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ABSTRACT Plant and animal breeders are interested in selecting the best individuals from a candidate set
for the next breeding cycle. In this paper, we propose a formal method under the Bayesian decision theory
framework to tackle the selection problem based on genomic selection (GS) in single- and multi-trait
settings. We proposed and tested three univariate loss functions (Kullback-Leibler, KL; Continuous Ranked
Probability Score, CRPS; Linear-Linear loss, LinLin) and their corresponding multivariate generalizations
(Kullback-Leibler, KL; Energy Score, EnergyS; and the Multivariate Asymmetric Loss Function, MALF). We
derived and expressed all the loss functions in terms of heritability and tested them on a real wheat dataset
for one cycle of selection and in a simulated selection program. The performance of each univariate loss
function was compared with the standard method of selection (Std) that does not use loss functions. We
compared the performance in terms of the selection response and the decrease in the population’s genetic
variance during recurrent breeding cycles. Results suggest that it is possible to obtain better performance in
a long-term breeding program using the single-trait scheme by selecting 30% of the best individuals in each
cycle but not by selecting 10% of the best individuals. For the multi-trait approach, results show that the
population mean for all traits under consideration had positive gains, even though two of the traits were
negatively correlated. The corresponding population variances were not statistically different from the
different loss function during the 10th selection cycle. Using the loss function should be a useful criterion
when selecting the candidates for selection for the next breeding cycle.
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The breeding process consists of selecting individuals for crossing, each
of which has specific traits of interest. Crossing allows alleles to be
exchanged between the parents so that diverse individuals are observed
in the progeny of future generations. Conventional phenotypic and
pedigree breeding is based on truncated selection of the best performing
parents, which are intermated to form the next improved population.

Candidates are selected based on the breeding value (BV) and genetic
merits of single ormultiple traits, and decisions aremade based on their
phenotypic performance in progeny field trials, greenhouse trials,
laboratories, etc. Meanwhile, in GS-assisted breeding, all molecular
markers are used to predict the BV of the candidates for selection in
a population that has been genotyped but not phenotyped (Meuwissen
et al., 2001). The main advantages of GS over phenotypic and pedigree-
based selection methods are that GS reduces the cost per cycle and
increases time efficiency for variety development by shortening the
breeding cycle (Crossa et al., 2017).

Inbreeding, decisionsonwhich individuals to select and intermate to
form the improved population are crucial. For a single trait, the selection
differential (SÞ is the difference between the mean of the selected par-
ents (ms) and the mean of the base population (m1), whereas the selec-
tion response (R) is the difference between the mean of the offspring
(m2) of the selected parents and m1: Therefore, R ¼ h2S, where h2 is
the narrow-sense heritability of the trait of interest (Bos and Caligari
2008). Under h2 � 1; the mean of the offspring of the selected parents

Copyright © 2018 Villar-Hernández et al.
doi: https://doi.org/10.1534/g3.118.200430
Manuscript received May 16, 2018; accepted for publication July 16, 2018;
published Early Online July 18, 2018.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
1Corresponding authors: Colegio de Postgraduados, Montecillos, Edo. de México,
México E-mail: sergiop@colpos.mx; and Biometrics and Statistics Unit, Genetic
Resources Program, International Maize and Wheat Improvement Center
(CIMMYT), Apdo. Postal 6-641, 06600, México, D.F, México. E-mail: j.crossa@
cgiar.org

Volume 8 | September 2018 | 3019

http://orcid.org/0000-0002-5862-0056
http://orcid.org/0000-0002-1605-0817
http://orcid.org/0000-0001-9429-5855
https://doi.org/10.1534/g3.118.200430
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:sergiop@colpos.mx
mailto:j.crossa@cgiar.org
mailto:j.crossa@cgiar.org


tends to the mean of the selected parents and, therefore, R�S, whereas
for small h2 � 0, the mean of the offspring of the selected parents tends
to the mean of the base population and thus R,,S. Therefore, the
selection response enables breeders to estimate the expected selection
progress before carrying it out (Costa et al., 2008). When selection is
applied to improve the economic value and genetic merits of a crop,
plant breeding programs are applied to several traits simultaneously
and not just to one trait (Falconer and Mackay 1996).

Plant breedingdecisions regardingwhich individuals to select for the
next cycle have associated risks. The decisionswill be associatedwith the
losses (or gains) in the response to selection (genetic gains); ideally, we
want tomaximize the genetic gainswithminimum risk.Minimizing the
risk andmaximizing the genetic gainswhen selecting the parentsmay be
achieved by different methods. Most of the work for selecting the best
parents to cross is by truncation. As a result, the subset of individuals
from the base population that will be parents for the next selection cycle
follows a truncated distribution. However, anotherway to select parents
for crossing is to optimize a subset of parents using pedigree based on
co-ancestry information and additive genetic values (Shepherd and
Kinghorn 1998). An approach that seeks to minimize inbreeding and
co-ancestry in the context of a quadratic optimization problem was
proposed by Wray and Goddard (1994) and Brisbane and Gibson
(1995).

Recently, Akdemir and Sánchez (2016) developed a genetic algo-
rithm that optimizes genomic mating between parents under GS; they
developed a measure called the risk of a mating plan and used it
to minimize a function that combines measures of inbreeding with
the risk function. Another decision approach applied to optimize the
selection of a set of donor parents for the introgression of alleles to
recipient individuals was presented by Han et al. (2017); the authors
proposed framing this introgression process as an algorithm that can be
mathematically formulated and optimized.

As mentioned, truncated selection and optimizing genetic mating
systemsaredecisionproblems that aremadeunderuncertainty.Another
approach for selecting the candidates in a single-trait or multi-trait
setting is to assess the cost of that decision using a loss function (LF),
which ensures the highest profitability given the user’s preferences, that
is, by maximizing R. The LF may take into account, among other
factors, the correlation between traits, and the mean and variance of
those traits, or it may focus on minimizing the distance between the
mean of the (theoretical) parental distribution and the mean of the
candidates (that is, maximizing R). Decisions made during GS are
particularly important because, for a few selection cycles, the only tool
available to make selections is based only on the predicted BV of the
candidates for selection without observing them in field trials, etc.
Genomic prediction computes the BV of the unobserved (genotyped)
individuals (testing population) using the phenotypic and genotypic
data of their parents, ranks the best predicted BV and selects the top,
say, 10%. In a recent study, Blondel et al. (2018) proposed ranking lines
according to their BVby giving the preference to regressionmodels that
assign a high rank to lines with high BV.

In a Bayesian framework, the problemof selecting the best parents is
concerned with minimizing the posterior expected loss. Suppose that
someunknownparameter indexes the statisticalmodel of the observable
trait of interest, and the uncertainty about the parameter is represented
byapriordistribution. After thedataareobserved, theuncertaintyabout
model parameters is formally quantified in the posterior predictive
distribution of the BV. However, in phenotypic and genomic selection,
decisions are made by regarding just the ranking of the candidates
predicted for each trait and disregarding the uncertainty attached to the
prediction. Here is where LFs play a role in conventional phenotypic or

GS, because the breeder’s decisions should be based on both criteria, the
whole posterior predictive distributions of BV and the loss attached
to the selection of a parent or a set of parents for upcoming selection
cycles.

Several divergences between the distributions of candidates and the
parents’may be used as LF. As previously pointed out, those candidates
whose distributions are closer to the theoretical parental distribution
will have the lowest loss (higher R), and the decision is to advance those
lines in a breeding program because they reach the desired mean and
keep the genetic variance (high h2). For example, the Kullback-Leibler
(KL) (Kullback and Leibler 1951) LF measures how two probability
distributions diverge, and when the two distributions match, the KL is
zero. Thus, given the available phenotypic and genomic information,
selecting candidates using this approach should be better than using
solely the point estimates of BV because it takes into account all the
associated uncertainty, namely, the uncertainty due to the estimation of
model parameters and the prediction of the BV. Another LF that could
be used when selecting candidates in conventional and GS breeding is
the Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery
2007) that reflects the distance between the cumulative distributions
of two random variables. LFs, KL and CRPS are measures of the
divergence between the distributions of the parents (theoretical) and
the candidates, and could be used in both single-trait and multi-trait
settings; for instance, the Energy distance or Energy Score (EnergyS) is
the multivariate CRPS defined in terms of distributions of random
vectors (Székely and Rizzo 2013).

The KL and EnergyS methods are symmetric LFs, given that the
penaltiesdue to selectionof equidistantdistributions locatedon the right
andonthe leftof the target theoreticaldistributionareequal.However, in
plant breeding, distributions with high density on the right (or left,
depending on the trait of interest) of the target distribution [individuals
with superior values of the trait(s)] should be less penalized because they
are the individualsof interest to thebreeder(incase the trait tobe selected
should increase).Thus, asymmetricLFs shouldplay an important role in
plantbreedingbecause those individualswithBVdistributedon the right
and close to the parents’ distribution should be less penalized. A simple
asymmetric LF is the linear-linear (LinLin) function (Berk, 2011),
which is linear on both sides of the target distribution but with different
slopes. A generalization of the LinLin function in a multivariate setting
is the Multivariate Asymmetric LF (MALF) (Komunjer and Owyang
2011), which is a function of the distance between predicted BV of
individuals’ and parents’ means and a parameter that controls the de-
gree of asymmetry.

