
base by systematically testing the hypothesis generated by our
initial clinical observation. At a minimum, their data provide
reassurance that the risk of P. jirovecii coinfection in patients with
COVID-19–related lymphocytopenia is likely not high. Further
understanding of the clinical features of this novel disease requires a
continued collaborative and systematic approach. n

Author disclosures are available with the text of this letter at
www.atsjournals.org.

Aravind A. Menon, M.D.*
David D. Berg, M.D.*
Elizabeth B. Gay, M.D.‡

Laura E. Fredenburgh, M.D.‡x

Brigham and Women’s Hospital
Boston, Massachusetts

On behalf of all the authors

ORCID IDs: 0000-0002-0211-4509 (A.A.M.); 0000-0002-0366-5492 (D.D.B.);
0000-0002-7447-6453 (L.E.F.).

*These authors contributed equally to this work.
‡These authors contributed equally to this work.
xCorresponding author (e-mail: lfredenburgh@bwh.harvard.edu).

References

1. Menon AA, Berg DD, Brea EJ, Deutsch AJ, Kidia KK, Thurber EG, et al. A
case of COVID-19 and Pneumocystis jirovecii coinfection [letter]. Am J
Respir Crit Care Med 2020;202:136–138.

2. Koo S, Baden LR, Marty FM. Post-diagnostic kinetics of the (1→ 3)-b-D-
glucan assay in invasive aspergillosis, invasive candidiasis and
Pneumocystis jirovecii pneumonia. Clin Microbiol Infect 2012;18:
E122–E127.

3. Koga M, Koibuchi T, Kikuchi T, Nakamura H, Miura T, Iwamoto A,
et al. Kinetics of serum b-D-glucan after Pneumocystis pneumonia
treatment in patients with AIDS. Intern Med 2011;50:1397–1401.

4. Held J, Wagner D. b-d-Glucan kinetics for the assessment of treatment
response in Pneumocystis jirovecii pneumonia. Clin Microbiol Infect
2011;17:1118–1122.

5. White PL, Price JS, Backx M. Therapy and management of
Pneumocystis jirovecii infection. J Fungi (Basel) 2018;4:127.

6. Arcenas RC, Uhl JR, Buckwalter SP, Limper AH, Crino D, Roberts GD,
et al. A real-time polymerase chain reaction assay for detection of
Pneumocystis from bronchoalveolar lavage fluid. Diagn Microbiol
Infect Dis 2006;54:169–175.

7. Matsumura Y, Ito Y, Iinuma Y, Yasuma K, Yamamoto M, Matsushima A,
et al. Quantitative real-time PCR and the (1→3)-b-D-glucan assay
for differentiation between Pneumocystis jirovecii pneumonia and
colonization. Clin Microbiol Infect 2012;18:591–597.

8. Damiani C, Le Gal S, Da Costa C, Virmaux M, Nevez G, Totet A.
Combined quantification of pulmonary Pneumocystis jirovecii
DNA and serum (1-.3)-b-D-glucan for differential diagnosis of
pneumocystis pneumonia and Pneumocystis colonization. J Clin
Microbiol 2013;51:3380–3388.
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Control of Respiratory Drive by Noninvasive
Ventilation as an Early Predictor of Success

To the Editor:

Early prediction of failure of noninvasive ventilation (NIV)
in patients with de novo acute hypoxemic respiratory failure
is crucial to prevent patient self-inflicted lung injury and
avoid delayed intubation. NIV should cope with the elevated
respiratory drive to deliver effective yet still protective ventilation.
However, drive increases for many different reasons: lung collapse
and shunt lead to hypoxia, high dead space and elevated
metabolic demand raise the concentrations of CO2, lung
inflammation and altered mechanics activate chemoreceptors
and mechanoreceptors, and anxiety and subjective discomfort act
on the neural respiratory drive, amplifying the response to
chemical and mechanical stimuli (1). The clinical study by
Tonelli and colleagues (2) testing the hypothesis that inspiratory
effort estimated by esophageal balloon manometry might be an
early predictor of NIV failure and worsening lung injury is a
valuable addition to the field. Tonelli and colleagues report
that lack of reduction in the swing of esophageal pressure (DPes)
after 2 hours from start of NIV is an accurate predictor of NIV
failure.

