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Objective: Antipsychotic and anticonvulsant medications are increasingly being used as pharmacotherapeutic treatments 
for maladaptive aggression in youth, yet no information is available regarding whether these drugs exhibit aggression- 
specific suppression in preclinical studies employing adolescent animal models of maladaptive aggression. This study 
examined whether the commonly used antipsychotics medications haloperidol and risperidone and the anticonvulsant 
medication valproate exert selective aggression-suppressing effects using a validated adolescent animal model of malad-
aptive aggression. 
Methods: Twenty-seven-day old Syrian hamsters (Mesocricetus auratus) were administered testosterone for 30 consec-
utive days during the first 4 weeks of adolescent development. The following day (during late adolescence), experimental 
animals received a single dose of haloperidol (0.00, 0.025, 0.50, 1.0 mg/kg), risperidone (0.00, 0.01, 0.03, 1.0 mg/kg), 
or valproate (0.00, 1.0, 5.0, 10.0 mg/kg) and tested for offensive aggression using the Resident/Intruder Paradigm. As 
a baseline, non-aggressive behavioral control, a separate set of pubertal hamsters was treated with sesame oil vehicle 
during the first 4 weeks of adolescence and then tested for aggression during late adolescence in parallel with the 
haloperidol, risperidone or valproate-treated experimental animals. 
Results: Risperidone and valproate selectively reduced the highly impulsive and intense maladaptive aggressive pheno-
type in a dose-dependent fashion. While haloperidol marginally reduced aggressive responding, its effects were non-spe-
cific as the decrease in aggression was concurrent with reductions in a several ancillary (non-aggressive) behaviors. 
Conclusion: These studies provide pre-clinical evidence that the contemporary pharmacotherapeutics risperidone and 
valproate exert specific aggression-suppressing effects in an adolescent animal model of maladaptive aggression.
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INTRODUCTION

While aggressive behaviors in children and adolescents 
are normal and serve an important evolutionary purpose 
[1], aggression in psychiatrically referred youth is often 
considered maladaptive and is believed to represent a dis-
ordered internal mechanism [1]. Maladaptive aggression 
in the absence of other symptoms, labeled Intermittent 
Explosive Disorder, is an impulsive, highly reactive and 
intense form of aggressive behavior with a lifetime preva-

lence of 5.4−7.3% [2] and symptoms during ado-
lescence can lead to negative outcomes such as social iso-
lation, discontentment [3]. Maladaptive aggression itself 
is not a disorder [4], rather it is considered an attribute of 
a variety of psychiatric conditions such as autism [5], 
post-traumatic stress disorder [6], schizophrenia [7], at-
tention deficit/hyper activity disorder (ADHD) [8], anti-
social personality disorder and borderline personality dis-
order [4], and bipolar disorder [9]. In youth with co-
morbid ADHD, maladaptive aggression is a predictor of 
physical aggression, criminality and decreased quality of 
life during adolescence and adulthood [10]. Given the 
prevalence and negative outcomes of maladaptive ag-
gression in youth, effective treatments that selectively tar-
get the aggressive behavioral response are needed.
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Antipsychotic medications and anticonvulsant mood 
stabilizers are used as pharmacotherapeutic treatments 
for maladaptive aggression in a variety of adolescent psy-
chiatric settings [11-16]. The administration of these med-
ications to youth has increased since the 1990’s [17,18], 
with younger patients representing the largest pediatric 
diagnostic group to receive such medications for the treat-
ment of highly aggressive and disruptive behavioral dis-
orders [19]. While there is an increased frequency of pre-
scriptions of these medications in younger populations, 
there is little evidence beyond small cohort observations 
[20], to suggest that the typical class of antipsychotics 
such as haloperidol (or thioridazine) reduce maladaptive 
aggression in youth with other psychiatric diagnoses [21]. 
In fact, the 2015 Canadian guidelines recommended 
against the use of haloperidol as treatment for aggressive 
youth with ADHD, oppositional defiant disorder, or con-
duct disorder due to insubstantial evidence and sig-
nificant side effects [22]. Yet, according to a recent 
meta-analysis in adults with maladaptive aggression, in-
dependent of concurrent psychiatric diagnosis, haloper-
idol and other first generation antipsychotics show rela-
tive benefits similar to that of other therapeutic inter-
ventions [23]. Haloperidol produces significant side ef-
fects, including weight gain, photosensitivity, arrhythmia, 
seizures, extrapyramidal symptoms, sedation, and cogni-
tive impairment as well as permanent diagnoses such as 
tardive dyskinesia [24]. These side effects complicate re-
search efforts to assess the aggression suppressing effects 
of haloperidol. To this effect, there is limited research on 
whether haloperidol could serve as an effective treatment 
for maladaptive aggression in youth, and its use is declin-
ing, since the rising use of the atypical class of antipsy-
chotic medications. A New Zealand longitudinal study, 
found that 47% of all atypical antipsychotics prescribed 
for youth listed maladaptive aggression as the main target 
symptom [25]. In youth with conduct disorder or autism, 
the atypical antipsychotic risperidone was effective for the 
treatment of severely disruptive behaviors and malad-
aptive aggression [26-29]. Interestingly, in patients who 
fail to respond to antipsychotic medications like risper-
idone, the use of the anticonvulsant mood stabilizer val-
proate to treat aggression in clinical settings has produced 
consistently reliable results [30]. Moreover, valproate has 
been shown effective for the treatment of disruptive be-
haviors and maladaptive aggression in youth with behav-