Based on the previous considerations, in this study we introduce
uncertainty elements related to the decisions made when selecting
parents for GS-assisted breeding by using LFs where the space of
decisions (i.e., candidates for selection) is the subset of individuals
whose BVs exceed some level of truncation on the base population.
The main objective of this study was to show how Bayesian decision
theory can be used to select parents for the next breeding cycle
by minimizing the expected posterior divergence between the distribu-
tion of the candidates and the parental distribution and therefore max-
imizing the expected response to selection (R) given the phenotypic,
genotypic and genomic information at hand. The specific objectives of
this study are: (1) to present a summary of the Bayesian decision theory
framework adapted to the problem of selecting the parents for the next
GS selection cycle; (2) to describe various univariate and their multi-
variate generalizations LF; and (3) to compare the ranking of the top
10% and 30% of the candidate lines selected using single-trait and
multi-trait LF vs. not using LFs from simulated and real wheat data.
The connection between the LFs and the genetic gains is shown when
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deriving the LFs as functions of response to selection (R), selection
differential (S), intensity of selection (i), and heritability (h2Þ.

MATERIALS AND METHODS

A decision problem
A decision problem is defined in terms of an outcome space, an action
space, and an LF (Dawid 2007). Broadly defined, the goal of decision
theory is to help choose among actions whose consequences cannot be
completely anticipated, typically because they depend on some future
or unknown state of the world; in our framework, the actions are the
choices of the offspring that will be the parents in the next breeding
cycle, which depend on the unknown BVs to be predicted. Expected
loss theory handles this choice by assigning a quantitative loss to each
decision, a probability to each state of the world, and then selecting an
action that minimizes the expected value of the resulting loss. This idea
has proven to be a widely applicable description of rational behavior
(Parmigiani and Inoue 2009).

Let A be the action space, and a 2 A be an action. No action can
be taken without potential losses. The LF is denoted by Lðu; aÞ and
represents the associated penalty when a decision maker takes action
a 2 A , and the real state of nature is u 2 Q. In a Bayesian statistical
framework, the expected loss is the expectation of the LF with respect to
the posterior measure, i.e., EujXLða; uÞ ¼ R

Q

Lðu; aÞpðujxÞdu: When

comparing two actions, a1 and a2, after data X have been observed, the
preferred action is the one for which the posterior expected loss is
smaller. An a�; the action that minimizes the posterior expected loss
is called a Bayes action.

Loss functions in GS
In our particular case, the action space comprises the set of candidate
lines for selection; we expect to assign a loss given our preferences, and
then select the best individuals based on the expected loss. To explain the
idea of selection under the decision theory approach, we first focused on
a single quantitative trait where three LFs are proposed. In addition, we
focused on traits whose phenotypic values we wanted to increase in
successive selection cycles. Figure 1 illustrates the idea of selection
under LFs for a univariate trait; Figure 1a depicts the distribution of
the base population that is truncated at yc, meaning that the selected

individuals will have mean ms. Parameters yc and ms are essential for
defining the LF. Figure 1b depicts the three LFs we will describe later;
these three functions are minimized when the means of selected
candidates is close toms, which reflects breeders’ preferences for those
individuals with higher response to selection. The gray lines show the
theoretical distribution of the trait of interest for individuals accord-
ing to the breeder’s preference, as well as three possible distributions
of candidates. The distribution of the selected candidate is in red
because its mean is the closest to ms (i.e., higher response to selection)
with almost the same variance of the base population; that is, under
normality, the divergence between the truncated distribution and
the distribution of the selected candidate is the lowest. This idea
can be generalized to a multi-trait setting. Below we describe three
LFs that we used when selecting candidates to be parents of the next
generation.

Univariate Kullback-Leibler (KL) loss function
The KL divergence reflects how different two probability distributions
are. The expected loss of information will be minimal if the two
distributions approach each other, and it will be zero if they are
identical. Therefore, we can measure how close the distribution of
the candidates’ BVs is to the hypothetical parental distribution.

Let Y be a random variable that represents the phenotypic value of
a trait of interest in the base population andY � Nðm1;s

2Þ; if selection
is by truncation (i.e., those realizations of Y falling above a threshold
value yc will be the parents of the next breeding cycle), then Ys is the
truncated random variable resulting from left truncation at yc, which
represent the phenotypic values of the selected parents. Fromproperties
of normal distribution, Ys � NTðm1;s

2; a ¼ yc; b ¼ NÞ, where NT

denotes a truncated normal distribution with parameters m1;s
2; a

and b; but for simplicity, let’s denote Ys � NTðm1;s
2; ycÞ. The proba-

bility density function of Ys is pðyjm1;s
2; ycÞ ¼ 1

zs
ffiffiffiffi
2p

p e
21
2s2

ðy2m1Þ2 , for
yc # y#N, and z ¼ 12Fððyc 2m1Þ=sÞ. Let Yo be a random vari-
able that represents the candidates’ phenotypic values. If we assume
normality, then Yo � Nðm2;s

2Þ. Note that, in order to keep the her-
itability of the trait, we are assuming that Y and Yo have different
means but the same variance. A measure of the divergence between
the distributions of Ys and Yo is given by the Kullback-Leibler
divergence,

Figure 1 A) Classic idea of se-
lection by truncation at yc . Loss
functions need to be minimized
at ms in order to favor lines with
high response to selection. Los-
ses were standardized by sub-
tracting the minimum value for
representation. Loss functions
Kullback-Leibler (KL) and Con-
tinuous Ranked Probability Score
(CRPS) are symmetric on both
sides of target ms, while LinLin
loss is asymmetric. B) The solid
line in black represents the base
population, the solid gray line
corresponds to the truncated
distribution after censoring at yc

representing the breeder’s preferences. Dashed lines are theoretical distributions of three possible candidates. The candidates’ distribution
with mean close to the theoretical ms (the greater R   red dashed line) and variance similar to that of the parent distribution has the minimum
loss.
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DKLðFYo; FYsÞ ¼
Z N

yc
log

NTðm1;s
2; ycÞ

Nðm2;s
2Þ NTðm1;s

2; ycÞdy; (1)

which we want to minimize in the breeding selection framework.
After evaluating the integral in (1) and simplifying (seeAppendixA),

the KL loss is given by:

DKLðFYo; FYsÞ ¼ 2 logðzÞ þ 1
2s2

�ðmS2m2Þ2 2 ðmS2m1Þ2
�
; (2)

where mS is the mean of the truncated normal distribution and equal

to mS ¼ Eðyjy$ ycÞ ¼ m1 þ s fððyc 2m1Þ=sÞ
12Fððyc 2m1Þ=sÞ
h i

; and f and F denote

the pdf (probability density function) and cdf (cumulative distribution
function) of a standard Gaussian random variable, respectively.
By reordering some terms, Equation (2) can be alternatively formu-
lated as:

DKLðFYo; FYsÞ ¼ log
1

Pr
�
y. yc

�þ 1
2

(
ðS2RÞ2

s2 2 i2
)

(3a)

¼ log
1

Pr
�
y. yc

�þ 1
2

�
i2ðh2ðh2 2 2ÞÞ� (3b)

where S ¼ mS 2m1 is the selection differential, R ¼ m2 2m1 is the
selection response, and i ¼ S=s is the selection intensity. The second
term on the right-hand side of Equation (3a) implies that when R
approaches S (increased genetic gains) and the selection intensity
increases, the divergence between the truncated distribution and
the candidate’s distribution decreases. That is, DKLðFYo; FYsÞ depends
on the intensity of selection and is a decreasing function of h2 (3b).

Multivariate Kullback-Leibler (KL) loss function
In GS there are usually many traits of interest for which multivariate
normality is assumed. As in the single-trait case, we can compute the
divergence between two multivariate distributions and capture all the
uncertainty inmultivariate BVs. Then, assumingmultivariate normality
for phenotypic values of the traits under consideration, the KL di-
vergence accounts for the association between traits, which improves
and simplifies the decision procedure, given that all traits share some
degree of association and are rarely independent.

