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Abstract
Removal sampling data are the primary source of monitoring information for many 
populations (e.g., invasive species, fisheries). Population dynamics, temporary emigra-
tion, and imperfect detection are common sources of variation in monitoring data 
and are key parameters for informing management. We developed two open robust-
design removal models for simultaneously modeling population dynamics, temporary 
emigration, and imperfect detection: a random walk linear trend model (estimable 
without ancillary information), and a 2-age class informed population model (InfoPM, 
closely related to integrated population models) that incorporated prior information 
for age-structured vital rates and relative juvenile availability. We applied both models 
to multiyear, removal trapping time-series of a large invasive lizard (Argentine black 
and white tegu, Salvator merianae) in three management areas of South Florida to 
evaluate the effectiveness of management programs. Although estimates of the two 
models were similar, the InfoPMs generally returned more precise estimates, parti-
tioned dynamics into births, deaths, net migration, and provided a decision support 
tool to predict population dynamics under different effort scenarios while accounting 
for uncertainty. Trends in tegu superpopulation abundance estimates were increasing 
in two management areas despite generally high removal rates. However, tegu abun-
dance appeared to decline in the Core management area, where trapping density was 
the highest and immigration the lowest. Finally, comparing abundance predictions of 
no-removal scenarios to those estimated in each management area suggested signifi-
cant population reductions due to management. These results suggest that local tegu 
population control via systematic trapping may be feasible with high enough trap den-
sity and limited immigration; and highlights the value of these trapping programs. We 
provided the first estimates of tegu abundance, capture probabilities, and population 
dynamics, which is critical for effective management. Furthermore, our models are 
applicable to a wide range of monitoring programs (e.g., carcass recovery or removal 
point-counts).
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1  |  INTRODUC TION

Gaining a better understanding of wildlife population dynamics is 
critical for effective conservation management and ecological re-
search. Monitoring programs (i.e., the repeated sampling of pop-
ulations over time) provide the empirical data needed to estimate 
population abundance, trends, vital rates, and capture probabilities 
to evaluate the effectiveness of management programs and predict 
future population dynamics under different scenarios. Removal 
sampling, the repeated sampling of a population without replace-
ment (Moran,  1951), is common as a monitoring technique (e.g., 
time-removal counts, carcass recovery programs of marine mam-
mals), and arises naturally from many conservation management 
programs such as invasive animal population control or harvest pro-
grams (i.e., hunting, fishing). In fact, in the case of invasive animal 
management, time series of removal data often represent the most 
relevant (or only) empirical monitoring data available to inform man-
agement efforts.

1.1  |  Challenges estimating abundance and 
population dynamics

Unfortunately, imperfect detection and other sources of observa-
tion error and process variation make analysis of raw removal data 
or other count indexes challenging (Anderson, 2001). Removal mod-
els (Moran, 1951; Zippen, 1956) are statistical abundance estimators 
that account for these biases when estimating abundance and re-
moval probabilities from removal sampling data. They are structur-
ally similar to other unmarked abundance estimators (e.g., N-mixture 
models, Royle,  2004) and rely on the assumption of population 
closure (i.e., that a population remains constant between sampling 
events). Violations to population closure are common in natural sys-
tems and occur from demographic change (e.g., births and deaths, 
Dail & Madsen, 2011) and animal movement (e.g., permanent emi-
gration/immigration, and temporary emigration [animals leaving the 
sample area temporarily], Chandler et al., 2011; Kendall et al., 1997), 
which result in biased estimators (Link, Converse, et al., 2018). Thus, 
it is important to develop models robust to both types of closure 
violations.

Temporary-emigration/availability-bias often arise in sam-
pling designs from the partial overlap of the effective capture area 
of a sampling array with animal spatiotemporal use distributions 
(Chandler et al., 2011; Kendall et al., 1997). It is partially determined 
by seasonal and daily weather patterns and movement behavior and 
territoriality of the species being sampled. Availability bias can be 

heterogeneous within a removal time series due to changes in animal 
activity centers and movement behavior throughout the course of 
sampling, or from changes in spatial dispersion due to removing ani-
mals. Additionally, animal populations change throughout the course 
of a year due to population dynamics via births, deaths, and net mi-
gration. When both occur simultaneously in a removal time series, 
it can be difficult to determine if changes in removals over time are 
driven by imperfect detection (observation bias), temporary change 
(availability bias), or permanent change (demographics), and statis-
tical models that seek to explicitly disentangle all these are often 
nonidentifiable (Zhou et al., 2019).