ioral problems [16,30-32]. 
To assess the aggression-specific efficacy of haloper-

idol, risperidone and valproate, to treat maladaptive ag-
gression in youth, we investigated the effectiveness of 
these medications in an established adolescent animal 
model of maladaptive aggression. Clinical research has 
been successful in identifying and validating proactive 
and reactive subtypes of aggression in adolescent pop-
ulations [1,33]. Proactive aggression is controlled, plan-
ned and driven by reward contingencies while reactive 
aggression is characterized as an over-aroused, impulsive 
and intense aggressive response to a perceived threat [1]. 
Reactive aggression is the most common form of ag-
gressive behavior observed in psychiatrically referred 
youth and is categorized as a maladaptive aggression [1]. 
In terms of construct validity, escalated offensive ag-
gression in animals possesses many of the same behav-
ioral characteristics as reactive aggression in humans 
[34-36]. Like reactive aggression, escalated offensive ag-
gression is described as a highly aroused, impulsive and 
intense form of aggressive behavior directed towards a 
perceived threat, in this case a conspecific animal. 
Discriminating between aggression subtypes is important 
as the brain mechanisms modulating different subtypes of 
aggression are distinct in both animals [37] and humans 
[38], and appropriate responses to pharmacological inter-
ventions may differ across aggression subtype. For the 
most part, preclinical studies that have examined drug ef-
fects on aggression have not used methodologies that 
were sensitive to these distinctions. In reports where anti-
psychotic medications were found to reduce aggression 
in adult animal models, significant results were only pro-
duced when the drugs were administered at high doses or 
in combination with agents sharing similar neurochemical 
properties [39,40]; although in at least one study using ge-
netically modified animals, risperidone was found to re-
duce aggression at low doses, i.e., 0.03−0.1 mg/kg [41]. 
Similarly, we showed that low doses of risperidone re-
duced aggression in pubertal animals stimulated to re-
spond hyper aggressively by chronic exposure to psy-
chostimulants [42,43]. Our studies were the first pre-
clinical studies to provide evidence that risperidone pos-
sessed anti-aggressive effects in adolescent animals. 
Presently, no information is available regarding the com-
parative efficacy of haloperidol, risperidone and/or val-
proate, in selectively suppressing aggressive behavior us-
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ing validated adolescent animal models of maladaptive 
aggression.

Over the past two decades, we have established and 
validated a pharmacologic model of maladaptive ag-
gression in adolescent Syrian hamsters [44-47]. This mod-
el is particularly useful for the study of maladaptive ag-
gression as these pubertal animals display a highly re-
active form of aggressive responding that is characterized 
by an impulsive, intense, and targeted aggressive re-
sponse pattern. Indeed, rapid, prolonged, and highly in-
tense offensive acts define the highly reactive aggressive 
phenotype in animals [48]. In our model, animals exhibit 
short attack and bite latencies (an indicator of high ag-
gressive impulsivity) in addition to frequent and pro-
longed bouts of offensive attacks (a indicatory of high ag-
gression intensity) [46]. Additionally, pubertal hamsters in 
this model display targeted and developmentally mature 
aggressive responses independent of social context and in 
the absence of necessary social cues. In fact, aggression in 
these animals exceeds that of adult “trained fighters” (i.e., 
hamsters trained to respond aggressively) hat are stimu-
lated to respond hyper-aggressively by the direct activa-
tion of neural circuits stimulating aggression [49].

Although there is evidence that antipsychotics and anti-
convulsants reduce maladaptive aggression in children 
and adolescents [13], recent studies have called for more 
extensive preclinical investigation to address whether 
these medications specifically lessen maladaptive ag-
gression in youth, and how aggressive behaviors are 
modulated by these substances [21]. Existing data is often 
complicated by factors such as polypharmacy, con-
current treatments, variations in psychiatric presentation 
and diagnoses, as well as social dynamics [50]. From a 
preclinical perspective, our adolescent animal model of 
maladaptive aggression can inform clinical practice by 
isolating reactive aggressive phenotypes from confound-
ing variables that complicate human research. The studies 
presented here examine whether acute administration of 
therapeutically relevant doses of typical and atypical anti-
psychotics and anticonvulsant mood stabilizers are effec-
tive at reducing the highly reactive aggressive phenotype 
observed in our validated adolescent animal model of 
maladaptive aggression.

METHODS

Experimental Animals 
The pubertal or “adolescent” period of development in 

Syrian hamsters can be approximated as the time between 
Postnatal Day 25 and 65 (PD25−65). Weaning generally 
occurs around PD25, with the onset of puberty (as de-
termined by the onset of gonadal maturation) around 
PD30 [51]. Testosterone levels start to rise at around 
PD30, reaching near peak levels by P45 and finally peak-
ing between PD60 and PD65 [51]. During this devel-
opmental time period, hamsters wean from their dams, 
leave the home nest, establish new, solitary nest sites, and 
learn to defend their territory and participate in so-
cial-dominance hierarchies [51,52].