According to the study protocol, pressure support (PS) was
initially set at 10 cm H2O and then modified to maintain the
expired VT (VTe) of ,9.5 ml/kg predicted body weight (PBW) and
the respiratory rate of ,30 breaths/min. Of note, as a consequence
of these per-protocol adjustments, PS level at 2 hours was
significantly lower in the NIV failure group, whereas VTe did not
differ (3). As pointed out by Tuffet and colleagues (4), the amount
of assistance during NIV influences the respiratory effort, and they
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suggest a different interpretation of the study results according
to which the amount of assistance, when properly modulated
to decrease respiratory effort, may avoid intubation. Indeed, in
the NIV success group, increasing PS allowed researchers to
match the ventilation demand of the patient while maintaining
protective ventilation, therefore controlling the respiratory drive.
At the opposite end, the respiratory drive remained high despite
NIV support in the failure group, halting the increase in PS level
to maintain protective VTe. Thus, we may speculate that if the PS
level would have been left unchanged for the first 2 hours, we
would have observed a persistently elevated VTe (presumably
higher than the targeted ,9.5 ml/kg PBW) in the failure group
versus lower protective VTe in the other group. The results by
Tonelli and colleagues are consistent with those previously
published by Carteaux and colleagues (5), who reported that a
VTe higher than 9.5 ml/kg PBW is independently associated with
NIV failure.

Improvement in lung mechanics and unloading of the
respiratory muscles by NIV might have contributed to effective
control of the respiratory drive in the success group. The
correlation between DPes and VTe/driving transpulmonary
pressure (i.e., the dynamic lung compliance) at baseline
confirms that effort is correlated with severity and that the
“mechanical factors” related to the size of the baby lung act as
strong determinants of the respiratory drive in this population.
Nevertheless, other “nonmechanical” determinants of the
respiratory drive must have been at play in the failure group.
These factors could not be corrected by NIV and might require
specific treatments, such as sedation to treat anxiety and
discomfort, etiologic therapy to switch off inflammation, or
extracorporeal CO2 removal to decrease the ventilation
demand (6). In this perspective, more precise understanding
of the mechanisms of increased respiratory drive in
each patient with de novo acute hypoxemic respiratory
failure might allow an individualized “physiology-driven”
treatment aimed at avoiding intubation. We believe that
a multimodal approach for early identification and treatment
of the contributing causes of elevated respiratory drive
might be key to avoid patient self-inflicted lung injury and
endotracheal intubation. n
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Continued Vigorous Inspiratory Effort as a Predictor
of Noninvasive Ventilation Failure

To the Editor:

This letter is in response to an article by Tonelli and colleagues
published in a recent issue of the Journal (1). The authors’
observation that a reduction in the magnitude of spontaneous
respiratory effort after initiation of noninvasive ventilation (NIV)
predicts the success of the NIV trial appears expected. Nevertheless,
I do have a few interesting observations and explanations. V̇E is
influenced by respiratory drive, which in turn is guided by hypoxia,
hypercarbia, systemic oxygen delivery, or cardiac output (2). A
significant reduction in V̇E (7.6 vs. 1.1 L/min) after 2 hours of NIV
in the NIV success group with an almost similar expiratory VT

(VTe) and respiratory rate (RR) change seems surprising. The V̇E

drive is always the primary determinant of the mechanical changes
in the respiratory dynamics (3). An equal magnitude of mechanical
pressure support and a similar VTe in both the groups should have
been supported by an almost similar reduction in tidal change in
esophageal pressure (ΔPes) and tidal change in transpulmonary
pressure (ΔPL). As expected, the ΔPL, VTe, and V̇E (slightly reduced
because of a reduction in RR) remain unchanged before and after
initiation of NIV in the failure group. A reduction in ΔPes was
compensated by positive pressure to maintain the ΔPL. A similar
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