Originally formulated as mark-recapture models with recap-
ture probabilities of zero, recent removal models formulated as 
unmarked abundance estimators (as well as unmarked abundance 
estimators in general) have been improved to accommodate some 
of these issues (Rodriguez de Rivera & McCrea,  2021). This in-
cludes the use of: multinomial N-mixture models as a general es-
timation procedure (Chandler et al.,  2011; Dorazio et al.,  2005; 
Kéry & Royle, 2015; Royle, 2004), open robust design to improve 
estimation when population closure is violated (Kéry et al., 2009; 
Link, Schofield, et al., 2018; Zhao & Royle, 2019; Zhou et al., 2019), 
models that consider the explicit dynamics from temporary emigra-
tion/availability bias (Chandler et al., 2011; Zhou et al., 2019), mod-
els with explicit population dynamics from demographic changes 
(Dail & Madsen,  2011; Matechou et al.,  2016), and models with 
age-structured population dynamics (Zipkin et al., 2014). However, 
even when using a robust design approach (which assumes multi-
ple primary periods of closure, and within each there are temporally 
replicated sampling occasions to estimate the effective capture 
probability; Kendall et al., 1997), models that include both popula-
tion dynamics and temporary emigration remain challenging and are 
often non-identifiable (Zhou et al., 2019).

1.2  |  Two approaches to overcome estimation  
challenges

To overcome these issues, either (1) the population dynamics model 
must be simplified to a version that is estimable or (2) more realistic 
population dynamics models (with births and deaths) can be con-
structed with the aid of ancillary information. Here, we take both 
approaches and develop two models: the first a simplified, Bayesian 
random walk, linear-trend time-series model (Holmes et al., 2021) 
to approximate intra-  and inter-year population dynamics with-
out requiring ancillary information, and the second an “Informed 
Population Model” (InfoPM) which is closely related to integrated 
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population models (IPMs) (Schaub & Kéry, 2022), but uses informed 
priors rather than multiple data sets and likelihoods.

Bayesian random walk time series models, which can be formu-
lated as state-space models to account for observation error, provide 
a useful tool for time-series estimation (Scheuerell et al., 2015). IPMs 
combine count data and matrix population models with ancillary data 
sets on vital rates (e.g., mark-recapture data) into a single model by in-
tegrating multiple likelihoods (Schaub & Kery, 2021). Importantly, IPMs 
provide insights into the relative roles of births, deaths, and migration 
in age-structured population dynamics and could be extended to ac-
count for age-structured availability biases. In a sequential Bayesian 
paradigm, some or all of these ancillary data sets and likelihoods 
can be replaced by informed priors for the age-structured vital rates 
while leading to comparable (and in some cases identical) inference 
(Schaub & Kery, 2021). In models where all additional sources of an-
cillary information are incorporated as informative priors (e.g., Millar 
& Meyer, 2000; Thomas et al., 2005) as opposed to additional data 
sets and likelihoods, they are more accurately described as informed 
population models (InfoPM) because they result in a single likelihood. 
When the best available prior information on vital rates is based on 
expert elicitation (e.g., Johnson et al., 2017), such models provide a 
formal mechanism for combined inference with the empirical removal 
data. For example, the use of all available information about processes 
of interest is commonplace in scientific learning, and Bayesian infer-
ence provides formal way to combine all available information in a rig-
orous way (Banner et al., 2020; Lemoine, 2019; Low Choy et al., 2009; 
Schaub & Kéry, 2022; Zipkin & Saunders, 2018).

Finally, even in models that account for temporary emigration, 
some portion of individuals will suffer mortality or permanently em-
igrate before ever becoming available, biasing removal probabilities 
high and abundance (and growth rates) estimates low (Kendall et al., 
1997). This bias is particularly likely for populations with cryptic 
life stages, especially if such life stages also have low survival and 
comprise a significant portion of the populations (e.g., juvenile life 
stages of many species). Recent formulations of unmarked models 
for age-structured data (e.g., Zipkin et al., 2014) could be extended 
to an InfoPM framework; however, if combined with ancillary infor-
mation on age-specific vital rates, the timing of the birth pulse, and 
relative juvenile availability, age structure can be modeled for two 
age classes even without age-structured observations. In fact, the 
estimation of “hidden” or “extra” parameters for which there is no 
explicit data (e.g., age structure) is one of the main advantages of 
using an IPM (or InfoPM) approach (Schaub & Kéry, 2022). This ap-
proach is especially useful when age information is missing from re-
moval programs, when, for example, animals are not recovered (e.g., 
Davis et al., 2016), age is difficult to estimate, acoustic surveys are 
used, or the captures of some age classes are too rare for estimation.

1.3  |  Motivating example and empirical application

We apply both models to the case study of Argentine black and 
white tegus (Salvator merianae), large invasive lizards established 

near the Everglades and other important ecological areas in Florida. 
Tegus were first introduced over 20 years ago (Meshaka et al., 2019), 
and the first breeding population in Miami-Dade County was discov-
ered in 2008 (Pernas et al., 2012). This initial population has since 
grown in abundance and spatial extent across a heterogeneous land-
scape to comprise a patchy population spanning now ~400 km2. As a 
nest predator with high fecundity, these animals have significant po-
tential for ecological impacts in the Greater Everglades Ecosystem, 
including nest predation to threatened American crocodiles or nest-
ing birds (Mazzotti et al., 2015). Because tegus hibernate in winter 
months (McEachern et al., 2015) and can take advantage of anthro-
pogenic features and altered ecosystems, these lizards have the 
potential to invade much of the southern United States (Chiarello 
et al., 2010; Jarnevich et al., 2018; Klug et al., 2015). State and federal 
partners collectively work to control spatially patchy populations of 
breeding tegus in southern Florida across three management areas 
(to the west, central/south, and east of the initial point of invasion) 
through systematic removal trapping programs. As of December 
2018, over 6000 individuals were removed from these management 
areas in total (Meshaka et al., 2019). These removal time series in 
each management area provide a source of empirical monitoring 
data to monitor tegu population trends, evaluate the effectiveness 
of management, and support future decision making.

