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ABSTRACT Antimicrobial resistance (AMR) continues to evolve as a major threat to
human health, and new strategies are required for the treatment of AMR infections.
Bacteriophages (phages) that kill bacterial pathogens are being identified for use in
phage therapies, with the intention to apply these bactericidal viruses directly into the
infection sites in bespoke phage cocktails. Despite the great unsampled phage diversity
for this purpose, an issue hampering the roll out of phage therapy is the poor quality
annotation of many of the phage genomes, particularly for those from infrequently
sampled environmental sources. We developed a computational tool called STEP3 to
use the “evolutionary features” that can be recognized in genome sequences of diverse
phages. These features, when integrated into an ensemble framework, achieved a sta-
ble and robust prediction performance when benchmarked against other prediction
tools using phages from diverse sources. Validation of the prediction accuracy of STEP3

was conducted with high-resolution mass spectrometry analysis of two novel phages,
isolated from a watercourse in the Southern Hemisphere. STEP3 provides a robust com-
putational approach to distinguish specific and universal features in phages to improve
the quality of phage cocktails and is available for use at http://step3.erc.monash.edu/.

IMPORTANCE In response to the global problem of antimicrobial resistance, there are
moves to use bacteriophages (phages) as therapeutic agents. Selecting which phages
will be effective therapeutics relies on interpreting features contributing to shelf-life
and applicability to diagnosed infections. However, the protein components of the
phage virions that dictate these properties vary so much in sequence that best esti-
mates suggest failure to recognize up to 90% of them. We have utilized this diversity
in evolutionary features as an advantage, to apply machine learning for prediction ac-
curacy for diverse components in phage virions. We benchmark this new tool showing
the accurate recognition and evaluation of phage component parts using genome
sequence data of phages from undersampled environments, where the richest diversity
of phage still lies.
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Antimicrobial resistance (AMR) has risen to prominence as a major threat to human
health (1, 2), and new strategies are required for the treatment of AMR infections

(3–5). For example, the Centers for Disease Control and Prevention have identified sev-
eral species of microbes as “Urgent” threats to human health by virtue of their AMR
phenotypes, including Escherichia coli and Enterococcus faecalis. As another prime
example of one of these, the carbapenem-resistant Enterobacteriaceae (CRE), Klebsiella
pneumoniae infections represent a key target for new therapeutics to treat AMR infec-
tions (3–5). Bacteriophages (phages) that kill bacterial pathogens such as Klebsiella are
being identified for use in phage therapies, with the intention to apply these bacteri-
cidal viruses directly into the infection sites. Careful consideration is needed in select-
ing the phages for use in therapeutic cocktails (4–6), considerations made difficult
because annotation of phage genomes is poor (7, 8), potentially obscuring phages
with therapeutic potential. For example, while structural motifs are now known (9) that
will promote phage virion stability (i.e., shelf-life), only with correct annotation of the
major capsid, minor capsid, and other proteins involved can structural motifs be identi-
fied and evaluated.

Phage therapy has reemerged because of its potential treatment for antimicrobial-
resistant infections, and a common protocol for treatments is to select two or more
phages for combination into a treatment cocktail (4–6). An ongoing issue is the estab-
lishment of criteria used for selection of appropriate phages for a cocktail, to enhance
production and maximize efficacy, and to circumvent issues of phage resistance and
collateral induction of further drug resistance in the infection sites (4, 6). The phages
used for phage therapy are Caudovirales conforming to a blueprint of an icosahedral
protein capsid housing the phage genome and a tail composed of 20 to 40 protein
components (10). The tails of these phages can be considered a complex piece of mo-
lecular machinery, with component parts of the tail recognizing and docking to a spe-
cies-specific receptor on the host bacterium (11, 12). Penetration of the host cell enve-
lope depends on other components of the tail, which can have enzymatic functions to
locally hydrolyze each of the distinct layers of the bacterial envelope (12–14). An ulti-
mate goal for the development of personalized phage therapy is the recognition of all
of these components from genome sequence data, so that bespoke phage could be
selected for specific therapeutic purposes (5, 6). However, the annotation of phage
genomes is poor, potentially obscuring important features contributed by some com-
ponent parts such as contributions to virion stability and shelf-life, host range, and bac-
terial cell lysis (7, 8, 15).

RESULTS AND DISCUSSION

Currently, phage genomes are assessed by tools such as multiPhATE (15) which pro-
vides a bioinformatics pipeline for functional annotation using sequence-based
queries. The annotation accuracy of multiPhATE is limited by the extreme sequence di-
versity in phage genomes, likely due to the rapid evolutionary rates of phages (16).
This limitation has been addressed to some extent with a neural network-based predic-
tor iVIREONS (17) and further tools such as PVPred (18), PVP-SVM (19), PhagePred (20),
Pred-BVP-Unb (21), and PVPred-SCM (22). However, recent evaluation of these tools in
phage protein prediction showed less than satisfactory performance (23). We devel-
oped an ensemble predictor, STEP3, to accurately call the protein components of
phage virions and visualize their predicted function-based relationships (Fig. 1).