For the experimental treatment paradigm, intact pu-
bertal male hamsters (PD21) were obtained from Charles 
River Labs (Wilmington, MA, USA), individually housed 
in polycarbonate cages, and maintained at ambient room 
temperature on a reverse light-dark cycle (14 hours 
light:10 hours dark; lights on at 6:00 PM). Food and water 
were provided ad libitum. For aggression testing, stimulus 
(intruder) males of equal size and weight to experimental 
animals were obtained from Charles River one week be-
fore behavioral tests, group-housed at 5 animals/cage in 
large polycarbonate cages, and maintained as described 
to acclimate to the animal facility. All intruders were pre-
screened for a low level of social interest (i.e., disengage 
and evade) and environmental fear responses (i.e., tail-up 
freeze, flee, and fly-away) one day before the aggression 
test to control for behavioral differences between stimulus 
animals as described [45,53,54]. Intruders displaying sig-
nificantly low aggression or submissive postures (＜ 5%) 
were excluded from use in behavioral tests. All proce-
dures in the following sections comply with the National 
Institutes of Health guide for the care and use of Labora-
tory animals (NIH Publications No. 8023, revised 1978) 
and were preapproved by the Northeastern University 
Institutional Animal Care and Use Committee (NU-IACUC).

Treatment and Groups 
Pubertal (PD27) Syrian hamsters (n = 150) received dai-

ly subcutaneous (SC) injections (0.1−0.2 ml) of a mixture 
of testosterone and its synthetic analogs consisting of 2 
mg/kg testosterone cypionate, 2 mg/kg nandrolone dec-
anoate, and 1 mg/kg boldenone undecylenate dissolved 
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in sesame oil, for 30 consecutive days during the first 4 
weeks of adolescent development (PD27−PD56). This 
treatment regimen has been shown repeatedly to produce 
highly aggressive adolescent animals in greater than 90% 
of the treatment pool [46]. The day after the last injection 
(PD57; during late adolescence), experimental animals 
were randomly assigned to one of 10 treatment groups (n = 
12−15 animals per group) and were tested for offensive 
aggression following a single intraperitoneal injection of 
saline (0.9%mg/kg/ml), haloperidol (0.025, 0.50, 1.0 
mg/kg), risperidone (0.01, 0.03, 1.0 mg/kg), or valproate 
(1.0, 5.0, 10.0 mg/kg). All injections were performed on 
unanesthetized animals and took no longer than 10 
seconds. After injection, animals were returned to their 
home cage. Then 30 minutes later, animals were tested for 
offensive aggression. Doses of all pharmaceutical agents 
were selected on the basis of previous reports indicating 
dose-response efficacy in humans and animals and allo-
metrically scaled using calculations and pharmacokinetic 
parameters as described [55,56]. As a baseline, non-ag-
gressive behavioral control, a separate set of pubertal 
hamsters (n = 15) was treated with sesame oil vehicle in-
stead of testosterone during the first 4 weeks of ado-
lescence (PD27−PD56) and then tested for aggression on 
P57 (during late adolescence) in parallel with the haloper-
idol, risperidone or valproate-treated experimental animals. 

Aggressive Behavior
Adolescent animals were tested for offensive aggression 

using the resident−intruder paradigm, a well-charac-
terized and ethologically valid model of offensive ag-
gression [57,58]. Briefly, an intruder of similar size and 
weight was introduced into the home cage of the ex-
perimental animal (resident), and the resident was scored 
for (1) general measures of aggression intensity (i.e., num-
ber of attacks and bites) and aggressive impulsivity (i.e., 
latency to attack and bite) toward intruders as we de-
scribed elsewhere [45] and (2) more specific and targeted 
aggressive responses, including upright offensive attacks, 
lateral attacks, head/nape bites, and flank/rear bites as we 
described [59], to provide a more detailed account of the 
aggressive encounter between experimental residents and 
intruders. An attack was scored each time that the resident 
animal would pursue and then either (1) lunge toward or 
(2) confine the intruder by upright and sideways threat, 
each generally followed by a direct attempt to bite the in-

truder’s dorsal rump or flank target areas. Composite ag-
gression scores, used as a broad measure of offensive ag-
gression, were defined as the total number of attacks (i.e., 
upright offensive and lateral attacks) and bites (i.e., 
head/nape and flank/rear bites) during the behavioral test 
period. The latency to attack and bite was defined as the 
period of time between the beginning of the behavioral 
test and the first attack and bite of the residents toward an 
intruder. In the case of no attacks or bites, latencies were 
assigned the maximum time of the test duration (i.e., 600 
seconds). Each aggression test lasted for 10 minutes and 
was videotaped and coded manually by two observers 
who were unaware of the hamsters’ experimental treat-
ment. Differences in scores for all behaviors measured 
were less than 5% between the two observers. No intruder 
was used for more than one behavioral test, and all ani-
mals were tested during the first 4 hours of the dark cycle 
under dim-red illumination to control for circadian influ-
ences on behavior. 

Ancillary Behavior 
In addition to aggression, adolescent animals were test-

ed for an array of social, comfort, and motor behaviors 
during the 10 minutes encounter to control for nonspecific 
effects of haloperidol, risperidone and valproate on gen-
eral measures of behavioral activation. Specifically, ani-
mals were measured for social communication (i.e., flank 
marking), locomotion (i.e., line crosses), comfort (i.e., 
grooming), and avoidance/escape (i.e., wall climbing). 