However, analyzing tegu removal data sets is challenging due to 
issues of temporally heterogeneous availability bias and population 
dynamics. Tegus hibernate underground in burrows in the winter 
(McEachern et al., 2015), emerge in February and increase activity, 
breed from March–May, hatch from May–August, and decline in ac-
tivity in the fall (Meshaka et al., 2019). In addition, tegu populations 
are demographically open throughout the year, with a birth pulse 
in the late spring/early summer (Meshaka et al., 2019), and mortal-
ity and net migration throughout the year. Tegu populations are age 
structured, with heterogeneities in vital rates and capture probabil-
ities between life stages. Furthermore, estimating tegu age based 
on size is challenging (however see Meshaka et al., 2019) and the 
incidence of hatchling captures is generally low.

One recent population analysis based on expert elicitation 
(Johnson et al., 2017) suggested that the juvenile age class com-
prises a majority of the population at stable age distribution (68% 
of the population after the birth pulse). When combined with low 
survival rates and capture rates of juveniles (i.e., due to low juvenile 
availability), this presents complications for estimating temporary 
emigration (e.g., Kendall et al., 1997) because a large proportion of 
animals are juveniles, and of those many do not survive long enough 
(or permanently emigrate) before ever becoming available for cap-
ture. Consequently, we developed an age structured InfoPM based 
on unstructured removal data, prior information for age-structured 
vital rates, and matrix algebra to scalarize the system. The InfoPM 
framework can also serve as a tool for conducting counterfactual 
analysis (e.g., Ferraro, 2009; Schaub & Kéry, 2022) by quantifying 
the impacts of management interventions, for example, by modeling 
no-removal (nonintervention) scenarios and comparing predicted 
abundances to the estimated abundances over time. Importantly, 
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this also accounts for future survival and reproductive processes 
when evaluating the efficacy of removal programs.

In summary, we develop novel models using an open-robust de-
sign removal framework to estimate the superpopulation size (the 
total number of animals with home ranges overlapping an effective 
trapping region), population dynamics, availability bias, and capture 
probabilities of animals from removal trapping time series. We apply 
these models to the case study of tegu removal trapping in three 
management areas in the Greater Everglades Ecosystem in Florida 
using three years (2016–2018) of data collected from systematic 
trapping programs. We provide the first empirical population esti-
mates and capture probabilities of tegus in each management area. 
By estimating trends and annual removal probabilities in addition to 
no-removal scenarios, we also provide rigorous evaluation of the ef-
ficacy of removal programs.

2  |  METHODS

2.1  |  Data collection and study areas

Tegu removal data were collected from systematic trapping programs 
in three areas (Core, East, West) where trapping is carried out by 
multiple agency partners (Appendix A and Figure 1). Tegu trap types, 
modifications, and number of traps deployed each week varied by 
location and year (see Appendix A for full description of trapping 
methods in each location). Trap lines in each location consisted of 
wire live traps (Havahart and Tomahawk) of various sizes baited with 
chicken eggs, and each trap is designed to capture a single animal. 
Traps were sometimes modified to increase tegu capture probability 
(Appendix A). Traps were deployed (often in pairs) alongside roads, 
canals, and levees, and in other vegetated and shaded locations. 
When surrounded by marsh or wet-prairie habitat, tegus appear to 
spend more time in drier, higher-elevation areas (Klug et al., 2015), 
and configuration of suitable habitat varied by locations. For exam-
ple, suitable habitat in the Core area is mostly located along linear 
features interspersed within mostly unsuitable sawgrass marsh habi-
tat. While these features dominate in the West and East areas, they 
are often adjacent to other suitable agricultural or natural habitat 
(Figure 1, Appendix A), including some that are ecologically sensi-
tive (e.g., pine rockland habitats in Everglades National Park). Traps 
were deployed daily from Feb-Oct each year with the exception of 
closures due to hurricanes or force majeure, and daily effort varied by 
year and area (Appendix A).

2.2  |  Modeling approach

We used an open robust design framework (Kendall et al.,  1997; 
Pollock et al.,  1990) to structure temporal dynamics, assuming 
time is divided into primary sampling periods t each consisting of 
multiple secondary occasions j, across which the population is as-
sumed closed, and between which the population changes. Such 
an approach has been previously applied to estimate abundance, 

population trends, and detection in unmarked populations (Kéry 
et al., 2009). While such models often represent interyear dynam-
ics, robust design has also been applied to approximate intrayear 
dynamics resulting from temporary emigration in removal models 
(Zhou et al., 2019) by subdividing removal effort throughout a year 
into multiple primary periods (Table 1).

