with our first

hypothesis, we found positive perfusion differences in the patient

group compared to the actors (DID-SIM) and in the actors

compared to the patient group (SIM-DID).

DID showed higher perfusion than SIM in the temporal pole of

the middle temporal gyrus, in the precuneus, angular gyrus, and in

the dorsomedial prefrontal cortex (DMPFC). In SIM compared to

DID, we observed increased perfusion in the middle frontal gyrus

and the occipital fusiform gyrus.

Figure 1. Significant rCBF increases in genuine EP (DIDep) compared to genuine ANP (DIDanp) in (A) the primary somatosensory
cortex, primary motor cortex, premotor cortex and in (B) the pre-SMA and DMPFC.
doi:10.1371/journal.pone.0098795.g001
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Table 5. Resting-state regional cerebral blood flow (rCBF) differences between DID patients and non-simulating controls.

MNI coordinatesa

Brain area Side x y Z kE T value

DID-NS Middle temporal gyrus (temporal pole) L 262 6 220 187 5.82

Inferior temporal gyrus L 238 0 238 172 5.37

Superior frontal gyrus L 226 42 50 41 4.75

OFC L 26 26 218 339 4.64

Middle temporal gyrus L 270 230 210 12 4.16

DMPFC R 16 64 34 10 4.02

NS-DID Supramarginal gyrus L 258 242 44 286 6.65

Occipital pole (extrastriate cortex) L 226 298 2 515 *5.32

MPFC (frontopolar cortex) R 4 54 210 150 4.58

Angular gyrus L 252 260 30 122 4.44

Supramarginal gyrus R 62 236 44 129 4.43

Lateral occipital cortex (middle division) L 240 284 12 29 4.43

Superior temporal gyrus R 58 0 2 18 4.31

Frontal pole R 46 42 22 32 4.22

Lateral occipital cortex (superior division) L 224 276 32 39 4.15

Lateral occipital cortex (middle division) R 48 286 4 40 4.06

Inferior frontal gyrus (pars opercularis) L 250 18 30 20 4.05

Insula (posterior) L 234 222 14 21 3.96

Inferior temporal gyrus R 32 232 28 13 3.71

Hippocampus R 32 232 28 13 3.71

DIDanp-NS Middle temporal gyrus (temporal pole) L 262 6 222 92 5.13

Superior frontal gyrus L 226 42 50 53 4.69

Superior temporal gyrus L 270 230 10 17 4.12

Inferior temporal gyrus (temporal pole) L 236 2 242 58 4.08

Middle temporal gyrus L 258 240 28 11 3.89

Middle frontal gyrus L 246 52 14 31 3.74

NS-DIDanp Supramarginal gyrus L 258 240 44 203 5.84

Middle frontal gyrus R 30 22 48 118 5.16

Occipital pole (extrastriate cortex) L 226 298 2 372 *4.90

MPFC (frontopolar cortex) R 4 52 28 113 4.88

Superior temporal gyrus R 58 0 2 25 4.50

Supramarginal gyrus R 64 228 34 92 4.43

Lateral occipital cortex (superior division) L 224 276 30 35 4.20

Lateral occipital cortex (inferior division) R 48 286 4 63 4.17

Middle frontal gyrus L 248 18 28 21 4.12

Frontal pole R 44 44 22 19 4.04

Angular gyrus L 242 270 46 45 4.01

Inferior temporal gyrus R 46 240 224 10 3.76

Putamen R 24 8 24 12 3.73

Hippocampus R 30 234 28 12 3.67

Occipital pole (extrastriate cortex) R 22 298 12 19 3.58

DIDep-NS Middle temporal gyrus (temporal pole) L 266 0 218 286 6.65

OFC R 6 24 226 256 4.98

Superior frontal gyrus L 226 42 50 36 4.65

DMPFC R 16 64 34 18 4.62

Superior temporal gyrus L 270 230 210 21 4.45

Inferior temporal gyrus L 262 238 224 36 4.32

Middle frontal gyrus R 54 30 36 26 3.86
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Planned comparisons
Between-group comparisons of Type (i.e., two different types of

dissociative parts of the personality, ANP/EP) are listed in

Table 3. Type comparisons within groups are given in Table 4.

We found significant rCBF differences in all eight planned

comparisons.