Let Y ¼ ðY1;Y2; . . . ;YtÞ’ 2 ℝt be the random vector of the phe-
notypic values of t traits of interest in the base population. We assume
that Y � MVNðm1;PÞ, where m1 ¼ ðm1;m2; . . . ;mtÞ’ is the vector
of means in the parental population and P is a positive definitive
variance-covariance matrix that captures the association between
traits. Now, let Y s ¼ ðYs1;Ys2; . . . ;YstÞ’ 2 ℝt be the random vector
resulting from left truncation at yc ¼ ðyc1; yc2; . . . ; yctÞ’ 2 ℝt . Then
Y s � TMVNðm1;P; ycÞ, where TMVN denotes the Truncated Multi-
variate Normal distribution. The pdf of Y s is

p
�
yjm1;P; yc

�
¼ ð2pÞ2t

2 jK j21
2exp

	
2
1
2
ðy2m1Þ0P21ðy2m1Þ


�
1
z

�
;

y 2 Y c ¼ fy 2 ℝt : y$ ycg; where the normalization factor is
z ¼ Prðy$ ycÞ. Now, let Yo ¼ ðYo1;Yo2; . . . ;YotÞ’ 2 ℝt be the ran-
dom vector of the phenotypic values of a candidate, and assume that
Yo � MVNðm2;PÞ. Let’s define S ¼ ðms 2m1Þ’t·1 as the differential
selection vector and R ¼ ðm2 2m1Þ’t·1 ¼ SGP21 as the vector of the
selection response, where G is the genotypic covariance matrix. As in

the univariate approach, the multivariate LF based on themultivariate
KL divergence is given by (see Appendix A):

DKLðFYo; FY sÞ ¼
Z N

yc

log
TMVNðm1;P; ycÞ
MVNðm2; PÞ TMVNðm1;P; ycÞdy (4a)

¼ logðzÞ þ 1
2
S’
h�
I2GP21�’P21�I2GP21�2P21

i
S:

(4b)

Thus, as the phenotypic and genotypic covariance matrices tend to
explain the same amount of variation and association between traits,
I2GP21 ¼ 0, the divergence between the parents’ distribution and
the candidates’ distribution tends to decrease. Note that the expres-
sion GP21 is the matrix equivalent of multi-trait heritability (the
ratio of the genetic variance in the numerator and the phenotypic
variance in the denominator); thus, when GP21 ¼ I, the heritability
of each trait is 1 and R ¼ S and m2 ¼ ms.

As in the univariate approach, the multivariate KL loss contains the
term�logðzÞ that indicates that the joint probability ofYo falling above
yc has less penalty.

Note thatP is expressed in terms of its inverse; therefore, those traits
with high variance induce a lower penalty, and there is a compromise
between the gain from selection and keeping the variability. KL diver-
gence is an appropriate way of selecting because it not only captures the
association between traits, but also assigns weights to each trait auto-
matically, thus reducing subjectivism in GS. In addition, Equation (4b)
implies that traits with higher variance will have priority in a GS pro-
gram andwill directly preserve the genetic variance asmuch as possible.
Univariate and multivariate KL LFs are represented in Figure 1a (red
lines) and Fig. B1a (Appendix B), respectively.

The Continuous Ranked Probability Score and its
generalization, the Energy Score
TheContinuous Ranked Probability Score (CRPS) function is discussed
in detail in Gneiting and Raftery (2007) and Hersbach (2000). The
CRPS is a metric that reflects the distance between two random vari-
ables in terms of their cumulative distributions. The CRPS in GS acts by
choosing candidate lines whose (cumulative) BV distributions are as
close as possible to the hypothetical parental distribution that reflects
the breeder’s preferences. Nevertheless, themain difference betweenKL
divergence and CRPS is that the latter is less restrictive with lines whose
distributions do not perfectly match the distribution that reflects our
preferences, as can be seen in Figure 1a (green line).

Keeping the normality assumption, let Yo be a normal random
variable with mean m2 and variance s2; there is a closed form of this
LF (Appendix A), which in our context is defined as

CRPSðFYo;msÞ ¼ 2s


1ffiffiffiffi
p

p 2 2f
�ms 2m2

s

�
2
�ms2m2

s

�

3
�
2F

�ms2m2

s

�
2 1

��
(5a)

¼ 2s


1ffiffiffiffi
p

p 2 2f

�
S2R
s

�
2

�
S2R
s

��
2F

�
S2R
s

�
2 1

��
(5b)

¼ 2s


1ffiffiffiffi
p

p 2 2f
�
ið12 h2Þ�2 ið12 h2Þ�2Fðið12 h2ÞÞ2 1

��
(5c)
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wheref andF denote the pdf and cdf of a standard Gaussian variable,
respectively. Again, CRPS increases with the intensity of selection and
is a decreasing function of heritability.

When the interest is in multiple traits, we can use the Energy Score
(EnergyS), which generalizes the univariateCRPS (Gneiting andRaftery
2007; Székely and Rizzo 2013) and allows a direct comparison between
multi-traits. The Energy Score in terms of a genomic selection goal is
expressed as

ESðFY o;msÞ ¼ EFkYo 2msk2
1
2
EFkYo 2Yo’k (6)

where k � k denote the Euclidean norm, Yo and ms were previously
defined, and Yo’ denotes an independent random vector with the
same distribution as Yo, i.e., FYo. In contrast to KL divergence, with
the CRPS and the Energy Score we can avoid the normality assump-
tion while holding the assumption that traits are on an interval scale.
This is a big advantage given that frequently the traits of interest in GS
are not Gaussian. The EnergyS is depicted in Fig. B1b (Appendix B).

An asymmetric loss function in univariate and
multivariate settings
At this point, the previous LFs that we adapted to the GS problem are all
symmetric. Therefore, the penalties on the right- and left-hand side of
the target at the same distance are equal. Nevertheless, it is natural to
think that in conventional and GS plant breeding, those values of Yo

greater than yc might be less penalized if the goal is to increase pheno-
typic values. Here is where an asymmetric LF plays a key role because it
assigns very small penalties to those individuals whose BV distributions
are to the right of the hypothetical parental distribution. One simple
asymmetric LF is the linear-linear loss (LinLin), whose behavior is
linear on both sides of the target; it has the a 2 ð0; 1Þ term that induces
different penalties (Berk 2011) and is the loss of the quantile regression.
The LinLin LF is defined as

LðFYo;aÞ ¼ ða2 1ðe, 0ÞÞe (7)

where e ¼ ms 2m2 ¼ S2R ¼ sið12 h2Þ; then this LF is also a de-
creasing function of h2. LinLin loss is depicted in Figure 1a (blue line).
Note that when a ¼ 0:5, the LinLin loss reduces to a symmetric linear
LF.

In the multi-trait setting, we define e ¼ ðms 2m2Þ’t·1 ¼ S2R ¼
SðI2GK21Þ as the vector of deviations of m2 from ms and the multi-
variate LinLin function is 0 when phenotypic and genotypic matrices
are identical, GK21 ¼ I. The Multivariate Asymmetric Loss Function
(MALF) (Komunjer and Owyang 2011) is the generalization of LinLin
LF. For GS purposes, it is expressed as

L2ðFY o;ms; tÞ ¼
�
∥e∥2 þ t

0
e
�
∥e∥2 (8)

where ∥e∥2 ¼ ðe12 þ e22 þ . . .þ et2Þ
1
2 is the Euclidean norm and t

controls the degree of asymmetry. In a simplified version with the
L1 2 norm, Equation (8) is expressed as

L1ðFY o;ms; tÞ ¼ jej þ t
0
e: (9)

In the univariate case, letting t ¼ 2a2 1, Equation (9) reduces to
twice the LinLin LF, i.e., L1ðe; tÞ ¼ 2Lðe;aÞ. Both univariate and
multivariate LinLin losses favor selecting those lines with distribu-
tions similar to the hypothetical parental distribution (which reflects
the breeder’s preferences) as much as possible. The MALF is depicted
in Fig. B1c (Appendix B).

Posterior expected loss and their approximations
Each of the LFs proposed above can be used in conventional selection
and/orGS to select the best lines according to our preferences. Belowwe
briefly explain the formal approach used to evaluate posterior mean of
the LFs proposed above. Given a prediction model (for example, Multi
Trait Model (MTM) or Bayesian Ridge Regression (BRR) for a single
trait), we have the joint posterior distribution

pðujy;XÞ} Likðujy; XÞpðuÞ; (10)

where Likðujy; XÞ is the likelihood function, and pðuÞ is the prior
distribution for u, and elements of u are an overall mean (m), marker
effects or any other effects (b), and the variance-covariance matrix
(P) captures the association between traits (or s2, the phenotypic
variance in a univariate framework), y is a matrix (or vector in a
single-trait setting) containing phenotypic records, and X represents
the incidence matrix according to the multi-trait or single-trait
model.

LetYo be the random vector of the phenotypic values of a candidate
with a covariate vector of markers xo and distribution FYoðyo; uÞ. The
posterior predictive density corresponding to FYo is given by

f
�
yojxo; y;X

� ¼ Z
u2Q

f
�
yoju; x

0
o

�
pðujy;XÞ@u: (11)

Hence, given the observed phenotypic and genomic data (y;X; xo),
whatever we can predict about the candidate is given by (11) and any
choice of the candidates for selection must take into account the
uncertainty described by f ðyojxo; y;XÞ.

According to the Bayesian decision theory, the optimal choice is one
that minimizes the posterior expected loss. In this case, once the
phenotypical values, y, and the matrix of covariables, X, are observed,
we have to average the LF over all the unknowns in the model, that is, u
and the observable but unknown phenotypic value of the o-th candi-
date. Given that ms is computed as a function of m, b and P (or s2),
hereinafter we will denote all LFs described above as LðFYo; uÞ. Thus,
the posterior expected value of the LF for candidate o is given by

�Lo ¼
Z

yo2Y

Z
u2Q

LðFYo; uÞf
�
yoju; x

0
o

�
pðujy;XÞ@udyo: (12)

Then, for each o line, we have a posterior expected loss �Lo and we will
select those lines with the lowest posterior expected losses.