In general, we envisioned a removal sampling time series for a 
trapping array made up of the total daily removals and total daily 
trap effort in each management area across multiple years. We as-
sumed that temporary emigration resulted from partial overlap of 
home ranges with effective capture arrays, and that the probability 
of temporary emigration changes throughout the year as both the 
activity centers and sizes of animal home ranges shifted through-
out the year (and as animals are removed throughout the year). The 
total number of animals with home-ranges overlapping the effective 
trapping area within a primary period was termed the superpop-
ulation, Mt, and the total number of animals available for capture 
within the trapping area at a given primary period t and sampling 
occasion j was the available population Ntj. Because the total trap-
ping area in each management area was relatively consistent over 
the timeframe of interest (and data were not included from traps in 
later years that were deployed beyond the original capture area), we 
assumed that comparisons in the superpopulation from year to year 
were meaningful. However, if a measure of the effective capture 
area each year could be calculated then it could be used to adjust 
superpopulation size accordingly. We assumed the superpopulation 
abundance changes over time through births, deaths, and net mi-
gration throughout the year, which we approximated with different 
transition functions. Because the composition of traps and sampling 
locations vary among locations and years, we modeled a different 
average capture efficiency for each location and year. Then, given 
the total daily removals, capture efficiency, and total capture effort 
in each primary period, we estimated the daily capture probability of 
an entire trap array, and the abundance of the superpopulation and 
available population of animals corresponding to the total trapping 
area in each primary period.

We found after some preliminary investigation that a 2-week 
sampling window provided a good compromise in our application to 
tegus, with removal rates high enough for rigorous estimation (e.g., 
Davis et al., 2016), and sampling windows reasonably short enough 
to assume population closure (other than removal and temporary 
migration) given the study system. In comparison, total removal 
rates were generally not high enough for reliable estimation when 
using 1-week primary periods, whereas we viewed primary peri-
ods of 3 weeks or greater as too long for which to reasonably as-
sume population closure. We subdivided the trapping season each 
year into two-week primary periods (t) for a total of 26 each year, 
each made up of multiple sampling occasions (i.e., capture days) j. 
Because the range and frequency of trapping days differed between 
management regions, the number of active trap days in each pri-
mary period and number of active primary periods each year dif-
fered among management areas (Appendix A). In our analysis, we 
only used data from March–October when tegus are most active to 
avoid estimation issues resulting from extreme rarity.
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2.3  |  Observation model

We extended previously established unmarked methods for demo-
graphically closed populations with temporary emigration (Chandler 
et al., 2011) to open population dynamics using open robust design 
and transition functions for abundance over time. We assume that 
superpopulation abundance 

(

Mt

)

 in each primary period comes from 
a point pattern process based on a Poisson distribution with rate 
parameter (expected abundance), �t.Here we develop the case of a 
single year but extend the logic for multiple years in later sections 
(e.g., �y,t ).

We also assume that the available abundance 
(

Ntj

)

 each period t 
and day j comes from a binomial process given the superpopulation 
abundance 

(

Mt

)

 and availability 
(

�t

)

 for each period, and that capture 
histories 

(

ytj
)

 follow a multinomial process with �tj as the multinomial 
cell probabilities for capture each day j and period t. Thus, the like-
lihood of the model can be specified using an analytical Poisson ap-
proximation (Dorazio et al., 2005; Kéry & Royle, 2015; Royle, 2004; 
Royle & Dorazio, 2008):

Here, �t refers to the expected superpopulation abundance, �t ∗�tj 
is equal to the multinomial probability vector after accounting for (1)Mt

∼ Poisson
(

�t
)

(2)ytj
∼ Poisson

(

�t ∗�tj ∗�tj
)

F I G U R E  1 A map of tegu trap lines in 2017 (the first year of trapping in the east), a tegu in a trap, and the bi-weekly trap effort and 
mean captures for each management area. (a) Trap locations and management areas representing the collective efforts of all partners in 
2017 to study, contain, and control tegus. The pink circle represents the approximate location where the population was first recognized 
as established in 2008. The Core management area is largely located in the Southern Glades marshland south of Homestead, the West 
management area represents the boundary lands outside Everglades National Park, and the East management area consist of two major 
roads between the initial invasion site and Turkey Point Power Plant. In general, traps are deployed along levies, canals, and roads. Some of 
these sites are in raised habitat within a matrix of seasonally inundated wetlands and marshes, and other sites are within a matrix of natural 
and agricultural lands. (b) an adult tegu caught in a live trap, baited with a chicken egg (photo credit: Dan Quinn). (c) bi-weekly trap effort 
(mean traps per day), (d) capture data (mean tegus per day), and (e) CPUE in each management area.
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availability, and �tj is defined for each day j of each period t based on 
daily capture probability 

(

pt
)

 for each period:

Because it is important to account for variation in removal effort (Davis 
et al., 2016; St. Clair et al., 2012), we model daily capture probability 
in each primary period 

(

pt
)

 based on the total effort (number of traps, 
Trapst) and the yearly capture efficiency �y (i.e., the per unit effort 
probability of capture):

where 
(

1−�y
)Trapst is the probability of not being trapped. Thus, 

while pt varies between primary periods based on the number of 
traps deployed in each, we assume that �y is constant within each 
year.