Between-group Type comparisons. Significant rCBF

changes for both ANP and EP between the groups are in

accordance with our first hypothesis.

Compared to SIManp, DIDanp was associated with more

activation in the angular gyrus, temporal pole of the middle

temporal gyrus, dorsal posterior cingulate cortex (dPCC), and

precuneus (DIDanp-SIManp). In the inverse contrast (SIManp-

DIDanp), we found a higher perfusion in the middle frontal gyrus.

Increased activation in the precuneus, DMPFC, angular gyrus,

and temporal pole of the middle temporal gyrus was found in the

contrast DIDep-SIMep. In SIMep compared to DIDep (SIMep-

DIDep), we observed increased perfusion in the thalamus and in

several occipital-temporal regions (i.e., occipital fusiform gyrus,

lateral occipital cortex, temporal occipital fusiform cortex.

Within-group Type comparisons. The second hypothesis

that DIDanp and DIDep differ in resting-state perfusion could not

be rejected given significant rCBF differences in DIDanp-DIDep

and DIDep-DIDanp. In line with our third hypothesis, compar-

isons of SIManp and SIMep yielded different neural reactivity

patterns than comparisons of DIDanp and DIDep.

DIDanp had more perfusion in the bilateral thalamus than

DIDep (DIDanp-DIDep). The inverse contrast (DIDep-DIDanp)

showed increased perfusion in the primary somatosensory cortex

and in several motor-related brain areas including the primary

motor cortex and higher-order motor areas (i.e., pre-supplemen-

tary motor area (pre-SMA), premotor cortex). DMPFC hyperper-

fusion was also observed (Figure 1).

Comparing SIManp to SIMep (SIManp-SIMep) revealed

higher brain activation in the right thalamus and in the extrastriate

cortex. In the inverse contrast (SIMep-SIManp), we observed a

higher perfusion in insular-opercular regions (anterior insula,

frontal operculum) and in inferior frontal areas (pars triangularis of

the inferior frontal gyrus, orbitofrontal cortex (OFC)).

Follow-Up Study

Methods
Simulating a resting DID patient is a paradoxical situation

because resting and simulating are opposite actions. Resting

instructions invite relaxed, internally directed attention, whereas

instructions to simulate a dissociative part elicit effortful goal-

directed action. This paradox did not exist in a follow-up study in

which the mentally healthy control group (NS) only received

resting instructions. The NS group consisted of 15 female

participants. There were no significant differences between the

DID and NS group in age (DID: M = 43.3 years, SD = 9.1; NS:

M = 38.20 years, SD = 10.3; t(28) = 1.428, p.0.05) and educa-

tional level (DID: M = 4.1, SD = 1.5; NS: M = 5.1 years, SD = 1.4;

t(28) = 22.018, p.0.05).

Atypical default mode activity has been observed in a number of

mental disorders [61]. Only few resting-state imaging studies of

PTSD have been performed [62,63,64,65,66]. The findings are

heterogenous and are not restricted to the default mode activity,

even though abnormal resting-state activity in some areas of the

DMN was observed in PTSD patients compared to healthy

controls [62,66]. A resting-state study of DID patients is lacking to

date. As this disorder includes significant disturbances in self-

referential actions, it can be expected that DID patients and non-

simulating healthy participants differ in their default mode activity.

For the follow-up study, the data of the NS group were obtained

on the same scanner which has been used for the DID and SIM

group, but after an upgrade from the Achieva to the Ingenia

system (different MRI system). The involved system changes are

described in the Supporting Information S1 (see Text S1 in

Table 5. Cont.