The expectedvalueof theLFs given in (2), (5a) and (7), aswell as their
generalizations in themultivariate context (4b), (6), and (9) are approx-
imated byMarkov ChainMonte Carlo integration by takingm samples
from the joint posterior distributions for m1;m2;ms;s

2, Yo (in the
univariate context) or for vectors m1; m2;ms;P, Yo (in the multivar-
iate context).

Application of univariate and multivariate loss functions
in a wheat dataset
To illustrate the application of univariate and multivariate LFs in GS,
we used 320 spring wheat lines with records on four traits: grain yield
(GY), thousand-kernel weight (TKW), Zn and Fe concentrations in
the grain (GZnC and GFeC, respectively) from CIMMYT’s biofortifi-
cation breeding program and genotyped with DaRT markers (Velu
et al. 2016). All traits are positively but low correlated; for example,
GY had a correlation of 0.21 with TKW but zero with the other traits,
whereas GZnC and GFeC had a 0.26 correlation.
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For univariate LFs, we used Bayesian Ridge Regression (BRR) and the
BGLRR package (de los Campos and Pérez Rodríguez 2015) in order to
obtain posterior distributions of parameters and quantities of interest.
We selected the top 10% (32 lines) of the wheat lines whose posterior
expected losses were the minimum using the three univariate LFs dis-
cussed above (KL, CRPS, and LinLin). Results were contrasted with the
top 10% based solely on punctual predicted BVs (Std), i.e., by selecting
individuals with the highest punctual predicted BVs. For multivariate
LFs (KL, Energy Score and MALF), we fitted the MTM model (de los
Campos and Grüneberg 2016). The aim here was to select the “best”
lines whose performance across all traits is high. For asymmetric LFs
(LinLin andMALF), we fixed the value of a (or t) equal to 0.9 (accord-
ing to selection pressure) in order to impose big penalties on those
individuals far to the left of the target point; on the other hand, lower
penalties were given to those that were equal or greater.

Application of univariate and multivariate loss functions
in a simulation scheme
Simulations were used to evaluate the three univariate and multivariate
LFs discussed above. In the univariate scenario, we compared results
obtained with the selection based on the standard method (Std). In the
multivariate scenario, we contrasted results of different LFs. A recurrent
selection scheme was used in which the best individuals were selected
based on their merit regarding a single quantitative trait or three
correlated quantitative traits, and measured through the LFs.

Traits and heritabilities
In the univariate simulation, one trait was genetically simulated,
where the gene effects were sampled from a gamma distribution with
shape and scale parameters equal to two. Phenotypes were simulated
by summing up all true genotypic values and adding a residual effect
consistent with the expected heritability fixed at 0.5. That is,

yi ¼
Pp
i¼1

xijbj þ ei ¼ TBVsi þ ei, where p is the number of genes,

and xij is the genotype for the j-th gene of the i-line (coded as -1
and 1 for the two homozygotes, respectively). The environmental
noise was sampled as ei � Nð0; s2

gð12 h2Þ=h2 Þ, where s2
g is the

genetic variance.
In themulti-trait simulation, three correlatedquantitative traitswere

genetically simulated assuminga full pleiotropicmodel. Thiswas carried
out by randomly sampling gene effects for all segregating sites from a
multivariate normal distributionwith zeromean and a previously stated
variance-covariance, to ensure a genetic correlation at first generation of
-0.37 between trait 1 (T1) and trait 2 (T2); a genetic correlation of 0.34
between traits 2 (T2) and 3 (T3); and a genetic correlation of -0.02
between T1 and T3. To mimic complex and simple quantitative traits,
narrow-sense heritabilities of 0.3 and 0.6 were assumed for all traits.
Hereinafter, we will always refer to the traits in terms of narrow-sense
heritability (h2), given that in the simulation scheme we simulated a
purely additive model and did not include dominance effects.

Selection cycles
The forward-in-time component represented ten cycles of a classic
recurrent selection scheme in which the breeder has the ability to select
based on the genomic predictions of the breeding values.

In the multivariate LFs framework, genomic predictions of the
evaluated lines were carried out using the Multi-Trait Model (MTM)
(de los Campos and Grüneberg 2016), where 70% and 30% of the lines
were used as the training and testing sets (candidates), respectively. For
single-trait simulation, genomic predictions were made using Bayesian
Ridge Regression (BRR).

For multi-trait simulation, the simulated phenotypic values were
modeled assuming an intercept for each trait as a fixed effect and the
predicted breeding value for each line in each trait as random. As in the
wheat dataset, we fitted the same MTM model for the multi-trait
simulation. In both the univariate and multi-trait simulation, posterior
distributions of the predicted breeding values of the candidate lines were
ranked according to each selection process (the univariate and multi-
variate LFs described above). For all LFs described above, approxima-
tions to the posterior expected loss were obtained considering 10,000
MCMCsamples after a burn-in period of 30,000 samples. For univariate
simulation, the top 10% and the top 30% of the lines in the candidate set
were selected via their minimum posterior expected losses, while in the
multi-trait simulation scheme, the top 10% of the lines in the candidate
set were selected with minimum posterior expected losses.

In the LinLin LF and its generalizationMALF, we fixed the value of a
or t equal to 0.9 or 0.7 (depending on whether the selection pressure was
10% or 30%) in order to impose big penalties on those individuals in the
candidate set that were on the far left-hand side of the target point, while
lower penalties were given to those that were equal or greater.

Results are presented as summaries of 20 replicates for each heri-
tability, selection pressure and LF scenario. Individuals selected as
parents will have the highest possible BV and the lowest possible value
of the corresponding LFs. The simulations were implemented in a C++
program that was compiled, linked and executed within the R version
3.3.3 (R Development Core Team 2017) through the facilities provided
by the Rcpp package (Eddelbuettel and Francois 2011).

DATA AVAILABILITY
Thedurumwheatdata includingclean imputedmarkersandphenotypic
information for the traits can be found in the following link: http://
genomics.cimmyt.org/Decision_theory_GS/

RESULTS

Univariate loss functions for wheat data
The boxplots in Figure 2a-d correspond to the predictive BVs of the top
10% spring wheat lines using univariate LFs (KL, CRPS, and LinLin)
and the Std method (not using LFs) for the four traits. In general, no
changes in the mean of selected candidates of the traits are found in the
top 10% of the wheat lines because only a few of them (numbers in
parentheses) changed for each LF, as compared with the Std method.
Note that we only evaluated the selection differential because we could
not cross the selected lines to compute the selection response as we did
in the simulation study. In fact, KL was the only LF that had four
different selected lines for traits GY, TKW and GFeC and only one line
for trait GZnC. In contrast, LinLin loss selected almost the same lines as
the Std method, given that traits GY and GFeC only diverged in one
line, trait TKW diverged in three individuals, and in trait GZnC no
different individuals were selected. CRPS LF performed between KL
and LinLin by selecting 3, 1, 1, and 2 lines for traits GY, TKW, GZnC
and GFeC, respectively, which were different than the lines selected by
Std. Despite the fact that only a few lines with BV ranked differently
under the LFs vs. the Std method, the overall effect of those different
selected lines can change over subsequent selection cycles.

Multivariate loss functions for wheat data
Figure 3a-d depicts the boxplot of predictive BVs of selected individuals
using multivariate LFs, EnergyS, KL and MALF. The selected candi-
dates are the top 10% of lines selected for the four traits.

For the complex trait GY, which has a 0.21 sample phenotypic
correlationwith trait TKWand zero correlationwith the other traits, the
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KLwas the best LF and themean of the selected lineswas superior to the
population mean. The mean GY of the top 10% of the lines developed
using MALF ranked second and the top 10% of the lines selected by
EnergyS multivariate LF were the worst of the three LFs that were not

better than themean of the base population. For trait TKW, the top 10%
of the best lines in the three LFswere similar and superior to themeanof
the original population. For trait GZnC, EnergyS and MALF LFs pro-
duced the best lines, which were slightly better than those produced

Figure 3 Multivariate real data.
Boxplots of estimated breeding
values for a real spring wheat data-
set of the top 10% of selected lines
for four traits according to the
multivariate loss functions Kullback-
Leibler (KL), Energy Score (EnergyS)
and Multivariate Asymmetric Loss
Function (MALF) for A) grain yield
(GY), B) thousand-kernel weight
(TKW), C) Zn concentration in grain
(GZnC), and D) Fe concentration in
grain (GFeC). Brown dots indicate
the mean of all lines.

Figure 2 Univariate real data. Box-
plots of estimated breeding values
for a real wheat dataset (with four
traits) of the top 10% of selected
lines with three univariate loss func-
tions Kullback-Leibler (KL), Continu-
ous Ranked Probability Score (CRPS)
and Linear-Linear loss (LinLin), and
breeding values of the lines selected
under the standard method (Std) for
A) Grain Yield (GY), B) thousand-
kernel weight (TKW), C) Zn concen-
tration in grain (GZnC), and D) Fe
concentration in grain (GFeC). Val-
ues in parentheses are the lines that
the loss functions selected but the
Std did not.
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by the KL LF. Finally, for trait GFeC, the three LFs produced the top
10% of lines with similar Fe concentration in the grain.