We estimated parameters for each management area separately. 
We assumed that capture efficiency 

(

�y
)

 varied by year and had a 
vague beta prior (�y ∼Beta(1, 1)). We also assumed the availability 
bias varied each primary period, with a vague beta prior:

Because there was a high incidence of zeros in the removal 
data, we accounted for zero-inflation (i.e., temporal suitability, 
some days are not suitable capturing any individuals) assuming a 
Bernoulli random effect (Kéry & Royle, 2015) at each sampling oc-
casion given the temporal suitability parameter 

(

zproby

)

, and daily 
temporal replication for ztj each within each year (Equation 6). We 
incorporated zero-inflation into the likelihood using zero-inflated 
Poisson model (Equation 7):

(3)�tj = pt ∗
(

1−pt
)j−1

(4)pt = 1 −
(

1−�y
)Trapst

(5)�t
∼Beta(1, 1)

(6)ztj
∼Bernoulli

(

zproby

)

TA B L E  1 Parameter symbols and definitions for both models

Parameter Definition Model

My,t Superpopulation abundance Both

�y,t Poisson abundance rate Both

�y,t Availability bias Both

Ny,t,j Available abundance (day and period) Both

N̂y,t
Available population abundance Both

�y,tj Multinomial probability vector Both

yy,tj Daily removals Both

py,t Daily capture probability per year and 
period

Both

�y Yearly capture efficiency Both

1 − zproby The daily zero-inflation rate per year Both

zy,tj Daily temporal suitability rate Both

psety,t Period effective capture probability 
(superpopulation)

Both

pyeary Yearly effective capture probability of 
the superpopulation

Both

Ry,t Total removals each year and period RW

Δy,t Random variable for change in 
superpopulation during each time 
step between periods for each year 
and period

RW

�trendy
Mean of the normal distribution for time 
steps for periods

RW

sdtrendy Standard deviation of the normal 
distribution for time steps for 
periods

RW

Δyeary
Random time step between years RW

sdyeary Standard deviation of the normal 
distribution for time steps for years

RW

�ady,t Expected adult population each year and 
period

InfoPM

sad Period survival rate of adults InfoPM

sadyear Adult survival rate each year InfoPM

BtAy,t Animals transitioning to the adult age 
class each period

InfoPM

IEy,t Net migration each year and period InfoPM

Rady,t Expected adult removals each year and 
period

InfoPM

bpy Period of the birth pulse each year InfoPM

by−1 Effective birth rate in year y-1 including 
juvenile survival

InfoPM

�ady−1,t=bpy−1
Adult abundance during at the birth 
pulse in year y-1

InfoPM

�IEy
Mean net migration each period InfoPM

sdIEy Standard deviation of net migration each 
period

InfoPM

pcady,t Relative catchability of adults to 
juveniles each period and year

InfoPM

pcjuvy,t Relative catchability of juveniles to 
adults each period and year

InfoPM

Parameter Definition Model

sjuv Juvenile annual survival in year y-1 InfoPM

Rjuvy,t Expected juvenile removals each year 
and period

InfoPM

�juvy,t Expected juvenile abundance each year 
and period

InfoPM

npy,t Number of periods since the birth pulse 
each period and year

InfoPM

Maxperiod Maximum number of periods in a year 
cycle (26 for tegus)

InfoPM

�juvy,t
Relative juvenile availability InfoPM

�emergey
Mean of the relative juvenile availability 
distribution

InfoPM

sdemergey
Standard deviation of the relative 
juvenile availability distribution

InfoPM

M∗
y,t

Superpopulation abundance corrected 
for juvenile availability

InfoPM

TA B L E  1 (Continued)
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We also calculated derived parameters for the total effective 
removal probabilities of the superpopulation each primary period 
(psett), given daily capture rates (pt), availability (ϕt), and temporal 
suitability 

(

zproby

)

 as:

This rate is relevant for both management and for model estimability 
(e.g., Davis et al., 2016) as the effective removal rate of the superpop-
ulation each primary period. We obtained annual removal rate of ani-
mals which are present in the superpopulation as:

2.4  |  Population dynamics

We imposed a Markovian structure on the expected superpopula-
tion abundance each primary period by specifying an autoregressive 
function, �t+1 = f

(

�t − Rt
)

, where Rt is the total number of animals 
removed each primary period. Population models such as the ex-
ponential or logistic could be specified for function f  (Hostetler & 
Chandler, 2015). However, recent work on removal models that also 
include temporary emigration and robust design suggests that a 
transition function with births and survival is not identifiable without 
ancillary information (Zhou et al., 2019). Thus, either simplified tran-
sition models which can be estimated without ancillary information, 
or more complex demographic models which can incorporate ancil-
lary information are required. We implemented both approaches.