MNI coordinatesa

Brain area Side x y Z kE T value

Precentral gyrus L 22 226 58 10 3.69

Superior frontal gyrus R 20 2 58 21 3.68

NS-DIDep Supramarginal gyrus L 258 242 46 301 6.69

Lateral occipital cortex (middle division) L 240 284 12 657 *5.49

Angular gyrus L 252 260 30 274 5.13

Insula (posterior) L 234 222 14 54 4.45

Supramarginal gyrus R 62 236 44 88 4.35

Inferior frontal gyrus (pars opercularis) L 250 18 32 25 4.27

MPFC (frontopolar cortex) R 4 56 210 140 4.13

Frontal pole R 46 42 22 23 4.05

Inferior temporal gyrus R 46 240 222 15 4.02

Lateral occipital cortex (inferior division) R 48 286 4 32 3.90

Lateral occipital cortex (superior division) L 230 260 46 31 3.84

Hippocampus R 32 232 28 19 3.72

R/L, left or right hemisphere; kE, cluster-size in voxels (one voxel is 26262 mm); DID, patient group; NS, non-simulating control group; DIDanp, ANP DID group; DIDep,
EP DID group; OFC, orbitofrontal cortex; DMPFC, dorsomedial prefrontal cortex; MPFC, medial prefrontal cortex.
aMNI coordinates (in mm) refer to the maximum of signal change in each region.
*corrected for multiple comparisons using cluster-level statistics, p#0.05.
doi:10.1371/journal.pone.0098795.t005
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Information S1). The data set of 15 participants of the NS group

were compared with the data set of the DID group (n = 11). For

the pre- and postprocessing of the NS data set, the same strategy

was used as for the other two groups. The following three two-

sample t-tests were performed: DID-NS, DIDanp-NS, DIDep-NS.

All three t-tests were one-sided, and were performed twice to assess

positive rCBF differences in one and in the inverse contrast.

Bonferroni corrected p-values were used (p,0.005/3 = p,

0.00167) and cluster-size threshold was set at 10 voxels.

Results

DID and NS showed a different resting-state activity pattern

within the DMN (see Table 5). For DID compared to NS (DID-

NS), we observed increased activity within the left temporal gyrus

(i.e., posterior and polar part of the superior temporal gyrus,

middle temporal gyrus, and inferior temporal gyrus), OFC, and

DMPFC. Elevated rCBC in left temporal regions were also

present in DIDanp compared to NS (DIDanp-NS) and in DIDep

compared to NS (DIDep-NS). For the latter contrast, we also

found elevated perfusion in the OFC and DMPFC.

NS compared to DID (NS-DID) had increased perfusion in

posterior parietal regions (i.e., supramarginal gyrus, angular

gyrus), in several occipital areas (i.e., occipital pole, lateral

occipital cortex), in the frontal polar cortex, in the right superior

and inferior temporal gyrus, and in the hippocampus. Increased

rCBF in posterior parietal regions, occipital areas, frontal polar

regions, and hippocampus were also present for NS compared to

DIDanp (NS-DIDanp) and for NS compared to DIDep (NS-

DIDep).

Discussion

This is the first fMRI perfusion study measuring brain perfusion

following rest instructions in DID patients. As hypothesized, we

found differences between DID patients and DID simulating

actors, as well as between two different prototypes of dissociative

parts of the personality (ANP and EP) in DID patients. The follow-

up study demonstrated different perfusion patterns for DID and

controls who did not simulate ANP and EP.

Compared to actors, DID patients showed higher resting-state

metabolism in several areas belonging to the DMN (i.e, temporal

pole of the middle temporal gyrus, precuneus, angular gyrus, and

DMPFC) [32]. The default mode activity of DID is in line with

our first hypothesis and suggests that DID patients were more

involved in attending to their self-states when instructed to rest

than actors. In the inverse contrast (SIM-DID), we found more

perfusion in the middle frontal gyrus and occipital fusiform gyrus.

The DMN is also known as ’’task-negative‘‘ network [37].

Whereas it shows attenuated levels of neural activity at rest and

during self-referential processes [33,34,42,43,44,45], this network

exhibits activity decreases across many goal-directed tasks

[35,36,37,38,39,40,41]. The fact that enacting ANP and EP

involves a goal-directed task can explain the relatively lower

default mode activity for DID simulating controls compared to

DID patients.

The between-group Type effects fit to these interpretations. Of

special interest is the increased activity in the precuneus and

angular gyrus for ANP and EP in DID patients when contrasted

with the corresponding simulated ANP and EP (i.e., DIDanp-

SIManp, DIDep-SIMep). Both brain areas are part of the DMN

[33]. The precuneus is the area of the brain with the highest

resting-state perfusion and with perfusion decreases during non-

self-referential, goal-directed actions [67]. We therefore conclude

that in contrast to the DID simulating controls, DID patients

engaged as ANP and EP in self-referential mental activity in

response to resting-state instructions.

In line with our second hypothesis, we found different patterns

of resting-state perfusion for ANP and EP in the patients.