Statistics
Results from the aggression tests were compared across 

treatment conditions. The calculations was made in the 
Social Science Statistics Software (www.socscistatistics. 
com). Aggressive and ancillary behaviors were compared 
by using one-way ANOVA followed by post-hoc pair-wise 
planned comparison t tests (two-tailed). The  level for all 
experiments was set at p = 0.05.

RESULTS

As we reported [46], hamsters administered testoster-
one during adolescence display a highly escalated and re-
active form of aggression that is characterized by rapid 
(i.e., impulsive), sustained (i.e., intense), and targeted (i.e., 
mature) aggressive responding (Fig. 1). Experimental (tes-
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Fig. 2. Effects of haloperidol, risperidone, and valproate on composite aggression scores (i.e., a broad measure of aggression intensity). Haloperidol 
marginally reduced composite aggression at a single dose (0.05 mg/kg), while risperidone (0.1−0.3 mg/kg) and valproate (1−5 mg/kg) dose 
dependently decreased composite aggression across several drug doses in aggressive experimental animals. The dashed line represents the baseline 
behavioral response of non-aggressive, control animals. Bars denote standard error of the mean.
*p ＜ 0.05, **p ＜ 0.01, ***p ＜ 0.001.

Fig. 1. Maladaptive aggression in an adolescent animal model. Pubertal hamsters administered testosterone display a highly reactive form of 
aggression that is characterized by a rapid (i.e., impulsive), sustained (i.e., intense), and targeted (i.e., mature) aggressive response as indicated by 
increased composite aggression scores, lateral attacks, and flank/rump bites and decreased latency to attack and bite compared to non-aggressive 
vehicle control animals. 
AAS, anabolic−androgenic steroids; SEM, standard error of the mean.
***p ＜ 0.001.

tosterone-treated) animals were significantly more ag-
gressive than vehicle-treated controls as measured by 
composite scores of aggression (t (17) = 7.16, p ＜ 0.001); 
directing greater than tenfold more offensive attacks and 
bites onto conspecifics than control animals. When ex-
amined more closely, experimental animals targeted sig-
nificantly more lateral attacks (t (17) = 6.77, p ＜ 0.001) 
and bites targeting the flank/rear region of conspecifics (t 
(14) = 6.26, p ＜ 0.001). In fact, experimental animals ex-

hibited a greater than tenfold increase in the number of 
lateral attacks and nearly twentyfold increase in the num-
ber of bites targeted towards the flank/rear. In addition, 
experimental animals were substantially faster to attack (t 
(17) = 6.06, p ＜ 0.001) and bite (t (17) = 7.07, p ＜ 0.001) 
conspecifics than vehicle-treated control animals. Overall, 
experimental animals were six times faster to attack and 
four times quicker to bite intruders compared to littermate 
controls. 
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Fig. 3. Effects of haloperidol on aggression. Haloperidol treatment reduced few measures of aggression intensity (i.e., number of flank/rear bites) 
and initiation (i.e., mean latency to first bite), and only at a single dose (0.05 mg/kg, intraperitoneal) compared to saline-treated counterparts. Dashed 
lines in represent the baseline behavioral response of non-aggressive, control animals. Bars denote standard error of the mean. 
†0.05 ＜ p ＜ 0.1, *p ＜ 0.05.

Antipsychotics and Maladaptive Aggression

Haloperidol 

The systemic administration of the typical antipsychotic 
haloperidol to aggressive, experimental animals produced 
an overall effect on aggression intensity as measured by 
composite scores of aggression (F(3,28) = 3.91, p ＜ 0.05) 
with anti-aggressive effects seen at a moderate (0.05 
mg/kg) dose of haloperidol. At this dose haloperidol sig-
nificantly reduced composite aggression toward intruders 
when compared to saline-treated controls (t (15) = 2.47, p ＜ 
0.05) (Fig. 2). When examined more precisely, haloper-
idol produced an overall effect on the bites targeted to-
wards the flank/rear region of intruders (F(3,26) = 3.53, p ＜ 
0.05). At 0.025 mg/kg haloperidol marginally decreased 
the number of bites onto the flank/rear region of intruders 

(t (14) = 2.08, p = 0.06), while at 0.05 mg/kg haloperidol 
the decrease in the number of bites delivered onto the 
flank/rear of intruders was statistically significant (t (14) = 
2.57, p ＜ 0.05) compared to saline (0.0 mg/kg) controls 
(Fig. 3). No similar effects were seen at higher doses of hal-
operidol (i.e., 0.1 mg/kg; t (14) = 1.7, p = 0.1). Haloperidol 
also produced a marginal overall effect on aggressive im-
pulsivity as measured by latency to bite (F(3,24) = 2.54, p = 
0.08), however this effect was only significant (and just so) 
at 0.05 mg/kg compared to saline (0.0 mg/kg) controls (t 
(14) = 2.19, p = 0.049) (Fig. 3). No significant effects of 
haloperidol were observed at any dose on lateral attack 
behavior (F(3,24) = 1.99) or on the latency to attack (F(3,24) = 
0.36) (p ＞ 0.05 each comparison). 