STEP3 extracted information from position-specific scoring matrix (PSSM) data
(Fig. 1a), an approach that tracks protein evolutionary histories (24, 25). In machine-
learning evaluation of protein sequences, “evolutionary features” refer to information
within the amino acid sequences that conceptually traces the evolutionary history of
proteins, and their use often identifies highly informative patterns (24, 25). STEP3

includes data visualization capabilities to document relationships between virion com-
ponents where the sequence similarity is sufficiently strong to identify high confidence
homologs from other phages (Fig. 1b; see Fig. S1 in the supplemental material).
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FIG 1 Construction and workflow for STEP3. (a) Graphic summarizing the construction and prediction process of STEP3. A set of experimentally validated
virion proteins and nonvirion proteins was compiled, and sequence data were fed into five PSSM models, including AAC-PSSM (59), PSSM composition (60),
DPC-PSSM (59), AADP-PSSM (59), and a MEDP (61) model. The five individual models were trained based on five balanced subsets, and their prediction
scores were averaged to obtain an ensemble model. Finally, five baseline models (corresponding to five evolutionary features) were further integrated as
the final ensemble model of STEP3 through averaging their prediction scores. Support vector machine (SVM) with a radial basis function kernel was used to
train each model. This ultimately provides a prediction of a “virion protein” which would be a structural component of the phage virion. (b) STEP3 data
visualization provides a means to document relationships between a protein of interest. The example given is the protein component gpE from phage l ,
which shows clear similarity to major capsid proteins from other phages. Structural studies confirm that despite limited sequence similarity, gpE is part of a
family of major capsid proteins (9). Alternative visualization features are available in STEP3 (see Fig. S1 in the supplemental material).
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There is power in integrating individual models within an ensemble framework for
more robust and stable predictions: trained with an individual model alone (AAC-PSSM),
predictions perform well with the fivefold cross-validation test (Fig. 2a; see Fig. S2 and
Table S1 in the supplemental material) but ranked only fourth using the independent test
(Fig. 2b and Table S2). In contrast, combined with other models into the ensemble model
of STEP3, to draw on the best elements from all of the individual models (Fig. 1a), the
overall best prediction performance ranking was achieved (Fig. 2a and b and Tables S1
and S2). In benchmarking against other available predictors, the ensemble STEP3 achieved
an improved performance, with the highest sensitivity (SN=0.896), accuracy (ACC=0.891),
F-value (0.891), and Matthews correlation coefficient (MCC=0.781) using the independent
test (Fig. 2c and Table S3). The superior performance of STEP3 can be attributed to the inte-
gration of more informative evolutionary features, as well as the comprehensive and up-
to-date training data set using experimentally verified inputs. It is worth noting that the
BLAST-based predictor, which represents the mode used for genome annotation had the
lowest accuracy (ACC) and F-value. This prediction bias is reflected by the extremely unbal-
anced sensitivity (the lowest) and specificity (the highest) scores, so that the BLAST-based
predictor tended to predict positive samples as being negative. This quantifies and offers
evidence for past observations that pairwise sequence matching methods struggle to pre-
dict phage proteins (25).

For initial case studies, we drew on three accounts published after STEP3 was
trained, where phages had been discovered, the genome sequence data deposited for

FIG 2 Performance validation of STEP3. (a) Performance evaluation on the fivefold cross-validation test. (b) Performance evaluation on the independent
test. (c) Performance comparison with existing tools on the independent test.
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public access, and the protein composition virions had been determined by mass spec-
trometry. The mass spectrometry data are crucial, as it enables discrimination between
false-positive (FP; predicted but not present by mass spectrometry of the virion) and
true-positive (TP; predicted and found present by mass spectrometry of the virion)
results. Phage vB_EfaS_271 infects Enterococcus faecalis (26), phage vB_PatM_CB7
infects Pectobacterium atrosepticum (27), and phage vB_Eco4M-7 infects enteropatho-
genic Escherichia coli (28). STEP3 was benchmarked against equivalent predictors:
PVPred, PVP-SVM, Pred-BVP-Unb, and PVPred-SCM (Fig. 3). STEP3 provided the greatest
set of true-positive predictions for each of the three phages, predicting 9 of the 15 vi-
rion components for phage vB_EfaS_271, 23 of the 26 protein components for phage
vB_PatM_CB7, and 24 out of 33 components of the phage vB_Eco4M-7 virions. Making
low FP predictions on each phage, STEP3 maintained a good balance between TP and
FP results and showcased robust prediction performance across the test cases. In the
case of phage vB_PatM_CB7, where mass spectrometry data had shown the number of
nonvirion proteins is more than eight times as many as that of virion proteins, STEP3

generated equal numbers of FP results and TP results. In this extreme case, STEP3 cor-
rectly predicts 23 out of 26 virion proteins with a false-positive rate of 10.1% (23/227).

Oftentimes candidate phages that kill pathogens are isolated from hospital waste-
water sources for their use in phage therapy (29, 30). This raises the issue of potential
oversampling of a common environmental source (i.e., wastewater) for phages, poten-
tially limiting discovery of other, valuable phages and also potentially biasing the capa-
bility of predictors like STEP3. Therefore, as a further proof-of-principle test for STEP3,
we sampled a natural watercourse with a strain of drug-resistant and hypervirulent
Klebsiella pneumoniae as the host. The Merri Creek, which forms a part of the larger
Merri catchment, lies within Wurundjeri Woi wurrung people’s traditional homelands.
Phages isolated from two separate sampling sites were characterized initially by ge-
nome sequencing and named in Woi wurrung language Merri-merri-uth nyilam marra-
natj (MMNM) and Merri-merri baany-a bundha-natj (MMBB); these names translate as
“Dangerous Merri lurker” and “Merri water biter,” respectively, in English.