Compared to EP, ANP showed more metabolism in the bilateral

thalamus (DIDanp-DIDep), and right thalamus activity was higher

in controls simulating EP than in authentic EP (SIMep-DIDep).

However, controls simulating ANP also had more bilateral

thalamus metabolism than controls simulating EP (SIManp-

SIMep). Whereas relatively high right thalamus activity for ANP

in DID patients may not be a DID-specific finding, our result

parallels prior PTSD studies conducted under rest [68] or using

script-driven symptom provocation paradigms [26,69,70]. Lanius

et al. [26,69,70] have reported that Flashback/Reliving PTSD

patients (i.e., subjects characterized with positive dissociative/EP-

like symptoms) had not shown thalamic activation during the

recall of traumatic memories while ’’dissociated‘‘ PTSD subjects

(i.e., subjects characterized with negative dissociative/ANP-like

symptoms) did. Kim et al. [68] found a positive correlation

between right thalamic blood flow following rest instructions and

the severity of current re-experiencing symptoms in PTSD

patients. In one of the first neurobiological models of dissociation

in trauma surviviors, the thalamus was proposed to play a central

role [71]. Sensory and arousal signals parallel in the thalamus

which relays the transmission to target brain areas. Under

condition of high arousal, this transmission is altered. Kim et al.

[68] speculated that lowering of thalamic activity represents a

withdrawal of attention from external sensory stimuli which may

provoke re-experiencing symptoms. In consert with these findings,

our findings suggest that as ANP, DID patients are more open to

external sensory stimuli than as EP. Because of ANP’s habitual

tendency to be numb and depersonalized, they may not have been

that alarmed by our instructions to relax, close their eyes, and stay

immobile in a loud narrow space. As EP, however, these

instructions may have reminded them of traumatizing circum-

stances. To cope with the situation, EP may have attempted to

avoid attending to the subjectively threatening external cues,

implying low right thalamus perfusion.

However, at the same time, they may have become self-aware,

focused on internally alarming bodily and emotional cues, and

prone to reactivate painful memories. Indeed, comparing EP to

ANP in DID patients (DIDep-DIDanp), we found increased rCBF

in the primary somatosensory cortex, in several motor-related

brain areas, and in the DMPFC (see Figure 1). In a number of

independent studies, self-referential action was associated with

activity in the DMPFC [72,73,74]. Increased DMPFC activity in

DID as EP has also been observed in a previous backward masking

paradigm in reaction to potentially threatening stimuli [16]. We

suggest that in DID patients compared to ANP, EP was attending

more to his/her self-state and somatosensory sensations. Combin-

ing these findings, we interpret that focused on interoceptive,

bodily-emotional cues, as EP, the patients were highly aware of

being a body in a threatening situation. This awareness may have

triggered a tendency to engage in defense motor reactions. In line

with these findings and consistent with TSDP, DID patients

specifically reported as EP that the lack of a more explicit task to

focus on while laying in the scanner was threatening.

In line with our third hypothesis, comparisons of ANP and EP

in controls yielded different neural reactivity patterns than

comparisons of ANP and EP in DID patients. The actors reported

that they used two major strategies to fulfill their simulation task: 1)

imagining being another person and 2) trying to experience the

other person’s feelings. According to cognitive and social

neuroscience, the first strategy can be described as visual mental
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imagery [75] and the second as empathizing [76]. Visual imagery