The systemic administration of haloperidol to ag-
gressive, experimental animals also produced an overall 
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Table 1. Effects of haloperidol on ancillary behavior 

Behavior
Dose

0.0 mg/kg 0.025 mg/kg 0.05 mg/kg 0.1 mg/kg p value

Social behavior 
Flank marks 2.1 ± 0.49 3.01 ± 1.2 2.0 ± 0.63 1.75 ± 0.55 0.72
Locomotion
Line crosses 33.13 ± 2.82 26.13 ± 3.58^ 22.65 ± 2.46* 29 ± 5.45 0.031
Comfort behavior
Grooming 3.87 ± 0.71 2.65 ± 0.72 2.25 ± 0.6^ 1.25 ± 0.48** 0.034
Avoidance/escape
Wall climbs 7.95 ± 1.57 8.67 ± 1.75 9.5 ± 1.65 9.63 ± 2.6 0.2

Values are presented as mean ± standard deviation. Haloperidol has marginal-to-significant effects on social, motor, comfort, and avoidance
behaviors.
Compared to 0.0 mg; ^0.05 ＜ p ＜ 0.1, *p ＜ 0.05, **p ＜ 0.01.

effect on several key measures of ancillary behaviors, in-
cluding motor (i.e., line crosses; F(3,28) = 3.34) and comfort 
(i.e., grooming; F(3,28) = 3.30) behaviors (p ＜ 0.05 each 
comparison) (Table 1). Specifically, a trend towards a de-
crease in the number of line crosses was observed at 
0.025 mg/kg haloperidol (t (14) = 1.85, p = 0.08) as com-
pared to saline (0.0 mg/kg) controls, while 0.05 mg/kg hal-
operidol significantly reduced the number of line crosses 
(t (14) = 2.78, p ＜ 0.05) compared to saline (0.0 mg/kg) 
controls. Similarly, a trend towards a decrease in groom-
ing behavior was observed at 0.05 mg/kg haloperidol (t 
(14) = 1.87, p = 0.08) as compared to saline (0.0 mg/kg) 
controls, while 0.1 mg/kg haloperidol significantly re-
duced grooming (t (14) = 3.26, p ＜ 0.05) compared to 
saline (0.0 mg/kg) controls. However, no significant ef-
fects were observed on measures of social communica-
tion (i.e., flank marking; F(3,24) = 0.72) or avoidance/es-
cape (wall climbs; F(3,24) = 0.20) behaviors, (p ＞ 0.05 
each comparison).

Risperidone

The systemic administration of the atypical anti-
psychotic risperidone to aggressive, experimental animals 
also produced an overall effect on aggression intensity as 
measured by composite scores of offensive aggression 
(F(3,35) = 11.03, p ＜ 0.001) with anti-aggressive effects be-
ginning at the 0.1 mg/kg dose and continuing to the 0.3 
mg/kg dose. At these doses, risperidone treatment sig-
nificantly reduced composite aggression towards in-
truders when compared with saline-treated control (0.0 
mg/kg) animals (0.1 mg/kg, t (17) = 2.09, p = 0.05; 0.3 
mg/kg, t (18) = 5.97, p ＜ 0.001) (Fig. 2) and animals ad-

ministered lower doses (0.01 mg/kg) of risperidone (0.3 
mg/kg, t (18) = 5.25, p ＜ 0.001). Similarly, risperidone 
produced a separate overall effect on targeted forms of of-
fensive attack (lateral attack; F(3,35) = 9.81, p ＜ 0.001) and 
bite (flank/rear bites; F(3,35) = 17.06, p ＜ 0.001) behavior 
within the same (and extended) anti-aggressive dose 
range. At these doses, risperidone treatment significantly 
decreased the number of lateral attacks (0.3 mg/kg, t (18) = 
5.19, p ＜ 0.001) and flank/rear bites (0.01 mg/kg, t (14) = 
2.61, p ＜ 0.05; 0.1 mg/kg, t (17) = 4.94, p ＜ 0.001; 0.3 
mg/kg, t (18) = 6.24, p ＜ 0.001) towards intruders when 
compared to saline (0.0 mg/kg) controls (Fig. 4). However, 
at lower doses of risperidone there were also significant 
decreases in the number of lateral attacks and flank/rear 
bites of aggressive animals towards intruders when com-
pared with higher doses of risperidone (lateral attacks, 
0.01 vs. 0.1 [t (17) = 6.10, p ＜ 0.001], 0.01 vs. 0.3 [t (18) = 
5.17, p ＜ 0.001], 0.1 vs. 0.3 [t (21) = 3.38, p ＜ 0.01]; 
flank/rear bites, 0.01 vs. 0.3 [t (18) = 3.2, p ＜ 0.01], 0.1 
vs. 0.3 [t (21) = 2.16, p ＜ 0.05]). Risperidone also pro-
duced an overall effect on aggressive impulsivity as meas-
ured by latency to attack (F(3,35) = 5.18, p ＜ 0.01) and la-
tency to bite (F(3,35) = 10.22, p ＜ 0.001) with the most ef-
fective anti-aggressive effect seen at the 0.3 mg/kg dose. 
At this dose, risperidone significantly reduced latency to 
attack intruders when compared with saline-treated con-
trol (0.0 mg/kg) animals (t (18) = 2.99, p ＜ 0.01) and ani-
mals administered lower doses (0.01 mg/kg) of risper-
idone (t (18) = 2.64, p ＜ 0.05) (Fig. 4). Risperidone also 
significantly reduced latency to bite intruders compared 
to saline-treated control (0.0 mg/kg) animals with the an-
ti-aggressive effects first seen at a lower dose (0.1 mg/kg) 
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Fig. 4. Effects of risperidone on aggression. Risperidone treatment (0.01−0.3 mg/kg, intraperitoneal) produced a dose dependent reduction in each 
measure of aggression intensity (i.e., number of lateral attacks and flank/rump bites) and initiation (i.e., mean latency to first attack and bite). Dashed
lines in represent the baseline behavioral response of non-aggressive, control animals. Bars denote standard error of the mean. 
*p ＜ 0.05, **p ＜ 0.01, ***p ＜ 0.001.