Comparative genomic analysis revealed Klebsiella phages MMNM (Fig. 4) and MMBB
(Fig. S3) to be distinct from previously sampled phages. In the case of MMNM, some simi-
larities can be seen to phages belonging to the Jedunavirus genus according to the most
recent International Committee on Taxonomy of Viruses (ICTV) classification, but the
branch lengths on the tree designate diversity within this small group, comprising only
eight phages in the NCBI database (Fig. 4a). Relatives of MMNM, isolated from hospital
wastewater in Russia, showed considerable diversity in gene content and arrangement
(Fig. 4b). Most notably, MMNM encodes several genes that are absent in many of the
other sequenced jedunaviruses, including previously uncharacterized proteins MMNM_5,
MMNM_6, MMNM_45, MMNM_51, MMNM_56, MMNM_57, and the putative polynucleo-
tide kinase protein MMNM_50. Conversely, MMNM lacks the putative NHN endonuclease-
like protein encoded by both vB_KpnM_FZ14 and vB_KpnM_KpV52. Sequence annota-
tions suggest that MMNM has a tail structure characteristic of Myoviridae, including a
baseplate protein (MMNM_21), a baseplate J-like protein (MMNM_23), and the baseplate
wedge protein (MMNM_26). In high-resolution structural analyses of the Myoviridae
phage T4, each virion has six molecules of each of these proteins and one to three mole-
cules per virion of the hub proteins to which the baseplate is attached (31, 32).

MMBB belongs to the Webervirus genus, a group of phages that exclusively target
Klebsiella species (Fig. S3). MMBB is distinct from the other phages in this genus, with
its closest relationship being to a phage isolated in China called vB_KpnS_GH-K3 (also
called phage GH-K3) (33). Highlighting their differences, MMBB and GH-K3 show
regions of diversity in gene content and arrangement; this is observed for the gene
encoding MMBB_16, a putative AP2/HNH endonuclease previously found only in a
small number of other Siphoviridae phages, including the Escherichia phage
vB_EcoS_ESCO41 and Escherichia phage CJ19 (Fig. S3). Additional differences are seen
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in a contiguous cluster of four genes encoding hypothetical proteins (MMBB_45 to
MMBB_48) that are absent in GH_K3.

Phenotypic characterization of the phages on lawns of K. pneumoniae (see Materials
and Methods) showed that the plaque size for MMNM was smaller than that for MMBB
(Fig. 5a) and with liquid cultures of K. pneumoniae (Materials and Methods) that

FIG 3 Prediction details from STEP3 and other tools. (a) For phage vB_EfaS_271, horizontal bars denote the number of virion and nonvirion proteins. The
bar chart shows the numbers of the virion proteins correctly retrieved as true-positive results (TP), i.e., confirmed by mass spectrometry (26), and nonvirion
proteins mistakenly predicted as virion proteins (denoted by false-positive results [FP]). (b) For each protein in the phage vB_EfaS_271 virion defined by
mass spectrometry, a green circle represents a successful hit by a predictor. (c) For phage vB_PatM_CB7, the bar chart shows the numbers of virion
proteins correctly retrieved as TP and nonvirion proteins mistakenly predicted as FP. (d) Detailed predictions from STEP3 and other tools for vB_PatM_CB7
virion proteins defined by mass spectrometry (27). (e) For phage vB_Eco4M-7, the bar chart shows the numbers of virion proteins correctly retrieved as TP
and nonvirion proteins mistakenly predicted as FP. (f) Detailed predictions from STEP3 and other tools for vB_PatM_CB7 virion proteins defined by mass
spectrometry (28).
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MMNM had a shorter latent period (L) before host cell death as determined by one-
step growth curves (Fig. 5b). Electron microscopy revealed that MMNM has an icosahe-
dral head and a tail tube of ;54 nm capped with an ;30-nm baseplate to generate
thick and straight tails (Fig. 5c). The baseplate structure evident in MMNM (Fig. 5c) is

FIG 4 Comparative genome analysis of Klebsiella phage MMNM. (a) Proteomic tree analysis of Myoviridae that infect Gammaproteobacteria. The branch
lengths represent genomic similarity based on normalized pairwise sequence similarity scores plotted on a logarithmic scale. The tree was constructed using
sequences from the default ViPTree data set and the following selected Klebsiella phage genomes: vB KpnM KpV79 (GenBank accession no. NC_042041), vB
KpnM FZ14 (MK521906), vB KpnM KpV52 (NC_041900), 1611E-K2-1 (MG197810), vB KpnM IME346 (MK685667), vB KpnM 15-38 KLPPOU148 (MN689778), PEAT2
(NC_044940), and MMNM (MT894004). Viral subfamilies or genera are indicated by the colored bars. Gray bars represent phages that are currently unclassified.
All known members of the Jedunavirus, including Klebsiella phage MMNM (*), are highlighted in red. (b) Whole-genome alignment of Klebsiella phage MMNM,
vB_KpnM_FZ14, and vB_KpnM_KpV52. Each genome has been oriented to start with the gene encoding the putative tape measure protein. The sequences are
linked by colored bars highlighting sequence identity values as shown in the key.
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similar to that seen for the T4 phage (31), which serves as a paradigm for the
Myoviridae (34) (Fig. 5d). In contrast, MMBB has ;200-nm-long, slender, and flexible
tails (Fig. 5c). The flexible, noncontractile tail tube designate MMBB as a phage of
Siphoviridae-like viruses (Fig. 5d), consistent with genome annotation data.