The best LF was the KL loss, given that it selected individuals that, on
average, performed better than the estimated population mean in all
traits. Results of Hotelling’s two sample T2-tests indicate that the mean
of the selected individuals between KL and EnergyS was statistically
different at a 0.05 confidence level for error type I. The same test
suggested no differences when contrasting KL vs. MALF and MALF
vs. Energy. On the other hand, we computed the percentage of lines that
do not intersect in each combination of LFs. For example, between KL
and EnergyS LFs, 38% (12 of 32) of the lines are different between both
LFs. Between KL andMALF, 34% (11 of 32) of the lines are different. In
contrast, EnergyS vs.MALF had only 3% (1 of 32) of different selected
lines between both LFs. By crossing the selected candidates from each of
the LFs and repeating the procedure over selection cycles, we would
expect a gain in the mean of all traits, with better performance, on
average, from the lines selected under the KL LF.

Univariate loss function for simulation data
In the following results of the univariate and multivariate simulation
framework, the population mean for each cycle was standardized
according to ðmi 2m1Þ=s1 ¼ Ri=s1. This is a no-dimensional quantity
wheremi represents the populationmean in cycle i,m1 is the population
mean of the first cycle,Ri is the selection response in cycle iwith respect

to the first, and s1 is the population standard deviation of cycle 1. For
the variance population, we scaled the variances of cycle i by the var-
iances of the first cycle, i.e., s2

i =s
2
1.

Figures 4a-b show the trends of the average standardized population
mean for the univariate simulation scheme separating cycles 1-5 and
cycles 5-10 for better visualization. The scale population variance is
depicted in Figures 5a-b. These figures summarize the results when
selecting the top 10% of candidates with minimum posterior expected
losses. There were no significant changes in the population means and
population variances when comparing LFs vs. the conventional (Std)
selection, i.e., LFs performed similarly to Std. In contrast, when the
selected proportion was 30% of the candidates, there was a slight im-
provement using LFs as the selection program advanced, as depicted in
Figs. B2a-b (Appendix B) for the standardized population mean and in
Figs. B3a-b (Appendix B) for the scaled population variance.

The boxplots in Figure 6a and Figure B4a (Appendix B) depict the
mean of the 10-th selection cycle when the proportions of selected
individuals were 10% and 30%, respectively. When 10% were selected,
no differences were found in terms of the standardized response to
selection between LFs and the standard method. In contrast, when
30% were selected, the LFs performed better than the standard method
in terms of the average response to selection in the 10-th cycle. Table 1a
gives the t-test for comparing differences in the mean when selecting
10% of the lines under the univariate LFs vs. the standardmethod (Std),

Figure 5 Results of the univari-
ate simulation study. Scaled
population variance ðs2

i =s
2
1Þ for

breeding cycles 1 to 5 are illus-
trated in A), while cycles 5 to
10 are in B). In each selection
cycle, the top 10% were se-
lected using the Kullback-Lei-
bler (KL), the Continuous
Ranked Probability Score
(CRPS), and the Linear-Linear
(LinLin) loss functions, and lines
selected under the standard
method (Std). Selected lines
were crossed at each cycle to

recover the population size for upcoming selection cycles. s2
i and s2

1 are the population variance in cycle i and cycle 1, respectively. The black
vertical lines indicate the standard error of s2

i =s
2
1 under 20 replications of the simulation study.

Figure 4 Results of the univariate
simulation study. Standardized selection
response Ri=s1 ¼ ðmi 2m1Þ=s1 for
breeding cycles 1 to 5 are illus-
trated in A), while cycles 5 to
10 are in B). In each selection cycle,
the top 10% of lines with minimum
posterior expected losses were se-
lected using the Kullback-Leibler
loss function (KL), the Continuous
Ranked Probability Score (CRPS),
the Linear-Linear loss function (Lin-
Lin), and the standard method (Std).
Selected lines were crossed in each
cycle to recover the population size

for upcoming selection cycles. mi and Ri represent the population mean and the selection response, respectively, in cycle i; m1 and s1 are the
population mean and the population standard deviation, respectively, in cycle 1. The black vertical lines indicate the standard error of Ri=s1 under
20 replications of the simulation study.
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whereas Table 1b shows the same results but for the 30%. There were
significant differences among the population means of lines selected
under LF vs. those selected without employing any LF for the 30%.

The results of the variance of the final populations in cycle 10th are
shown in Figure 6b and Figure B4b (Appendix B) for 10% and 30%
of the selected individuals, respectively. When 10% were selected,
the boxplot in Figure 6b does not show any difference in the vari-
ance obtained under the LFs vs. the variance of the population using
the standard method. However, for the 30%, there were substantial
differences between variances of populations selected under the LFs
compared with those selected based solely on the mean of the breed-
ing values (Figure B4b, Appendix B). Tables 1c and 1d show the
t-test for comparing the mean of the population variance at the
10-th selection cycle when selecting 10% and 30% of the individuals.
The only case where the mean of the population variance of the lines
selected under the LF was statistically higher than the mean of the
population variance of the lines obtained using the standard method
was for KL and LinLin LFs when 30% of the individuals were
selected.

Multivariate loss functions for simulated data

The population mean: Figure 7 depicts the changes in the standard-
ized population mean for each trait when the heritabilities for all traits
were fixed at 0.3 (Figure 7a) and 0.6 (Figure 7b). For T1 with a
negative correlation with T2 and negligible association with T3, the
KL andMAFL LFs performed similarly with respect to the population
mean throughout the breeding cycles, and their performance was
better than the performance of the lines selected under EnergyS.
The mean percentage differences computed for the 10th cycle with
respect the first cycle for both heritability cases are shown in Table 2a.
For trait T1, KL gained 1.583% vs. 1.211% of the MALF LF for a
heritability of 0.3. On the other hand, EnergyS had a conservative
gain of 0.462%. For the second trait (T2), the three LFs had positive
performances. EnergyS had the best performance, with a final gain of
8.224% in the 10th cycle for a heritability of 0.3. In second and third
place were MALF and KL with gains of 6.493% and 6.441%, respec-
tively. Although the KL and MALF LFs had the smallest gains, the
sign of the gains was positive for all selection cycles. It is important to
note that the correlation between T1 and T2 was -0.37 and negligible

between T1 and T3. Finally, for trait T3 with a heritability of 0.3, the
performance of the population mean throughout the breeding cycles
was similar for all three LFs. The percentages of gain with respect to
the first cycle confirm these results. In descending order, the gains
were EnergyS (6.14%), KL (5.762%) and MALF (5.499%) for a heri-
tability of 0.3 (Table 2a).

When we fixed the heritabilities for all traits at 0.6, the results were
similar to those described above. Table 2a shows the mean of the
percent differences computed for the population mean in the 10th

cycle, taking the mean in the first cycle as a reference. For T1, those
differences were, in descending order, 3.318% (KL), 2.347% (MALF)
and 0.506% (EnergyS). For T2, EnergyS (9.819%) achieved the best
performance for the population mean, followed by the KL LF
(6.206%) and finally, MALF (5.721%). All LFs performed similarly
for T3, although the EnergyS and KL LFs had the highest gains:
7.291% and 6.935%, respectively. They were followed very closely
by MALF, with 5.842% of the cumulative gains at the end of the
simulated selection program.

n Table 1 Simulation univariate study. Student t-test of mean and
variance differences between the lines selected by the univariate
Kullback-Leibler (KL), Continuous Ranked Probability Score (CRPS)
and Linear-Linear (LinLin) loss functions vs. lines selected under
the standard selection method (Std), after 20 replications of the
simulated breeding program. The selected proportions were the
top 10% and top 30% of the candidates, and the means and
variances were compared at the 10th selection cycle

contrast

a) mean of top 10% b) mean of top 30%

t df p-value t df p-value

CRPS vs. Std 20.85 36 0.4 2.9 38 0.006*
KL vs. Std 20.11 38 0.914 1.7 37 0.088
Lin vs. Std 20.73 38 0.469 3.1 34 0.004*

contrast

c) variance of top 10% d) variance of top 30%

t df p-value t df p-value

CRPS vs. Std 20.1 36.6 0.917 1.3 38 0.198
KL vs. Std 20.9 33.8 0.355 2 37.8 0.052*
Lin vs. Std 0 34.5 0.973 3.1 37.2 0.003*

Figure 6 Results of the univar-
iate simulation study at the 10th

selection cycle for 10% of the
selected lines. A) boxplots of
the standardized selection re-
sponse; B) boxplots of the scale
population variance using the
Kullback-Leibler (KL), the Con-
tinuous Ranked Probability
Score (CRPS), the Linear-Linear
(LinLin) loss functions, and lines
selected under the standard
method (Std). The boxplots il-
lustrate the mean (white dots)
and median (black middle line)
of 20 replications of the simula-
tion study. R;s2;s2

1 and s1

were defined in Figs. 4 and 5.
Sub-indices refer to the 10th se-
lection cycle.
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The population variance: Figure 8 shows the averages of the scaled
population variance for all traits in each selection cycle when the her-
itabilities for all traits were set at 0.3 (Figure 8a) and 0.6 (Figure 8b).
Note that the decrease in the population variance was similar in all cases
(trait-LFs combinations). Table 2b shows the mean differences in the
percentages of population variance (not scaled) for each trait, com-
puted for the 10th breeding cycle taking the value of the first cycle as
a reference. For T1 and a heritability of 0.3, these differences were, in
descending order, -47.437% (MALF), -47.533% (EnergyS), and
-47.886% (KL) (Table 2b). For T2 and 0.3 heritability, the decreases
were -47.584% (EnergyS), -47.928% (MALF), and -48.128% (KL). Fi-
nally, the decreases in genetic variance for T3 and a 0.3 heritability for
the LFs were -47.820% (MALF), -50.287% (EnergyS), and -51.181%
(KL) (Table 2b). In general, these results show that the selection of

parents does not kill more variance between LFs, although LFs reported
different positive gains for the population mean of all traits.