The first approach uses a temporal random walk (RW) with a 
linear trend (e.g., Holmes et al., 2021), diffuse priors, and does not 
require ancillary information. These models are also structurally 
similar to previous work in modeling nonlinear population trends 
in expected value of unmarked populations under a robust design 
(Kéry et al., 2009). The second approach extends the first to an age-
structured, informed population model (InfoPM) using prior infor-
mation on birth rates, survival rates, timing of the birth pulse, and 
relative availability of juveniles to construct a single combined like-
lihood for all removals. The second model estimates an uncorrected 
superpopulation abundance (M) that is directly comparable to the 
estimate from the RW model, in addition to a second superpopu-
lation abundance estimate (M∗) that is corrected for age structured 
population dynamics and capture rates.

2.5  |  Random walk model

2.5.1  | Within year dynamics

The RW model (e.g., Holmes et al., 2017; Scheuerell et al., 2015) is a 
state-space model that treats a time series of changes in abundance 

as random steps 
(

Δy,t

)

 that come from a common distribution (usu-
ally a Gaussian) with an underlying mean trend 

(

�trend

)

 and variance 
(

sd2
trend

)

. The linear trend is also termed the “drift” for each time 
step. Adding in an index y for year, these models have the general 
functional form of:

 

Here the mean and standard deviation may vary based on temporal co-
variates (e.g., season, year). We develop two different RW models with 
differing assumptions for �trend: a yearly trend model (where means 
and sd differ by year), and a seasonal trend model (where means differ 
by season and year, and sd varies by year).

We defined four seasons based on tegu biology (Meshaka 
et al., 2019): March–April (copulation/breeding), May–June (hatch-
ing), July–August (post-hatching), and September–October (pre-
hibernation). We included the total removals each primary period 
(

Rt
)

 into the transition function as follows:

 

We specified vague normal priors for �trend, and a weakly in-
formative half Cauchy prior (e.g., Lemoine,  2019) for sdtrend as: 
sdtrend

∼ halfT(1, 5).

2.5.2  |  Between year dynamics

After the first year of sampling, we linked the time series between 
years (where �y,t=1 is the abundance in the first primary period of 
year y, and �y−1,t=T is abundance in the last primary period of year −1) 
assuming a single random time step 

(

Δyear
y

)

 between each set of 
years, each with independent normal priors:

 

Finally, we linked the primary periods between years as described 
above in Equation  14, assuming an independent step from a nonin-
formative normal distribution. Given that tegus hibernate most of the 
time between trapping seasons (November to February), we assumed 
sdyear was equal to 31.62 (precision = 0.001), which is a weakly infor-
mative prior that suggests the change in the superpopulation between 
the end of 1 year's trapping season and start of the next years trapping 
season will likely fall within ± 2∗ sdyear

y
 (approximately 63 individuals). 

A graphical depiction of the RW model (Figure E-1) and example JAGS 
code are provided in Appendix E. See the corresponding data release 
for this publication (Waddle et al., 2022) for the full code and data sets.

(7)ytj
∼ Poisson

(

�t ∗�t ∗�tj ∗ ztj
)

(8)psett = 1 −

(

1−pt ∗ zproby ∗�t

)Ndays

(9)pyear = 1 −
∏

(

1 − psett
)

(10)�y,t+1 = �y,t + Δy,t

(11)Δy,t
∼Normal

(

�trend,sdtrend
)

(12)�t = �t−1 + Δt − Rt

(13)Δ�t
∼Normal

(

�trend, sdtrend
)

(14)�y,t=1 = �y−1,t=T + Δyear
y

(15)Δyear
y

∼Normal
(

0, sdyear
y

)
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2.6  |  2-age class informed population model

2.6.1  | Model formulation

There are three primary limitations to the RW approach: (1) the 
changes in abundance are not partitioned into births, deaths, and 
net migration, (2) the model does not account for age structure 
or bias due to low juvenile availability (and thus underestimates 
population size and overestimates removal probabilities), and (3) 
the population cannot be reliably projected into the future under 
different effort scenarios. Our second approach built upon the 
RW model to develop a 2-age class informed population model 
(InfoPM), by using prior information on age-structured vital rates 
(productivity and survival probabilities) and juvenile availability to 
overcome these limitations.

Given that empirical data sets on tegu vital rates in the invaded 
range are nonexistent, our source of prior information was a previ-
ous work by Johnson et al. (2017), who used a 3-point expert elici-
tation process with 11 species experts to estimate stochastic belief 
distributions for tegu age-structured vital rates while quantifying 
uncertainty. While our use of an informed vs integrated population 
model was currently out of necessity, the same sequential Bayesian 
model structure could also be used when empirical estimates of vital 
rates become available. Because tegu removal counts were non-age 
structured, we develop a single combined likelihood function for 
removals across all age classes. Furthermore, we formulated it so 
that we can estimate similar quantities and infer to degree to which 
estimates for abundance and removal rates are biased when we do 
not account for age structure and relative juvenile availability bias.