To directly test STEP3 prediction capability on the novel phages MMNM and MMBB,
the protein components contributing structurally to the virions were determined by
high-performance mass spectrometry (35, 36). To this end, samples of each virion were
purified using cesium chloride gradients. The MMNM virion is composed of 25 protein
components (Table S4). Assuming a similar stoichiometry between MMNM virions and
the paradigm for Myoviridae, phage T4 virions, the identification of the lytic transglyco-
sylase MMNM_19 suggests that the proteomic analysis is sensitive enough to detect
three or fewer molecules per virion (31). From evaluation of the predicted proteins
within the phage genomes, together with these mass spectrometry data, the MMNM
genome encodes 25 structural proteins that serve as components of the virion and 42
proteins that would be expressed after infection of the host to drive phage replication
(Fig. 6a).

STEP3 successfully predicted 22 out of the 25 MMNM virion proteins (Fig. 6b and
Table S5). The other predictors gave poorer outcomes with these diverse protein
sequences. For example, second to STEP3 was iVIREONS which identified 19 virion pro-
teins, but iVIREONS also generated the largest number of false-positive results, 14, con-
sistent with its high false-positive prediction rate in the independent tests (Table S3).
In one case, the initial STEP3 analysis made a false-negative prediction that was highly
informative. The phage polynucleotide kinase (PNK) is an enzyme that has been previ-
ously assumed to be a nonvirion protein, and the sequence was therefore included in
that (nonvirion) data set from which STEP3 was trained. However, mass spectrometry
identified the putative PNK protein MMNM_50 as a component of the virion (Table S4).
Note that an equivalent result was achieved with the prediction for MMBB: protein
MMBB_64 was detected by mass spectrometry (Table S7) but not selected by STEP3

(Table S4 and Table S6). We suggest that for some phages the PNK remains associated
with the packaged genome and is thereby incorporated within the capsid. This sugges-
tion explains the proteomics data herein, reconciles the false-negative prediction by
STEP3, and is consistent with the recent observation that the “gp44 ejection protein” is
a virion protein in a Staphylococcus phage 80a bound to genome ends and functioning
as a putative PNK would to protect the DNA from degradation upon phage entry into
its host (37).

High-resolution mass spectrometry of the MMBB virions showed them to be com-
posed of 29 protein components (Table S7). Thus, the MMBB genome encodes 29 pro-
teins contributing structurally to the virions and 50 nonvirion proteins expressed only
after infection in the host bacterium (Fig. 6c). For MMBB, STEP3 and iVIREONS retrieved
20 and 18 virion proteins, respectively (Fig. 6d and Table S6). The other predictors
achieved unsatisfactory prediction results, retrieving less than half of the 29 virion
proteins.

The evolutionary features drawn on by STEP3 and iVIREONS are structure informed,
in that the patterns that they recognize are reflections of secondary and tertiary struc-
ture, and these patterns can also be used to suggest protein function. For example, a
characteristic of the Webervirus has been suggested to be the presence of tail spike
proteins with polysaccharide degrading activity (38), and the sequence of MMBB_78 is
suggestive of such a protein, as summarized in Fig. S3. Conversely, pairwise sequence
assessment is a poor means for recognition and characterization of virion proteins. For
both MMNM and MMBB, sequence conservation alone proved the least satisfactory
method for predicting phage virion proteins: the BLAST-based predictor recognized
only three and six virion proteins, respectively (Fig. 6b and d and Tables S5 and S6).
This confirmed the independent test results that the BLAST-based methods commonly
used for annotations are a poor means of recognizing and classifying sequence-diverse
phage proteins.
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FIG 5 Morphological characterization of phages MMNM and MMBB. (a) Plaque morphology analysis
was performed using the double overlay method. Plaque morphology analysis was performed using

(Continued on next page)
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Some estimates put the number of phage virions in the world at 1031, suggesting
that there is a huge pool of phages that we know little about (39). This encourages a
move toward informed bioprospecting for potentially useful phages from under-
sampled environments. The effective use of these for therapy and other applications
depends on a number of factors, not least of which is the sequence-based choices that
must be made to identify novel phages warranting further characterization and poten-
tial development into phage therapy. We suggest that application of STEP3 will assist
in distinguishing the specific and universal features in phages isolated from underre-
presented (undersampled) geographical locations, with impact on the quality of future
phage cocktails. Particularly in phages that might be highly divergent in their sequence
characteristics, such as the MMNM and MMBB case studies here, STEP3 can predict the
component parts of the virions with a confidence level well above other computational
tools. The STEP3 toolbox is available at http://step3.erc.monash.edu/.