of risperidone (t (17) = 2.64, p ＜ 0.05). At higher doses 
(0.3 mg/kg) risperidone had more significant anti-ag-
gressive effects compared to saline-treated control (0.0 
mg/kg) animals (t (18) = 5.36, p ＜ 0.001) and animals ad-
ministered lower doses of risperidone (0.01 mg/kg, t (18) = 
2.89, p ＜ 0.01; 0.1 mg/kg, t (21) = 3.36, p ＜ 0.01). 

Unlike haloperidol, the systemic administration of ris-
peridone at all doses failed to produce significant effects 
on ancillary measures of behavior, including flank mark-
ing (F(3,24) = 1.71) line crosses (F(3,24) = 0.89), grooming 
(F(3,24) = 0.70) or wall climbing (F(3,24) = 1.26) (p ＞ 0.05 
each comparison; Table 2).

Anticonvulsants and Maladaptive Aggression

Valproate

The systemic administration of valproate to aggressive, 
experimental animals produced an overall effect on ag-
gression intensity as measured by composite scores of of-
fensive aggression (F(3,35) = 10.76, p ＜ 0.001) with an-
ti-aggressive effects beginning at the 1 mg/kg dose and 
continuing to the maximum dose (10 mg/kg) intruders 
when compared with saline-treated control (0.0 mg/kg) 
animals (1 mg/kg, t (16) = 2.64, p ＜ 0.05; 5 mg/kg, t (16) = 
5.25, p ＜ 0.001; 10 mg/kg, t (16) = 3.85, p ＜ 0.01) (Fig. 
2) and animals administered lower doses (1 mg/kg) of ris-
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Table 2. Effects of risperidone on ancillary behavior

Behavior
Dose

0.0 mg/kg 0.01 mg/kg 0.1 mg/kg 0.3 mg/kg p value

Social behavior
Flank marks 2.25 ± 0.58 4.01 ± 1.83 1.82 ± 0.37 1.47 ± 0.53 0.26
Locomotion
Line crosses 33.39 ± 4.88 38.36 ± 4.86 31.01 ± 6.54 34.42 ± 4.77 0.46
Comfort behavior
Grooming 3.43 ± 0.91 2.86 ± 0.62 3.36 ± 0.92 2.92 ± 0.82 0.56
Avoidance/escape
Wall climbs 18.25 ± 4.58 17.75 ± 3.04 15.33 ± 1.15 17.42 ± 4.04 0.31

Values are presented as mean ± standard deviation. Risperidone has no significant effects on any measure of ancillary behavior.

Fig. 5. Effects of valproate on aggression. Valproate treatment (1−10 mg/kg, intraperitoneal) produced a dose dependent reduction in each 
measure of aggression intensity (i.e., number of lateral attacks and flank/rump bites) and initiation (i.e., mean latency to first attack and bite). Dashed
lines in represent the baseline behavioral response of non-aggressive, control animals. Bars denote standard error of the mean. 
*p ＜ 0.05, **p ＜ 0.01, ***p ＜ 0.001.
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Table 3. Effects of valproate on ancillary behavior

Behavior
Dose

0.0 mg/kg 1 mg/kg 5 mg/kg 10 mg/kg p value

Social behavior
Flank marks 2.11 ± 0.56 3.01 ± 1.38 2.50 ± 0.93 2.25 ± 1.23 0.91
Locomotion
Line crosses 30.6 ± 2.82 25.6 ± 2.32 26 ± 2.60 24.8 ± 2.14 0.26
Comfort behavior
Grooming 3.12 ± 0.74 4.01 ± 0.72 5.04 ± 0.46 3.86 ± 0.63 0.25
Avoidance/escape
Wall climbs 7.75 ± 1.51 8.25 ± 2.82 10.5 ± 2.59 6.62 ± 2.14 0.53

Values are presented as mean ± standard deviation. Valproate has no significant effects on any measure of ancillary behavior.