Building directly on methods and data from Johnson et al. (2017), 
we started with a post-birth-pulse, 4-age class matrix model with 
juveniles, 1, 2, and 3+ years (breeders) individuals (Appendix B). We 
reformulated this model as a pre-birth-pulse Leslie matrix, where 
juveniles were assumed implicit (i.e., the census takes place before 
the birth pulse, thus only animals in age classes 1 year and older are 
explicit in the model) and used matrix algebra to scalarize this pop-
ulation model as a single age class (Appendix B). By combining this 
model with a prediction for the juvenile age class (given informed 
priors for vital rates and time since birth for each primary period), we 
formulated a 2-age class model with an implicit juvenile class and an 
explicit ‘adult’ class of all animals 1 year and older.

The population model that we used to derive informative priors 
assumed yearly time steps, whereas the time step for the InfoPM 
models was a 2-week period. Because we assumed a single birth 
pulse, we did not need to scale the birth rates; however, annual sur-
vival rates needed to be scaled to correspond with the length of the 
primary periods (14 days). We made the simplifying assumption that 
survival rates for each primary period were constant given the an-
nual survival rate, although survival is likely to vary throughout the 
year (e.g., during winter). Accordingly, the adult survival rate scaled 
to the primary period 

(

sad
)

 was defined as 
sad

(

1

Maxperiod

)

year
. We assumed 

26 primary periods each year (Maxperiod = 26
), of which between 14–

18 were sampled.
Given this formulation, we modeled the two state variables: 

the adult superpopulation 
(

�ady,t

)

 which has a population dynamics 
function defining the transition between primary periods, and the 
juvenile superpopulation 

(

�juvy,t

)

 for which we make a prediction 
every primary period. Because the functions for predicting �ady,t and 
�juvy,t depend on the observation/removal model to predict removals 
from each age class, we first describe the observation model be-
fore detailing the transition functions. A graphical depiction of the 
InfoPM model (Figure E-1) and example JAGS code are provided in 
Appendix E.

2.6.2  |  Observation removal model for 2-age 
class mode

We defined relative juvenile availability �juvy,t
 as a proportion of adult 

availability, which ranged from zero at the time of birth pulse to one 
just before the transition to the adult age class. Thus, overall juvenile 
availability (�y,t ∗�juvy,t

) also tracks changes in adult availability over 
time based on seasonal influences. We assumed that after account-
ing for differential availability, animals were captured with the same 
probability. Relative availability of juveniles was likely driven by a 
combination of factors including differences in movement behavior, 
prey preference (e.g., likelihood of responding to egg bait), risk tol-
erance, and size of individuals. We assumed that these differences 
disappeared entirely by the time juveniles transitioned to adults.

Matechou et al. (2016) modeled births in open removal models 
using the concept of “emergence groups” which become available 
for capture according to a cumulative normal distribution. We used 
a similar approach to model the relative juvenile availability process 
as a cumulative normal distribution, with the parameters �emerge 
(corresponding to the day since birth where the relative juvenile 
availability is equal to 0.5) and sdemerge which controls the rate of in-
crease. To include uncertainty in this relationship, we assume �emerge 
and sdemerge are also random variables with prior distributions. Based 
on discussions with tegu biologist and patterns in age-cohorts in re-
cently published capture data (Meshaka et al., 2019), we assumed a 
uniform prior between 150 and 210 days since birth (with a mean of 
180 days) for �emerge, and a half normal distribution (mean = 60, pre-
cision = 0.005) for sdemerge, with hyper-parameters varying by year 
and management area.

Another way to envision the relative juvenile availability pro-
cess is as a threshold rather than a proportion of adult availability, 
where �juv refers the proportion of juveniles which are above the 
size threshold needed to be available with the same rate as adults 
(i.e., large enough to encounter and respond to a baited trap). Under 
this interpretation, half of juveniles would reach this size by �emerge, 
and �juvy,t

∗�juvy,t is the number of animals catchable at the same rate 
as adults.
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2.6.3  |  Combined likelihood of adults and juveniles

We developed a combined likelihood for total removals given the val-
ues of each state variable, and the relative availability of each age class:

where the first part of the expected value (before the addition sign) 
corresponds to the expected number of adult removals, and second 
part (after the addition sign) corresponds to the expected number of 
juvenile removals. This model is comparable to the non-age structured 
RW model, and can be rearranged as

Thus 
(

�ady,t + �juvy,t
∗�juvy,t

)

 is equivalent to �y,t (the expectation 
for My,t) in Equation  7, which is the superpopulation size estimate 
from the RW model that does not account for the bias from a cryptic 
juvenile stage. We denoted the superpopulation size corrected for 
juvenile bias as M∗

y,t
, which had the expected value �∗

y,t
= �ady,t + �juvy,t . 

We made predictions for both My,t and M∗
y,t
 assuming a Poisson distri-

bution with expectations 
(

�ady,t + �juvy,t
∗�juvy,t

)

 and �∗
y,t

.