MATERIALS ANDMETHODS
Construction of the Klebsiella host strain. B5055 is a multidrug-resistant K. pneumoniae (40, 41)

strain with a K2-type capsule considered indicative of hypervirulent K. pneumoniae (hvKp) (42). To avoid
isolating phages that use the major porin for entry into K. pneumoniae (33) and thus circumvent the pros-
pect of phage resistance acquired by decreased expression of porins (43) and collateral increases in drug-
resistant phenotype in the infection (44), we constructed as bait a strain that has no OmpK36. This
DompK36 mutant strain of K. pneumoniae B5055 was constructed by “gene gorging” as previously
described (45, 46) using the following primers: ompK36-upF (CTGGCAGTATAAAGGCTAATGGC), ompK36-
downR (TGCCGCTCTGATTAATAACCTG), ompK36_pKD4_F (TACCGGCGTTGCGGGTGAAGCTGTTGTCGTCC
AGCAGGTTGATTTTGTAGTGTGTAGGCTGGAGCTGCTTC), and ompK36_pKD4_R (AATCAGTAAGCAGTGGCAT
AATAAAAGGCATATAACAAACAGAGGGTTACATATGAATATCCTCCTTAG).

Phage isolation and infection of Klebsiella. Water samples were collected from catchment loca-
tions along the Merri Creek in Melbourne, Australia (Reservoir, postcode 3073, yielded MMNM, and
Pascoe Vale, postcode 3044, yielded MMBB). Samples were centrifuged at 10,000� g for 10 min and fil-
tered through a 0.45-mm cutoff filter. Water samples (45ml) were subsequently mixed with 5ml of 10�
concentrated Luria-Bertani (LB) medium and 1ml of a K. pneumoniae B5055 DompK36 overnight culture
and grown for a further 16 h at 37°C. Cellular debris was pelleted by centrifugation at 10,000� g for 10
min, and the resulting supernatant was passed through a 0.45-mm filter. To monitor phage activity, 20
ml of the supernatant was then spotted onto LB agar plates containing a top layer of soft agar (4ml LB
and 0.35% [wt/vol] agar) and 200ml of bacterial culture and incubated overnight at 37°C.

For liquid infections, the filtered supernatant was serially diluted with SM buffer (100mM NaCl,
8mM MgSO4, 10mM Tris [pH 7.5]) and added to 200 ml of K. pneumoniae B5055 DompK36. Cultures
were incubated for 20 min at 37°C to allow phage adsorption and were then added to soft agar and
poured using the double overlay method. Plaques with distinct morphologies were isolated from the
top agar, serially diluted in SM buffer, and incubated with the bacterial host as described above. This
was repeated five times to obtain pure phage stocks.

Phage amplification and purification. For large amplification of the phages MMNM and MMBB,
infections were performed using 14-cm petri dishes with 60 ml of phage preparation (1024 dilution)
added to 500 ml of an overnight culture and incubated for 20 min at 37°C. Ten milliliters of soft agar was
then added to the culture and poured using the double agar layer method and incubated overnight at
37°C. Ten milliliters of SM buffer were added to each plate and incubated at room temperature for 10
min. The soft agar layer was scraped off using a disposable spreader, and chloroform was subsequently
added (1ml/100ml) to lyse bacterial cells to release the phages. The sample was then subjected to vig-
orous shaking, before the agar and bacterial cell debris were removed by centrifugation at 11,000� g
for 40 min (4°C). The supernatant containing the phages was collected, and DNase (1mg/ml) and RNase
(1mg/ml) were subsequently added to the supernatant and incubated for 30 min at 4°C. NaCl (1 M final
concentration) was added and incubated at 4°C for 1 h with gentle mixing. Phages were precipitated
from the medium by adding polyethylene glycol (PEG) 8000 (10% final concentration) and incubated at
4°C overnight. Precipitated phage particles were collected by centrifugation at 11,000� g for 20 min at
4°C and resuspended in SM buffer (1.6ml/100ml of precipitated supernatant). An equal volume of chlo-

FIG 5 Legend (Continued)
the double overlay method after liquid infections of B5055 DompK36 with serially diluted MMNM and
MMBB. Plaque morphologies of MMNM and MMBB were determined after overnight incubation at 37°C.
Bars, 10mm. (b) One-step growth curve of MMNM (left) and MMBB (right) was performed by
coincubation with the host strain for 10min at 37°C for phage adsorption, after which the mixture was
subjected to centrifugation to remove free phage particles. The resuspended cell-phage pellets were
incubated at 37°C and sampled at 10-min intervals for 120min. L, latent period; B, burst size. Data
points are the means of three biologically independent samples, and the error bars are the standard
deviations. (c) Transmission electron micrographs of MMNM (left) and MMBB (right). Bars, 100nm. (d)
Based on electron microscopy (EM) micrographs, illustrations of MMNM (left) and MMBB (right) show
the cognate features in Myoviridae and Siphoviridae with annotation.
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FIG 6 Prediction details from STEP3 and other tools applied to MMNM and MMBB. (a) The statistics of the prediction results on MMNM. Horizontal bars
on top describe the number of virion and nonvirion proteins in the phage isolates. The bar chart shows the numbers of virion proteins correctly
retrieved (denoted by true-positive results [TP], i.e., confirmed by mass spectrometry) and nonvirion proteins mistakenly predicted as virion proteins
(denoted by false-positive results [FP]). (b) Detailed predictions from STEP3 and other tools for MMNM for the virion proteins defined by mass

(Continued on next page)
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roform was added to the resuspended phage suspension to remove residual PEG and cell debris and
vortexed for 30 s. The organic and aqueous phases were separated by centrifugation at 3,000� g for 15
min at 4°C.