peridone (5 mg/kg, t (16) = 3.17, p ＜ 0.01). Similarly, val-
proate produced a separate overall effect on targeted 
forms of offensive attack (lateral attack; F(3,34) = 3.26, p ＜ 
0.05) and bite (flank/rear bites; F(3,32) = 5.57, p ＜ 0.01) be-
havior, but within a narrower anti-aggressive dose range. 
Valproate treatment significantly decreased the number of 
lateral attacks (5 mg/kg, t (16) = 3.56, p ＜ 0.01; 10 mg/kg, 
t (16) = 2.21, p ＜ 0.05) and flank/rear bites (5 mg/kg, t (16) = 
3.37, p ＜ 0.01; 10 mg/kg, t (16) = 2.82, p = 0.01) towards 
intruders when compared to saline (0.0 mg/kg) controls 
(Fig. 5). Valproate also produced an overall effect on ag-
gressive impulsivity as measured by latency to attack 
(F(3,34) = 3.17, p ＜ 0.05) and latency to bite (F(3,34) = 6.97, 
p ＜ 0.001) with the most effective anti-aggressive effects 
seen at the higher (5 mg/kg and 10 mg/kg) doses. 
Valproate significantly reduced latency to attack intruders 
when compared with saline-treated control (0.0 mg/kg) 
animals (5 mg/kg, t (16) = 2.30, p ＜ 0.05; 10 mg/kg, t (16) = 
2.24, p ＜ 0.05) (Fig. 5). Valproate also significantly re-
duced latency to bite intruders compared to saline-treated 
control (0.0 mg/kg) animals across the wider dose range of 
valproate (1 mg/kg, t (16) = 3.58, p ＜ 0.01; 5 mg/kg, t (16) = 
5.05, p ＜ 0.001; 10 mg/kg, t (16) = 4.86, p ＜ 0.001). 

As observed with risperidone, the systemic admin-
istration of valproate at all doses failed to produce sig-
nificant effects on ancillary measures of behavior, includ-
ing flank marking (F(3,28) = 0.18), line crosses (F(3,28) = 
1.42), grooming (F(3,24) = 1.45), or wall climbing (F(3,24) = 
0.75) (p ＞ 0.05 each comparison; Table 3).

DISCUSSION

Maladaptive aggression is a form of aggressive behavior 

that does not serve a purpose and is a common symptom 
of mental health disorders [1]. Treatment of this type of 
aggression in youth with psychopharmacological inter-
ventions is becoming increasingly common [13], despite 
definitive evidence supporting the efficacy of off-label 
psychotropic medication use in adolescents for malad-
aptive aggression. In particular, the typical antipsychotic 
haloperidol, the atypical antipsychotic risperidone and 
the anticonvulsant mood stabilizer valproate have been 
shown to decrease aggressive behavior in youth [16,20, 
28-32,60], and as a result, are being used to treat malad-
aptive aggressive behavior in adolescents [21]. To date 
there is little information available regarding whether 
these medications exhibit aggression-specific suppression 
in preclinical studies employing validated, adolescent an-
imal models of maladaptive aggression. This information 
is critical to impart clinical confidence in the pharmaco-
logical ability of these agents to exert aggression-selective 
effects and to facilitate more data driven, child and ado-
lescent prescription. 

The current studies examined the effects of haloperidol, 
risperidone, and valproate on features of aggressive be-
havior that characterize maladaptive aggression using an 
established and validated adolescent animal model of 
maladaptive aggression. Specifically, experimental pu-
bertal hamsters pre-treated with testosterone display a 
highly impulsive, intense, and targeted aggressive pheno-
type stereotypic of maladaptive aggression [46,61]. Results 
from the present studies show that at moderate doses (i.e., 
0.025 and 0.05 mg/kg), haloperidol reduced aggression 
intensity (i.e., number of flank/rear bites) and aggressive 
impulsivity (i.e., latency to bite). However, while haloper-
idol was marginally effective at reducing the impulsive 
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and intense form of aggression in experimental animals, 
its effects appear to be non-specific as the decrease in ag-
gression observed in experimental animals administered 
haloperidol was concurrent with reductions in both motor 
and grooming ancillary behaviors−suggesting that re-
ductions in aggressive responding may be due to de-
creases in more general aspects of behavioral activation. 
In particular, the significant reduction in motor behavior 
observed in haloperidol-treated animals alone may ex-
plain why animals were slower to bite and successfully 
target fewer bites onto intruders than saline or low dose 
animals. Indeed, haloperidol is a monoaminergic antago-
nist with high affinity (0.74 nM) for dopamine type 2 
(DA2) receptors [62]. The blockade of DA D2 receptors 
using DA D2 antagonists or the genetic deletion of the 
long form of the DA D2 receptor has been shown to re-
duce aggressive behavior by significantly reducing motor 
behavior [63-66]. Risperidone and valproate also re-
duced the highly impulsive and intense form of aggression 
in experimental animals in a dose-dependent manner, 
with a significant reduction in aggression observed at 0.1 
mg/kg for risperidone and 5 mg/kg for valproate for most 
responses of aggression intensity and aggressive impul-
sivity. However, at these doses, the effects of risperidone 
and valproate were selective for aggression as the anti-ag-
gressive effects were observed without concomitant ef-
fects on social communication (i.e., flank marking), motor 
behavior (i.e., locomotion), comfort behavior (i.e., groom-
ing), or avoidance/escape behavior (i.e., wall climbing).