When we fixed the heritability at 0.6 for all traits, the mean of
population variances performed similarly for all traits, reinforcing the idea
that the LFs proposed in this research do not kill more variance between
them, as shown in Figure 8b. The losses in variance percentages (not
scaled) computed in the last cycle with respect to the first selection cycle
show that, for T1, the reductions in genetic variance were -44.532% (KL),
-44.977% (MALF), and -45,256% (EnergyS) (Table 2b). For T2, the
reductions in genetic variance were -43.975% (KL), -45.451% (MALF),
and -46.618% (EnergyS). Finally, for T3, the reductions in genetic vari-
ance were -44.910% (MALF), -49.588% (KL), and -48.025% (EnergyS).
In summary, all multivariate LFs described in this study performed simi-
larly in reducing the genetic variance as the selection program advanced.

Figure 7 Results of the multivariate simulation study. A) Standardized population mean ðmi 2m1Þ=s1 ¼ Ri=s1 for the breeding cycles
when heritability for all traits was fixed at 0.3, and B) standardized population mean when heritability was 0.6 for all traits. In each
selection cycle, the top 10% of candidates were selected using the multivariate loss functions: Kullback-Leibler (KL), Energy Score
(EnergyS) and Multivariate Asymmetric Loss Function (MALF) to recover the population size for the upcoming breeding cycles. mi and Ri

correspond to the population mean and the selection response, respectively, in cycle i; m1 and s1 are the population mean and the
population standard deviation, respectively, in cycle 1. The black vertical lines indicate the standard error of Ri=s1 under 20 replications
of the simulation study.

n Table 2 Simulation multivariate study. Means of percentage differences of population means a) and for population variance b) in the
10th breeding cycle with respect to the first cycle for trait 1 (T1), trait 2 (T2) and trait 3 (T3) for lines selected under three multivariate loss
functions Kullback-Leibler (KL), Energy Score (EnergyS) and Multivariate Asymmetric Loss Function (MALF) (standard errors are in
parentheses). Heritability of 0.3 and 0.6 for all traits

a) b)

Loss T1 T2 T3 T1 T2 T3

h2 ¼ 0:3 KL 1.583 (0.343) 6.441 (0.387) 5.762 (0.120) -47.886 (1.678) 48.128 (1.506) -51.181 (1.370)
EnergyS 0.462 (0.332) 8.224 (0.477) 6.140 (0.173) -47.533 (1.146) -47.584 (1.372) -50.287 (1.327)
MALF 1.211 (0.264) 6.493 (0.344) 5.499 (0.139) -47.437 (1.221) -47.928 (1.496) -47.820 (1.352)

h2 ¼ 0:6 KL 3.318 (0.327) 6.206 (0.403) 6.935 (0.118) -44.532 (1.672) -43.975 (1.341) -49.588 (1.509)
EnergyS 0.506 (0.375) 9.819 (0.500) 7.291 (0.139) -45.256 (1.550) -46.618 (1.456) -48.025 (1.345)
MALF 2.347 (0.232) 5.721 (0.239) 5.842 (0.121) -44.977 (0.811) -45.451 (0.827) -44.910 (1.271)
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DISCUSSION
Theobjective in this studywas topropose a formalmethodology to select
the best performing parents for future selection cycles in a genomic
selection program. In a decision theoryproblem, LFs are themechanism
to penalize our potential decisions. InGS, LFs reflect our preferences for
individuals with the desired characteristics to ensure the highest genetic
progress. This approach is advantageous mainly when selection is
conducted in multi-trait settings, where some of the traits are either
positively or negatively correlated. Therefore, losses may be interpreted
as deviations from our goal of improving genetic progress. Lines with
posterior predictive distributions that are closer to the theoretical
distribution will have minimum losses.

For this reason, we proposed three univariate LFs (Kullback-Leibler,
CRPS and LinLin) and their multivariate generalizations (Kullback-
Leibler, EnergyScore, andMALF) toassistplantbreederswhenselecting
the best performing parents for future selection cycles from a candidate
set used in GS. The univariate and multivariate, symmetric and asym-
metric LFs were presented as decreasing functions of the heritability of
the traits(s). From this perspective, deviations between the distributions
of candidate parents and the theoretical distribution that reflects the
plant breeder’s preferences are seen as divergences. The previous sec-
tions presented the results obtained using a real dataset (wheat lines)
during one selection cycle, and in a simulation study scheme under the
univariate and multivariate LFs (single-trait and multi-trait). When
selecting a single trait, we compared the performance of the LFs with
the performance of the standard method of selection. The standard
selection method ranks individuals based on punctual predictions of
BVs. In the multi-trait simulation, we compared the performance of
multivariate LFs.

The results of the univariate simulation were encouraging given
that LFs performed better than the conventional method when the

selection pressure was not too restrictive (30%). In the less favorable
scenario, the LFs performed as well as the GS method that does not
employLFs (Std). Theseunivariate results allowus to generalize theuse
of LFs to themulti-trait framework. In themulti-trait problem, the LFs
can be considered as methods that balance the gains simultaneously.
However, this doesnotmean that LFs canattain themaximumpossible
gains for each trait, such as when selection operates on only one trait at
a time.

Addressing selection as a decision theory problem faces the re-
striction of multi-trait vs. single-trait selection; when some traits are
negatively correlated, the selected trait might reach its optimum value
while the other traits stay the same or move away from their optimum
values. It is important to note that our methodology allows re-
searchers to control parental distribution and thus induce selection
that favors some traits over others and restricts the selection of indi-
viduals for particular traits, as selection indices do when using re-
strictive selection indices. For instance, suppose that for T1, we do not
desire gains between selection cycles; it is enough to leave without
truncation the distribution for such a trait (yc ¼ 6N).

As previously stated, in the simulation studywe induced T1 and T2
with a negative correlation; thismeans that as the phenotypic values of
T1 increase, the phenotypic values of T2 decrease whenever the
selection works in favor of T1, and vice versa. In the case of T2 and
T3, the induced correlation was positive, whereas T1 and T3 were
independent of each other (no correlation). This setting was purposely
chosen to show that ourmethodologyworks even in theworst scenario.
Results indicate that LFs worked in favor of all traits, in spite of their
negative correlations; theEnergySworkedbetter forT2andT3 than for
T1, and in that sense, it is the least promising of the three multivariate
LFs. Further research on comparing the performance of LFs vs. se-
lection indices (SI) will be useful. Using SI to calibrate economic

Figure 8 Results of the multivariate simulation study. A) Scale population variance ðs2
i =s

2
1Þ for the breeding cycles when heritability for all traits

was fixed at 0.3, and B) scale population variance when heritability was 0.6 for all traits. In each selection cycle, the top 10% of candidates were
selected using the multivariate loss functions: Kullback-Leibler (KL), Energy Score (EnergyS) and Multivariate Asymmetric Loss Function (MALF) to
recover the population size for the upcoming breeding cycles. s2

i and s2
1 are the population variances for cycle i and cycle 1, respectively. The

black vertical lines indicate the standard error of s2
i =s

2
1 under 20 replications of the simulation study.
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weights and obtain simultaneous gains in (negatively) correlated
traits is cumbersome and economic analyses should be done. How-
ever, in multivariate LF, this is done automatically.

On the other hand, the population means for T2 obtained with KL
and MALF showed a lower performance than those obtained with
EnergyS, which is understandable given the good performance in T1
under both LFs. The KL and MALF chose those candidates whose BVs
ensured gains in all traits. Therefore, for T2, EnergyS had a small but
significant gain vs.MALF and KL loss, which is no surprise since it was
at the expense of sacrificing the gains in T1. For T3, the LFs had similar
performances, with small but significant differences between them.
This is illustrated in Figure 7a-b. It should be pointed out that although
the LF reported increases in the population means of the three traits
(for the two heritability values), the population genetic variance de-
creased at the same rate for all LFs, as depicted in Figure 8a-b.