For purification on cesium chloride (CsCl) gradients, the aqueous phase containing the phages was
removed and added to CsCl (0.5 g/ml of bacteriophage suspension) and mixed gently to dissolve the
CsCl. The suspension was layered onto a discontinuous CsCl gradient (2ml of 1.70 g/ml, 1.5ml of 1.50 g/
ml, and 1.5ml of 1.45 g/ml in SM buffer) in a Beckman SW41 centrifuge tube. Gradients were centrifuged
at 22,000 rpm for 2 h (4°C). Phage particles were collected from the gradient by piercing the side of the
centrifuge tube with a syringe and removing the visible band in the gradient. Residual nucleic acid was
removed from the phage preparation using floatation gradient centrifugation. Equal volumes of phage
suspension (500 ml) and 7.2 M CsCl SM buffer were mixed and added to the bottom of a Beckman SW41
centrifuge tube. CsCl solutions (3ml of 5 M and 7.5ml of 3 M) were overlaid on top of the phage sample
and centrifuged at 22,000 rpm for 2 h (4°C). Phage particles were collected (;500 ml) using a syringe as
described above. CsCl was dialyzed out of the phage stock twice with 2 liters of SM buffer overnight at
4°C.

Phage growth. One-step growth curve experiments were performed on K. pneumoniae as previously
described (29). Mid-log-phase cultures were adjusted to an optical density at 600 nm (OD600) of 0.5, pel-
leted, and suspended in 0.1 volume of SM buffer. Phage lysate was subsequently added at a multiplicity
of infection (MOI) of 0.01 and was allowed to adsorb for 10 min at 37°C. Following centrifugation at
12,000� g for 4 min, the pellet was washed twice with SM buffer, resuspended with 30ml of fresh LB
broth, and incubated at 37°C. Samples were collected at 10-min intervals for 120 min and titrated to
determine PFU per milliliter. Growth experiments were performed in biological triplicates.

Electron microscopy. From the CsCl purifications, phage preparations (4ml) were added to freshly
glow-discharged CF200-Cu Carbon Support Film 200 Mesh Copper grids (ProScieTech) for 30 s. The sam-
ple was blotted from the grid using Whatman filter paper, and samples were subsequently stained with
4ml of Nano W methylamine tungstate (Nanoprobes) for 30 s and blotted again. Grids were imaged
using a 120 keV Tecnai Spirit G2 transmission electron microscope (Tecnai).

Genomic DNA extraction, sequencing, and annotation. Phage genomic DNA was isolated, and
samples were sequenced as 2� 250-bp paired-end reads using Illumina MiSeq (36). The obtained reads
were trimmed using Trimmomatic (47), and de novo assemblies of each genome were made using
Burrows-Wheeler aligner (48) and SPAdes (49). The genomes were annotated using Prokka (50). The con-
sensus sequences were then screened against the GenBank database using BLAST (https://blast.ncbi
.nlm.nih.gov/Blast.cgi), date 29 April 2020. The genome data are available at GenBank with accession
number or identifier (ID) Klebsiella_phage_MMNM (MT894004) and Klebsiella_phage_MMBB (MT894005).

Comparative genome analyses and BLAST. Proteomic trees were constructed using nucleotide ge-
nome sequences using the double-stranded DNA (dsDNA) nucleic acid type and Prokaryote host cate-
gory database from ViPTree v1.9 (51) which also included a list of curated phage genomes. Refined trees
were regenerated to analyze the phylogeny of either Myoviridae or Siphoviridae that infect
Gammaproteobacteria. Each predicted open reading frame was analyzed using BLASTP (https://blast
.ncbi.nlm.nih.gov/Blast.cgi), Pfam HMMER (https://www.ebi.ac.uk/Tools/hmmer/), and HHpred (https://
toolkit.tuebingen.mpg.de/tools/hhpred) using the default settings.

A BLAST-based predictor was implemented during the evaluation of STEP3. It ran using blast-
2.2.261. For a query protein, the BLAST-based predictor will predict it to be positive if there is a BLAST
hit against the training positive samples with a specified E value. The E value was set at 0.01 in this
study, optimized on the independent data set with a range of values, 0.001, 0.01, 0.1, 1, and 10.

Mass spectrometry. Each CsCl-purified phage sample was solubilized in sodium dodecyl sulfate
(SDS) lysis buffer (4% SDS, 100mM HEPES [pH 8.5]) and sonicated to assist protein extraction. The pro-
tein concentration was determined using a BCA kit (Thermo Scientific). SDS was removed as previously
described (52), and the proteins were proteolytically digested with trypsin (Promega) and purified using
OMIX C18 Mini-Bed tips (Agilent Technologies) prior to liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) analysis. Using a Dionex UltiMate 3000 RSLCnano system equipped with a
Dionex UltiMate 3000 RS autosampler, an Acclaim PepMap RSLC analytical column (75mm� 50 cm,
nanoViper, C18, 2mm, 100 Å; Thermo Scientific), and an Acclaim PepMap 100 trap column (100mm �
2 cm, nanoViper, C18, 5mm, 100 Å; Thermo Scientific), the tryptic peptides were separated by increasing
concentrations of 80% acetonitrile20.1% formic acid at a flow of 250 nl/min for 120 min and analyzed
with a QExactive Plus mass spectrometer (Thermo Scientific) using in-house optimized parameters to
maximize the number of peptide identifications. To obtain peptide sequence information, the raw files
were searched with Byonic v3.0.0 (ProteinMetrics) against the K. pneumoniae B5055 (derivative str.
Kp52.145) GenBank file FO834906 that was appended with the phage protein sequences. Only proteins
falling within a false discovery rate (FDR) of 1% based on a decoy database were considered for further
analysis.