Behavioral data from these studies support the notion 
that risperidone and valproate serve as valid treatment 
strategies for maladaptive aggression in youth. For in-
stance, experimental animals administered saline prior to 
aggression testing presented with a highly impulsive and 
intense display of aggression, analogous to that observed 
in our previous studies [46,61]. In contrast, administration 
of risperidone or valproate to aggressive, experimental 
animals prior to behavioral testing selectively reduced ag-
gressive responding, with the most effective doses being 
0.3 mg/kg and 5 mg/kg, respectively. Risperidone and val-
proate -treated hamsters showed a 70−75% decrease in 
aggression intensity and 200−400% decrease in ag-
gressive impulsivity at the 0.3 mg/kg and 5 mg/kg doses, 
respectively, when each is compared to their saline-treated 
counterparts. To determine whether the effects of risper-
idone and valproate were selective for specific and tar-

geted measures of the aggressive response, the anti-ag-
gressive properties of these drugs were analyzed across 
several determinates of aggression. Specifically, con-
sistent with the decrease in composite aggression scores, 
at the effective dose of risperidone (0.3 mg/kg) and val-
proate (5 mg/kg), animals showed a 65−75% decrease in 
the number of lateral attacks and 85−90% decrease in 
number of flank/rear bites compared to saline-treated 
controls. These findings are particularly interesting given 
that bites targeted towards the flank/rear region of the in-
truder are highly organized, mature aspects of the ag-
gressive phenotype [62-64,67-69]. The highly selective 
nature of risperidone and valproate’s anti-aggressive ef-
fects combined with the lack of any measurable effect on 
social communication, locomotion, comfort or avoid-
ance/escape behavior, indicated that these drugs did not 
attenuate aggressive responding through general non-
specific behavioral inhibition or sedation. These data sug-
gest that risperidone and valproate may be effective at at-
tenuating a highly impulsive and intense form of ag-
gression in adolescents, and as a result, these findings sup-
port an indication for the use of these medications for ear-
ly-onset maladaptive aggression in referred youth. 

Risperidone and valproate may attenuate maladaptive 
aggression by their actions on select brain systems and 
neurochemical signals implicated in the control of ag-
gressive behavior. Risperidone is a monoaminergic antag-
onist with high affinity (0.71 nM) for serotonin type 2A 
(5HT2A) receptors [62,70], while valproate increases the 
activity of the inhibitory neurotransmitter  aminobutyric 
acid (GABA) likely through GABA type A receptors (i.e., 
the majority of GABA receptors in brain [71,72]. The sero-
tonin 5HT and GABA neural systems have been im-
plicated in the regulation of aggressive behavior [73-80], 
and the importance of 5HT2A and GABA A receptors as 
mediators of the aggressive response has been demon-
strated. For instance, the activation of 5HT2A receptors 
with agonists increase aggressive behavior [81], while 
5HT2A receptor blockade with antagonists (and mixed 
5HT2A/DA D2 receptor antagonists) decreases aggression 
[40,81-83] in rodents, including hamsters [42,43], sug-
gesting an stimulatory role of 5HT2A receptor signaling in 
aggressive behavior. Conversely, the blockade of GABA A 
receptors using antagonists significantly also increases ag-
gression [84,85], suggesting an inhibitory role of GABA A 
receptor signaling in aggression control. Interestingly, in 
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the adolescent animal model of maladaptive aggression 
used in this study, highly aggressive, experimental ani-
mals possessed significant increases in 5HT2A receptors 
[86] alongside concomitant decreases in GABA A re-
ceptors [87] within key brain regions integral in modulat-
ing aggressive behavior, most notably the latero-anterior 
hypothalamus (LAH). These findings indicate that ag-
gressive, experimental animals have heightened 5HT2A 
receptor signaling and reduced GABA A receptor signal-
ing in brain regions controlling aggression. It is plausible 
that 5HT2A receptor antagonism by risperidone and 
GABA A receptor agonism by valproate act within the 
LAH to mitigate the highly reactive, maladaptive ag-
gressive phenotype observed in experimental animals. 
Taken together, the ability of these agents to modulate 
highly escalated aggressive behavior emphasizes the role 
of 5HT and GABA acting through 5HT2A and GABA A re-
ceptors as important molecular components of the neural 
circuit that serves to modulate maladaptive aggression. 

Given the documented rise in the pharmacological 
treatment of maladaptive aggression in youth populations 
[13], it is vital to dedicate research to exploring the rela-
tive efficacies of various pharmacological interventions. 
In this study, we used a well-validated pharmacologic 
adolescent animal model of maladaptive aggression to 
demonstrate the highly selective anti-aggressive proper-
ties of the atypical antipsychotic risperidone and the anti-
convulsant mood stabilizer valproate. The pre-clinical be-
havioral data presented here are important and novel in 
that they indicate that risperidone and valproate may pos-
sess selective and targeted anti-aggressive effects; con-
tributing to evidence that these drugs may used clinically 
as effective pharmacotherapeutics for selectively mitigat-
ing the highly reactive, maladaptive aggressive phenotype 
in adolescents [25,31,88-90]. These data not with-
standing, further study of other atypical antipsychotics 
and anticonvulsant mood stabilizers in the treatment of 
maladaptive aggression across well-validated aggression 
subtypes and in psychiatric diagnoses with a high preva-
lence of reactive, maladaptive aggression is warranted in 
both pre-clinical and clinical studies.
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