In summary, we propose a formal approach for selecting the best
performing parents for upcoming selection cycles. Our approach is
based on Bayesian decision theory to construct divergences (LFs) that
score candidates. Expected posterior losses take into account uncer-
tainties about parameters and predictions involved in regression models.
Our results show that using the proposed LFs when selecting a single trait
can improve the response to selection while preserving the population
variance. In the multi-trait framework, the advantages of LFs are evident.
Thepopulationmeansof all traits under consideration showedpositive
gains, even though two of themwere negatively correlated.We believe
that selection based on LFs is more convenient than selection based
solely on BVs, given that in LFs the weights for each trait are calculated
automatically. It is easier to fix a truncation point than to calibrate the
economic weights used in selection indices. These results were analogous
for both complex and simple traits.

Finally, the Bayesian decision theory using several loss functions
studied in this research and applied to GS-assisted breeding can be
extended and used in conventional plant and animal breeding meth-
ods. Loss functions described in this study can be employed in data
from progeny trials in plant and animal breeding to rank the selected
individuals based not only on the adjusted means, but also on the loss
function for a single trait or multiple traits. As shown in the long-term
simulation study, changes in the rank of a few individuals can change
the final response to selection after several selection cycles.

CONCLUSIONS
We proposed applying a formal methodology within the decision
theory framework, to the problem of selecting in the single- andmulti-
trait context, when applying genomic selection in plant breeding.
Therefore, we discussed a theoretical justification and then proposed
three univariate LFs (Kullback-Leibler, CRPS, and LinLin) and their
corresponding generalizations in a multivariate setting (Multivariate
Kullback-Leibler, Energy Score and MALF) with a theoretical deriva-
tion that expresses the LFs in terms of the heritability of the trait(s).We
performed an example on a real dataset during one selection cycle for
univariate andmultivariate LFs, and in a simulation study of a genomic
selection program in order to compute the population mean and
variance throughout the breeding cycles. We contrasted our results
with those obtained using the standard selection method in a single-
trait scenario (selection based on predictions of punctual breeding
values). Our results suggest that it is possible to obtain better perfor-
mance in a long-term breeding program in the single-trait context by
selecting 30% of the best individuals in each cycle. For the multi-trait
approach, our results show that thepopulationmean for all traits under
consideration had positive gains, even though two of the traits were

negatively correlated. Although each multivariate LF performed very
well in the populationmeans, the corresponding population variances
were not statistically different.
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APPENDIX A

Univariate Kullback-Leibler loss derivation

KLðFYo; FYs Þ ¼
Z N
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log

NTðm1;s
2; ycÞ

Nðm2;s
2Þ NTðm1;s

2; ycÞdy
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Z N
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logNTðm1;s
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2; ycÞdy2
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2ÞNTðm1;s
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¼ 2 logðzÞ2 1
2s2
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2s2
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�

where z ¼ 12Fðyc 2m1
s Þ, and mS and VS denote the mean and the variance, respectively, when truncation at yc occurs.

Multivariate Kullback-Leibler loss derivation

KLðFYo; FY sÞ ¼
Z N

yc
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dy.

Univariate CRPS derivation
The CRPS function for genomic selection can be expressed as CRPSðFYo;msÞ ¼ EF jYo 2mSj2 1

2EF

����Yo 2Y ’
o

����. If we assume that

FYoðyoÞ ¼ Nðm2;s
2Þ and use some known results of the folded normal distribution, we can derive an analytic expression of the CRPS function.

Assume that FYðyÞ ¼ Nðm;s2Þ, where m 2 ℝ, and s. 0. Let W ¼ jYj, then FWðwÞ ¼ Nf ðm;s2Þ, where Nf means a folded normal
distribution. Its probability density function is

f ðwÞ ¼ 1
s

h
f
�w2m
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�
þ f
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ffiffiffiffiffiffi
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; w 2 ½0;NÞ:

The expectation of W is

EðWÞ ¼ m½12 2Fð2m=sÞ� þ s

ffiffiffiffi
2
p

r
exp

�
2m2�2s2�:

Details of folded normal distribution can be found in Tsagris et al. (2014). Now, we will proceed to evaluate

CRPSðFYo;mSÞ ¼ EF jYo 2mSj2 1
2EF

����Yo 2Y ’
o

���� as follows. Note that FjYo2Y ’
ojð�Þ ¼ Nf ð0;s2Þ and FjYo2mSjð�Þ ¼ Nf ðm2 2ms;s

2Þ. Then, using
the previous results, we have that
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Simplifying,
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R Code for Univariate Loss Functions
Theproposedunivariate loss functionsuseMCMCsamples fromposteriordistributionsafter a burn-in timeperiodof parametersdescribed in the

paper obtained from the BGLR R package.
Inputs of loss function in R language:
• Xb:matrix of MCMC samples of the mean of the candidates of the unobserved phenotype values. Rows for lines, columns forMCMC samples

(m2).
• MU: vector of MCMC samples of the population mean (m1).
• sigma: vector of MCMC samples of the population standard deviation (s1).
• y_c: truncation point (scalar).
• Nsel: number of the candidates to be selected.
• alpha: value indicating the proportion of selected individuals from the candidate set.
Output:
• id of selected lines with the minimum posterior expected losses.

R code for Multivariate Loss Function
The multivariate loss functions proposed were adapted to use MCMC samples from posterior distributions of parameters after a burn-in time

period obtained from the MTM R package.
Inputs of loss function in R language:
• Xb: matrix of MCMC samples of the mean of the candidates of unobserved phenotype values. In columns are the lines, in rows areM MCMC

samples (m2).
• MU: matrix of MCMC samples of population mean, in columns are the means for each trait, in rows MCMC samples (m1).
• K: matrix of MCMC samples of population var-covariance, in columns each component of covariance matrix, in rows MCMC samples (K).
• y_c: vector of truncation points for each trait, length equal to the number of traits.
• Nsel: number of the candidates to be selected.
• tau: vector of length equal to number of traits. Each value of the vector indicates the proportion of selected individuals from the candidate set.
Output:
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Selection through Standard Method (Std)

selStd ,- function(Xb, y_c, Nsel, MU, sigma) {
yHat ,- apply(Xb, 1, mean, na.rm = TRUE)
selected ,- order(yHat, decreasing = TRUE)[1:Nsel]
return(selected)
}

Selection through Kullback-Leibler (KL)

selKL ,- function(Xb, y_c, Nsel, MU, sigma) {
n.mcmc ,- ncol(Xb)
n.lines ,- nrow(Xb)
losses ,- matrix(0, n.lines, n.mcmc)
for(i in 1:n.mcmc) {
mu1 ,- MU[i]
mu2 ,- Xb[,i]
sd ,- sigma[i]
yz ,- (y_c - mu1) / sd # standardizing
Z ,- 1 - pnorm(yz) # normalization factor
dens ,- dnorm(yz, mean = 0, sd = 1) # density
prob ,- pnorm(yz, mean = 0, sd = 1) # probability
muT ,- mu1 + sd � (dens / (1 - prob))
# posterior predictive function at each iter.
yppdf ,- sapply(mu2, function(ypred) {
rnorm(1, mean = ypred, sd = sd)})
losses[,i] ,- -log(Z) + ((muT - yppdf)^2 -
(muT - mu1)^2) / (2 � sd^2)
}
e.loss ,- apply(losses, 1, mean, na.rm = TRUE)
selected ,- order(e.loss, decreasing = FALSE)[1:Nsel]
return(selected)
}

Selection through Continuous Ranked Probability Score (CRPS)

selCRPS ,- function(Xb, y_c, Nsel, MU, sigma) {
n.mcmc ,- ncol(Xb)
n.lines ,- nrow(Xb)
losses ,- matrix(0, n.lines, n.mcmc)
for(i in 1:n.mcmc){
mu1 ,- MU[i]
mu2 ,- Xb[,i]
sd ,- sigma[i]
zz ,- (y_c-mu1)/sd
muT ,- mu1 + sd�(dnorm(zz)/(1-pnorm(zz)))
# posterior predictive function at each iter.
yppdf ,- sapply(mu2, function(ypred) {
rnorm(1, mean = ypred, sd = sd)})
yz ,- (muT-yppdf) / sd # standardizing
dens ,- dnorm(yz, mean = 0, sd = 1) # density
prob ,- pnorm(yz, mean = 0, sd = 1) # probability
losses[,i] ,- -1 � (sd � (1 / sqrt(pi) -
2 � dens - yz � (2 � prob - 1)))
}
e.loss ,- apply(losses, 1, mean, na.rm = TRUE)
selected ,- order(e.loss, decreasing = FALSE)[1:Nsel]
return(selected)
}

Selection through Linear-Linear (Lin-Lin)

selLin ,- function(Xb, y_c, Nsel, MU, sigma, alpha) {
n.mcmc ,- ncol(Xb)
n.lines ,- nrow(Xb)
losses ,- matrix(0, n.lines, n.mcmc)
for(i in 1:n.mcmc){
mu1 ,- MU[i]
mu2 ,- Xb[,i]

(continued)

, continued

Selection through Linear-Linear (Lin-Lin)

sd ,- sigma[i]
z = (y_c-mu1)/sd
prob ,- 1-pnorm(z)
dens ,- dnorm(z)
bias ,- sd�dens/prob
muT ,- mu1 + bias
# posterior predictive function at each iter.
yppdf ,- sapply(mu2, function(ypred) {
rnorm(1, mean = ypred, sd = sd)})
losses[,i] ,- ((alpha-ifelse(yppdf , muT, 1, 0))�(yppdf-muT))
}
e.loss ,- apply(losses, 1, mean, na.rm = TRUE)
selected ,- order(e.loss, decreasing = FALSE)[1:Nsel]
return(selected)
}

3034 | B. d. J. Villar-Hernández et al.