Homology modeling. Structural homologs were selected by querying the MMBB_78 sequence via
the BLASTp webserver against the Protein Databank (PDB). In addition, this same sequence was probed

FIG 6 Legend (Continued)
spectrometry. The green circles represent a successful hit by a predictor. The green stars denote the proteins that have not previously been identified in
phages. The red stars denote those with activities that have previously been identified in phages but not previously found as protein components of
purified virions. (c) Prediction statistics for MMBB. (d) Detailed predictions from STEP3 and other tools for MMBB virion proteins defined by mass
spectrometry.
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using the Phyre2 software suite to identify local homology (53). Residues 186 to 872 of MMBB_78 were
modeled against the enzymatic domain of the bacteriophage CBA120 tail spike protein (PDB ID 5W6P
[54]). MODELLER v9.19 (55) was used with custom in-house scripts to generate 1,000 potential models.
These models were validated and sorted by their discrete optimized protein energy (DOPE) score, fol-
lowed by visual inspection. An additional atomic model was calculated by the predictive software
GalaxyTBM using the full-length MMBB_78 sequence, as part of the GalaxyWEB (56) software suite.

Construction of STEP3. (i) Data set construction. A total of 481 phage virion proteins were col-
lected from the UniProt database with the “reviewed” tag and from the NCBI database following exten-
sive literature searches. Redundant sequences were removed using the CD-HIT program (57) at a cutoff
threshold of 0.4. As a result, 339 virion proteins with less than 40% sequence similarity were obtained.
These proteins were further divided into two parts as positive samples: 243 in the training data set and
96 in the independent data set. For negative samples, we downloaded all 1,335 reviewed phage nonvi-
rion proteins (with keywords “NOT Virion” and organism=“phage” and fragment=“no”) from the UniProt
database. After sequence redundancy reduction using the cutoff threshold of 0.4 within the negative
samples and against positive samples, 790 phage nonvirion proteins were obtained to make up the final
negative training (694) and independent (96) data sets, respectively. Finally, a training data set (243 posi-
tive samples and 694 negative samples) and an independent data set (96 positive samples and 96 nega-
tive samples) were obtained, where each had less than 40% sequence similarity against each other.
Three very recently reported phage genomes vB_EfaS_271 (26), vB_PatM_CB7 (27), and vB_Eco4M-7
(28), as well as two newly sequenced phage genomes MMNM and MMBB in this study, were used to vali-
date the prediction capability of STEP3 in practical scenarios.

(ii) PSSM generation. PSSM is an L � 20 matrix, where L is the length of its original protein
sequence and 20 is the number of amino acids. The (i, j)-th element (1 # i # L, 1 # j # 20) in an PSSM
corresponds to the probability of the jth amino acid to appear in the ith position of its protein sequence.
To generate an PSSM, blast-2.2.26 resource (https://ftp.ncbi.nlm.nih.gov/blast/executables/) was used to
search the protein sequence against the UniRef50 data set (https://www.uniprot.org/help/uniref) with
an E value of 0.001 and the iteration of 3.

(iii) Feature encoding. Instead of extracting features directly from the protein sequences, evolution-
ary features mine patterns from a more informative profile in the format of PSSM. Five types of evolu-
tionary features were generated using the POSSUM toolkit (58), including AAC-PSSM (59), PSSM compo-
sition (60), DPC-PSSM (59), AADP-PSSM (59), and MEDP (61). For a given PSSM, their calculations are
briefly described as follows. (i) AAC-PSSM generates a 20-dimensional vector through summing up and
averaging all rows of the PSSM (59). (ii) PSSM composition further divides PSSM rows into 20 groups
according to their corresponding amino acids in the original protein sequence (60). The rows in each
group are summed up and normalized, and as a result, the PSSM are transformed into a 20 � 20 matrix.
Converting this matrix into a vector by row, PSSM composition finally generates a 400-dimensional vector.

(iii) DPC-PSSM generates a 400-dimensional vector ðy1;1; . . . ; y1;20; y2;1; . . . ; y2;20; . . . ; y20;1; . . . ; y20;20ÞT
through taking into account the local sequence order effect (59). Among the vector, yi;j can be calculated

by 1
L�1

XL21

k¼1
pk;i � pk11;j where i and j are between 1 and 20 and pk;i denotes the (k,i)-th element in PSSM.

(iv) AADP-PSSM combines AAC-PSSM and DPC-PSSM (59) as a 420-dimensional vector. (v) Likewise, MEDP
generates a 420-dimensional vector through combining another two features, EEDP and EDP (61). Among
them, EEDP generates a 400-dimensional vector similarly to DPC-PSSM but using different transformation
methodologies. EDP further sums up and averages all rows of the EEDP matrix to generate a 20-dimen-
sional vector.