elicits neural activity in visual areas [75,77]. The increased

perfusion in visual areas for controls simulating ANP compared to

controls enacting EP (SIManp-SIMep) suggests that as ANP,

actors particularly engaged in visual imagery. As the participants

were requested to keep their eyes closed, activation in occipital

areas cannot be explained by visual perception. The inverse

contrast (SIMep-SIManp) revealed a higher perfusion in the

anterior insula, pars triangularis of the inferior frontal gyrus,

frontal operculum, and OFC, which are known to be neural

underpinnings of empathy. There are different definitions of

empathy in the literature. The second strategy for simulating ANP

and EP mentioned above involved empathy in the sense of

‘‘Einfühlen,’’ that is ‘‘feeling into someone’’ [78,79]. The anterior

anterior insula is associated with empathy for pain [80,81]. Pain

can occur beyond nociception and can be generalized to mental

suffering of any sort [82], such as laying in a scanner as a

traumatized anxious (part of a) person. The pars triangularis and

the frontal operculum are part of the mirror neuron system

(MNS). The main function of the MNS pertains to simulation. For

example, observing another person’s actions increases the firing

rate of neurons that are also active when we actually perform those

actions ourselves [83]. Thus, the MNS is involved in understand-

ing the actions and intentions of others [84,85]. Neuroimaging

studies in autism spectrum disorder patients [86] and healthy

adults [87] also suggest that the MNS plays a pivotal role in

empathy. Carr et al. [87] proposed that in concert with the

anterior insula, the MNS is involved in grasping the emotional

states of others by physically and emotionally feeling what it is like

to engage in the observed action. The OFC has been found to be

active in empathy tasks as well [88,89,90]. OFC functioning is

critical for social cognition and socially appropriate behavior.

Taken together, our data support the idea that DID-simulated

controls engaged in envisioning and feeling of what one is not, that

is, in simulating ANP and EP.

The follow-up study revealed the involvement of the temporal

lobe in DID patients compared to non-simulating controls (DID-

NS, DIDanp-NS, DIDep-NS; see Table 5) predominantly on the

left hemisphere. This finding converges with other imaging and

electrophysiological investigations of dissociation supporting the

link between dissociation and temporal lobe functioning

[46,91,92,93,94]. This association has also been proposed by a

number of studies investigating the relationship between temporal

lobe epilepsy and DID [95,96,97,98]. The temporal lobe has been

regarded as the generator of dissociative states [94,96,99]. One

explanation is that the temporal lobe has strong anatomical

connections to the limbic system (e.g., amygdala, involved in

processing emotional responses and the hippocampus, a key

structure for episodic memory) [96]. Emotional and mnemonic

functions are disturbed in trauma stressor-related disorders such as

dissociative disorders [100,101,102,103]. Dissociative parts of the

personality involve biopsychosocial subsystem that involve their

own feelings and conceptions of who they are, what the world is

like, and how they relate to that world. This selectivity could be

associated in part with temporal lobe activity. This possibility is in

accordance with a previous study showing that temporal lobe

functioning may mediate ‘‘switches’’ between dissociative parts of

the personality [104].

EP but not ANP in DID showed increased activity in the OFC

and DMPFC compared to non-simulating healthy participants

(DIDep-NS, see Table 5). Ventromedial parts of the frontal

cortex are crucial for computing the affective value of an external

sensory stimulus and for linking this perception to appropriate

guidance of behavior [105]. Previous findings suggest that the

right-sided sector of the ventromedial part of the frontal cortex, as

observed in this study, is crucial for judging and remembering the

aversive value of an external cue [106] and is sensitive to threat-

related cues [107]. The dorsal parts of the MPFC mediate the

evaluation and monitoring of negative emotions [108]. In a recent

study, EP was also associated with overactivation of the DMPFC

in response to covert trauma-related stimuli [16]. In line with

TSDP, EP’s increased DMPFC and OFC activation might be

associated with EP’s continuous tendency to mind threat and to be

fixated on threat-related cues.

In the inverse contrasts (NS-DID, NS-DIDanp, NS-DIDep; see

Table 5), non-simulating healthy individuals showed a tendency

to elevated neural activity in posterior parietal regions, the MPFC,

and hippocampus. This perfusion pattern observed for non-

simulating healthy participants resembles the one subserving scene

construction that includes a temporo-parietal-frontal network

[109,110,111]. Scene construction describes episodic simulation

or imagery of future and past events [109]. Scene construction and

default mode activity share internally directed attention [110], and

brain networks mediating future thinking and episodic memory

overlap [110,111,112,113,114]. The medial temporal lobe system,

which has long been considered to be uniquely involved in

remembering the past and which was observed in non-simulating

healthy controls as well (i.e., hippocampus), is also required to

flexibly recombine details from the past in order to simulate future

episodes [113,114,115]. The idea that non-simulating healthy

participants were mentally travelling in time is further supported

by elevated activity within the frontal polar cortex involved in

future imagery and prospective thinking [112,114,116,117], and

increased perfusion in the extrastriate visual cortex associated with

remembering past events [118].