Selection through Multivariate Kullback-Leibler (KL)

selKL ,- function(Xb, MU, K, y_c, Nsel) {
Xb ,- as.matrix(Xb); MU ,- as.matrix(MU); K ,- as.matrix(K);
n.traits ,- ncol(MU)
n.lines ,- ncol(Xb)/n.traits
n.mcmc ,- nrow(Xb)
losses ,- matrix(0, nrow = n.lines, ncol = n.mcmc)
Kall ,- alply(K, 1, function(V) as.matrix(nearPD(xpnd(unlist(V)))

$mat))
Kallinv ,- llply(Kall, solve)
Xb ,- apply(Xb, 1, split, f = rep(1:n.traits, each = n.lines))
for(i in 1:n.mcmc) {
mu1 ,- as.vector(MU[i,])
mu2 ,- do.call(cbind, Xb[[i]])
K ,- Kall[[i]]
Kinv ,- Kallinv[[i]]
muS ,- as.vector(mtmvnorm(mean = mu1, sigma = K, lower = y_c,
upper = rep(Inf, length(y_c)),
doComputeVariance = FALSE)$tmean)
Z = pmvnorm(lower = y_c, upper = Inf, mean = mu1, sigma = K)
# posterior predictive distribution at each iteration.
yppdf ,- as.matrix(t(apply(mu2, 1, function(ypred) {
rmvnorm(1, mean = ypred, sigma = K)})))
S ,- muS-mu1 # selection differential
UKU ,- as.numeric(t(S)%�%Kinv%�%S)
muSmu2 ,- sweep(yppdf,2,muS,’-’) # muS - mu2
losses[,i] ,- as.vector(apply(muSmu2, 1, function(x) {
0.5�(t(x)%�%Kinv%�%x-UKU)-log(Z) }))
}
e.loss ,- apply(losses, 1, mean, na.rm = TRUE)
selected ,- order(e.loss, decreasing = FALSE)[1:Nsel]
return(selected)
}

Selection through Energy Score (EnergyS)

selEnergyS ,- function(Xb, MU, K, y_c, Nsel) {
Xb ,- as.matrix(Xb); MU ,- as.matrix(MU); K ,- as.matrix(K);
n.traits ,- ncol(MU)
n.lines ,- ncol(Xb)/n.traits
n.mcmc ,- nrow(Xb)
losses ,- matrix(0, nrow = n.lines, ncol = n.mcmc)
Kall ,- alply(K, 1, function(V) as.matrix(nearPD(xpnd(unlist(V)))

$mat))
Xb ,- apply(Xb, 1, split, f = rep(1:n.traits, each = n.lines))
for(i in 1:n.mcmc) {
mu1 ,- as.vector(MU[i,])
mu2 ,- do.call(cbind, Xb[[i]])
K ,- Kall[[i]]
muS ,- as.vector(mtmvnorm(mean = mu1, sigma = K, lower = y_c,
upper = rep(Inf, length(y_c)),
doComputeVariance = FALSE)$tmean)
# posterior predictive distribution at each iteration.
yppdf ,- as.matrix(t(apply(mu2, 1, function(ypred) {
rmvnorm(1, mean = ypred, sigma = K)})))
yppdf_P , - as.matrix(t(apply(mu2, 1, function(ypred) {
rmvnorm(1, mean = ypred, sigma = K)})))
muSmu2 ,- sweep(yppdf,2,muS,’-’) # X-y
mu2mu2 ,- yppdf-yppdf_p # X-X’
xj_y ,- as.vector(apply(muSmu2, 1, function(x) sqrt(sum(x^2))))
xj_xjp ,- as.vector(apply(mu2mu2,1,function(x) 0.5�sqrt(sum(x^2))))
losses[,i] ,- xj_y - xj_xjp
}

(continued)

, continued

Selection through Energy Score (EnergyS)

e.loss ,- apply(losses, 1, mean, na.rm = TRUE)
selected ,- order(e.loss, decreasing = FALSE)[1:Nsel]
return(selected)
}

Selection through Multivariate Asymmetric Loss Function (MALF)

selMALF ,- function(Xb, MU, K, y_c, Nsel, tau) {
Xb ,- as.matrix(Xb); MU ,- as.matrix(MU); K ,- as.matrix(K);
n.traits ,- ncol(MU)
n.lines ,- ncol(Xb)/n.traits
n.mcmc ,- nrow(Xb)
losses ,- matrix(0, nrow = n.lines, ncol = n.mcmc)
Kall ,- alply(K, 1, function(V) as.matrix(nearPD(xpnd(unlist(V)))
$mat))

Xb ,- apply(Xb, 1, split, f = rep(1:n.traits, each = n.lines))
for(i in 1:n.mcmc) {
mu1 ,- as.vector(MU[i,])
mu2 ,- do.call(cbind, Xb[[i]])
K ,- Kall[[i]]
muS ,- as.vector(mtmvnorm(mean = mu1, sigma = K, lower = y_c,
upper = rep(Inf, length(y_c)),
doComputeVariance = FALSE)$tmean)
# posterior predictive distribution at each iteration.
yppdf ,- as.matrix(t(apply(mu2, 1, function(ypred) {
rmvnorm(1, mean = ypred, sigma = K)})))
error ,- -1�sweep(yppdf,2,muS,’-’) # mu2 - muS
abs.error ,- abs(error)
sum.e ,- rowSums(abs.error)
score ,- sum.e + t(error %�% tau)
losses[,i] ,- score
}
e.loss ,- apply(losses, 1, mean, na.rm = TRUE)
selected ,- order(e.loss, decreasing = FALSE)[1:Nsel]
return(selected)
}
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• id of selected lines with the minimums posterior expected losses.

APPENDIX B

Figure B1. Bivariate representation of multivariate loss functions. A) Kullback-Leibler (KL), B) Energy Score (EnergyS), and C) Multivariate

Asymmetric Loss Function (MALF). The base population is N2ðm; PÞ, where m ¼ cð0;0Þ’ (black lines) and P ¼


2 21
21 2

�
. After truncation at

y0 ¼ ð1:3; 1:3Þ’ (yellow lines), the theoretical or desired mean of selected candidates is ms ¼ ð1:79; 1:79Þ’ (red lines). The candidates close to the
region where each loss function is minimized will have minimum loss under the breeder’s preferences; those lines are the ones to advance in a
selection program.

Figure B2. Results of the univariate simulation study. Standardized selection responses Ri=s1 ¼ ðmi 2m1Þ=s1 for breeding cycles 1 to 5 are
illustrated in A), while in B) are cycles 5 to 10. In each selection cycle, the top 30% with minimum posterior expected losses were selected using
the Kullback-Leibler loss function (KL), the Continuous Ranked Probability Score (CRPS), the Linear-Linear loss function (LinLin), and the standard
method (Std). Selected lines were crossed at each cycle to recover the population size for upcoming selection cycles. mi and Ri correspond to the
population mean and the selection response, respectively, in cycle i; m1 and s1 are the population mean and the population standard deviation,
respectively, in cycle 1. The black vertical lines indicate the standard error of Ri=s1 under 20 replications of the simulation study.
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Figure B4. Results of the univari-
ate simulation study at the 10th se-
lection cycle for 30% of selected
lines. A) Boxplots of the standard-
ized selection response; B) box-
plots of the scale population
variance. The boxplots illustrate
the mean (white dots) and median
(black middle line) of 20 replica-
tions of the simulation study.
R;s2;s2

1 and s1 were defined in
Figs. B2 and B3. Sub-indices refer
to the 10th selection cycle.

Figure B3. Results of the univar-
iate simulation study. Scaled
population variance ðs2

i =s
2
1Þ for

breeding cycles 1 to 5 are illus-
trated in A), while in B) are cycles
5 to 10. In each selection cycle,
the top 30% were selected using
the Kullback-Leibler loss function
(KL), the Continuous Ranked
Probability Score (CRPS), the Lin-
ear-Linear loss function (LinLin),
and lines selected under the
standard method (Std). Selected
lines were crossed at each cycle
to recover the population size for

the upcoming selection cycles. s2
i and s2

1 are the population variance in cycle i and cycle 1, respectively. The black vertical lines indicate the
standard error of s2

i =s
2
1 under 20 replications of the simulation study.
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