Additionally, four commonly used features were additionally implemented for comparison purpose,
including the amino acid composition (AAC), dipeptide composition (DPC), QSOrder (62), and PAAC (63).
AAC and DPC count the frequencies of residues and dipeptides in a protein sequence, respectively.
QSOrder and PAAC extract features from a protein sequence as well, incorporating the physicochemical
properties of its individual amino acids. Among them, QSOrder adopts Schneider-Wrede physicochemi-
cal distance matrix (64) and Grantham’s distance matrix (65), while PAAC takes hydrophobicity values
from Tanford (66) and from Hopp and Woods (67), as well as amino acid side chains.

(iv) Model training on imbalanced data. Our imbalanced training data set is to reflect the fact that
the number of virion proteins is usually smaller than that of the nonvirion proteins in a phage isolate. The
ratio of positive and negative samples in our training data set is 1:2.86 (i.e., 243:694), which falls in the gen-
eral range of ratios (usually from 1.5 to 3) between virion and nonvirion proteins in any given phage ge-
nome. To avoid prediction bias of models directly trained on imbalanced data, we applied the undersam-
pling technique to generate multiple balanced data sets for model training. Specifically, we combined all of
the virion proteins with the same number of randomly selected nonvirion proteins to generate a new bal-
anced subset. This procedure was repeated five times to generate five balanced subsets. For each feature,
five individual models were trained based on five balanced subsets, and their prediction scores were aver-
aged to obtain an ensemble model as the baseline model. Support vector machine (SVM) with a radial basis
function kernel was used to train each model, implemented by the e1071 package (https://CRAN.R-project
.org/package=e1071) in the R language (https://www.r-project.org/). The two parameters of SVM, including
the Cost and Gamma, were optimized by a grid search between 2210 and 210 with a step of 21 using the
same R package.

(v) Model integration. Training a model with each of the features and then integrating them as an
ensemble model usually have better and more robust performance, compared with simply training a
model with all features (68). Accordingly, the five baseline models (corresponding to five evolutionary
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features) were further integrated as the final ensemble model of STEP3 through averaging their predic-
tion scores (Fig. 1a).

(vi) Performance evaluation. The STEP3 predictor was extensively validated, with the baseline mod-
els and existing state-of-the-art tools on the fivefold cross-validation and independent tests. Five per-
formance metrics were used, including sensitivity (SN), specificity (SP), accuracy (ACC), F-value, and
Matthews correlation coefficient (MCC) (69). For each model, fivefold cross-validation tests were con-
ducted five times based on the five balanced training data sets, and then the performance metrics were
averaged as the final performance result. The other tools compared to STEP3 were iVIREONS (https://
vdm.sdsu.edu/ivireons), PVPred (http://lin-group.cn/server/PVPred), PVP-SVM (http://www.thegleelab
.org/PVP-SVM/PVP-SVM.html), PVPred-SCM (http://camt.pythonanywhere.com/PVPred-SCM), and Pred-
BVP-Unb (21). With no available tool for Pred-BVP-Unb, we developed one based on our training data
set by strictly following its methods, including its synthetic minority oversampling technique (SMOTE) to
cope with the imbalance data set, feature encodings, feature selection (a more generalized method
GainRatio used), and the same grid search for parameter optimization. The prediction threshold for
Pred-BVP-Unb is a standard cutoff of 0.5, which is the same as STEP3.

(vii) Server construction and usage. The STEP3 server contains a client web interface and a server
backend. The client web interface was implemented by the JAVA server development suite, JSP, CSS,
jQuery, Bootstrap, and their extension packages. The server backend was used by the Perl CGI (https://
metacpan.org/pod/CGI). For visualization purposes, the blast 2.8.11 (https://ftp.ncbi.nlm.nih.gov/blast/
executables/blast+/2.8.1/) was used to search each predicted virion protein against known virion pro-
teins to generate sequence similarities, which was visualized by BlasterJS (70). The MAFFT v7.271
(https://mafft.cbrc.jp/alignment/software/) was used to generate multiple alignment results between
each predicted virion protein and known virion proteins, which was visualized by jsPhyloSVG (71). The
all-against-all BLAST (version blast-2.2.26) was used to generate the sequence similarity network, visual-
ized by ECharts (https://echarts.apache.org/). A queuing system was implemented using the Gearman
framework (http://gearman.org/) to store the jobs the client deposits and dispatch them to idle threads
maintained in the server backend. In this way, it links the two parts of STEP3 but decouples the prompt
response required in a client web interface and the time-consuming server backend for better user expe-
rience. To use the STEP3 server, users submit their protein sequences in FASTA format and obtain a
unique link to track the prediction progress or obtain the results once finished. In default mode, i.e., “For
normal use,” the known virion proteins were marked with “exp.” with an external link to the UniProt or
NCBI database, while the predicted virion proteins were marked with “pred.” with detailed annotations
and options for visualization. Through interactive visualization, users could tentatively annotate the pu-
tative virion proteins with their potential subtype or functions, based on the sequence similarity or phy-
logenetic analysis considerations. For users who want to benchmark the STEP3 server, a “For benchmark-
ing test” option is available to obtain prediction scores for all their sequences.

Data availability. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE (72) partner repository with the data set identifier PXD020607.
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