Based on these interpretations and empirical foundations, our

follow-up study suggest that under resting instructions as ANP and

EP, DID patients activate left temporal regions more than

mentally healthy controls who do not simulate ANP and EP.

These controls may have been less involved in the task and

scanner environment allowing them to let their mind wander to

their personal past and imagined future. Of note: further analysis

suggests that these results are not explained by a time or scanner

effect (see Information S1: Text S2 in Information S1, Table
S1 in Information S1, Figure S1 in Information S1, Figure
S2 in Information S1, Text S3 in Information S1).

Merckelbach and co-workers observed a robust correlation

between alterations in consciousness, some of which may reflect

dissociative tendencies and a trait known as fantasy proneness in

mentally healthy individuals [119,120]. They argued that the

correlation between self-reports of childhood abuse and these

tendencies is mediated by fantasy proneness. Fantasy prone

individuals would mix their fantasies with real memories and

would be prone to produce pseudomemories of autobiographical

traumatic events [11,12]. Fantasy proneness is a trait defined as

the deep involvement of fantasy and imagination [121]. However,

fantasy in DID may be a means to cope with childhood

traumatization (Nijenhuis and Reinders, see Information S1 in

[14]), and DID patients are not high fantasy prone [14].

Moreover, as ANP and as EP, DID patients had less perfusion

in brain areas involved in imagination than healthy controls who

did not simulate ANP and EP in the present study. These findings

are at odds with the idea that DID involves fantasy proneness and

actual fantasizing.

The study has several limitations. First, our study may have

lacked the power to detect potential perfusion differences.

Although our sample is one of the largest samples included in an

fMRI study of DID to date, it was still relatively small. This was
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due to the difficulty finding DID patients who are able to alternate

between ANP and EP at request and to remain activated,

particularly as EP, for a substantial period of time in a challenging

fMRI environment. Further resting-state studies in DID are

needed to confirm our findings. Second, patients who can perform

these difficult actions are the ones who have been in treatment for

at least several years. Because treatment of DID fosters integration

of the different dissociative parts and traumatic memories, studies

such as ours are prone to underestimate biopsychosocial differ-

ences between these subsystems of the personality in untreated

individuals with DID. Another limitation of the study is that only

two of our patients were free of medication. Medication washout is

not feasible with DID patients. However, it is important to note

that medication does not explain the observed differences between

ANP and EP in DID. Whereas DID patients typically have

considerable comorbidity, comorbidity does not explain the

essence of the disorder, that is, the division of the personality

manifesting in dissociative symptoms. For example, significant

differences for the severity of somatoform dissociation in DID and

other mental disorders remained after statistically controlling for

the influence of comorbid symptoms [122]. Nevertheless, future

studies will need to evaluate axis I and axis II comorbidity to

disentangle dissociative symptoms and their patterns of neural

activation from comorbid symptoms. Further, although we

debriefed the presence of the identity state under investigation,

we did not obtain biophysiological information that the intended

ANP and EP were present during the measurements beyond these

parts’ self-report. Because ANP and EP had different psychophys-

iological reactions to reminders of traumatizing events [14], future

studies best also include parameters such as heart rate or

electrodermal activity. Furthermore, studies of dissociative parts

in DID and other dissociative disorders should systematically

assess their first-person experiences during the experiment. This

will allow a comparison of third-person scientific data and the

participants’ first-person, phenomenal experiences, thus bridging

the epistemic gap between body/brain and mind.

In conclusion, the present study is the first to show that two

different prototypes of dissociative parts (i.e., ANP and EP subtype

active defense) are associated with different patterns of brain

activity following rest instructions in a challenging environment.

The study also demonstrates for the first time that in this context

and in contrast to DID simulating actors, particularly but not

exclusively as EP, DID patients activated brain structures involved

in self-consciousness. Following these instructions, neural activa-

tion associated with motivated role-playing of ANP and EP by

mentally healthy controls was different from neural activation

associated with being a genuine ANP and EP. The study adds to

the evidence from supraliminal and subliminal neuroimaging

studies of ANP and EP in DID [14,15,16,21,22] that suggestion,

role-playing, and fantasy proneness do not explain the disorder.

Our results also show that dissociative parts of the personality do

not particularly activate brain structures associated with imagina-

tion. The findings are consistent with clinical observations of DID

patients and with TSDP, but inconsistent with the sociocognitive

model of DID.
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