2.6.4  |  Adjusting effective removal rates for M∗

t

We calculate the total effective capture probabilities each period 
(

pset∗
y,t

)

, and annual capture probabilities 
(

p∗
yeary

)

 in each manage-
ment area, adjusting for the proportion of catchable to uncatchable 
animals due to juvenile bias from relative availability and age distri-
bution each period as

 

 

2.6.5  |  Allocating adult and juvenile removals

Given the superpopulation of adults and juveniles in each period, 
along with the juvenile availability �juvy,t

, we calculate the expected 
age distribution of catchable animals that are adults 

(

pcad
y,t

)

 compared 
to juveniles (i.e., the proportion of catchable animals that are adults), 
which we used to calculate the expected number of removals in each 
age class as

 

where adult removals are defined as Rady,t = pcad
y,t
∗Ry,t and juvenile re-

movals are defined as: Rjuvy,t = pc
juv

y,t
∗Ry,t.

2.6.6  |  Adult population dynamics between 
primary periods

The population dynamic function for the adult age class for each 
year and primary period was defined as

where �ady,t+1 and �ady,t are the expected number of adults in year y 
and period t + 1 and period t, respectively. sad is the scalarized adult 
survival probability between primary periods that accounts for age-
structured survival rate and the stable age distribution of animals 
1 year to 3+ years old (Appendix B). IEy,t is the net migration between 
primary periods, Rady,t is a prediction for the number of adults re-
moved in year y and primary period t, and BtAy,t is the number of 
juveniles that transition to adults in each year and primary period, 
which is zero except for when t is the primary period the birth pulse 
each year. We assume net migration 

(

IEy,t
)

 follows a RW process with 
vague priors:

We developed models with the same assumptions for IEy,t as we did for 
the Δy,t in our set of RW models. Rady,t in Equation 23 is the expected 
number of adult removals each year and primary period given the total 
number of removals Ry,t and the proportion of catchable animals that 
are adults each primary period 

(

pcad
y,t

)

, where pcady,t is based on age 
structure and juvenile availability each primary period (Equation 21). 
BtAy,t is the number of tegus transitioning to year 1 individuals each 
primary period, which is zero in all periods except for the anniversary 
of the birth pulse 

(

t = bpt
)

:

 

where By is the effective birth cohort after juvenile survival before ac-
counting for removals, (i.e., the total size of the juvenile cohort that 
was born in year y − 1, that also survived the until the birth pulse in 
year y). By is calculated based on by−1, the effective birth rate of the 
previous year (including juvenile survival), and the adult population at 
the time of the birth pulse in the previous year. We used informative 
priors for by−1 each year (Appendix B). Rtotaljuvy

 is a prediction for the total 
number of juveniles that have been removed since the birth pulse in 
year y − 1 , and it used to correct the size of the effective juvenile co-
hort transitioning to adults 

(

BtAy,t

)

.
We considered May 1st to be the anniversary date of the birth 

pulse, when juveniles begin hatching from eggs. We estimated the 
initial superpopulation abundance of adults �ady=1,t=1 in the first year 

(16)
yy,t,j

∼ Poisson
(

�y,t,j ∗ zy,t,j ∗�y,t ∗�ady,t + �y,t,j ∗ zy,t,j ∗�y,t ∗�juvy,t
∗�juvy,t

)

(17)yy,t,j
∼ Poisson

((

�ady,t + �juvy,t
∗�juvy,t

)

∗�y,t,j ∗ zy,t,j ∗�y,t

)

(18)pcatchy,t =
�ady,t + �juvy,t

∗�juvy,t

�ady,t + �juvy,t

(19)pset∗
y,t

= 1 −

(

1−pcatchy,t ∗py,t ∗ zproby ∗�y,t

)Ndayst

(20)p∗
yeary

= 1 −
∏

(

1 − pset∗
y,t

)

(21)pcad
y,t

=
�ady,t

�ady,t + �juvy,t
∗�juvy,t

(22)pc
juv

y,t
= 1 − pcadt

(23)�ady,t+1 = �ady,t ∗ sad + IEy,t − Rady,t + BtAy,t

(24)IEy,t
∼Normal

(

�IEy
,sdIEy

)

(25)BtAy,t = I
(

y, t = bpy
)

∗

(

By − Rtotal
juvy

)

(26)By = by−1 ∗�ady−1,t=bpy−1
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of sampling assuming a vague prior, Gamma(0.5,0.000001), which 
approximates Jeffrey's prior for a Poisson rate parameter (Lunn 
et al., 2012). The birth cohort in the first year of sampling By=1 is 
dependent on the adult population in the year before the first year 
of removal data 

(

�ad0,t=bpy−1

)

, and we use a uniform prior set to rea-
sonable bounds for this parameter for each management area (e.g., 
between 0 and 1500 in the Core area).

2.6.7  |  Juvenile abundance each primary period

We make a prediction for the expected abundance of the juvenile 
cohort each primary period 

(

�juvy,t

)

 based on the expected size of 
the initial cohort after birth, the juvenile survival rate, and a predic-
tion for the total number of juveniles removed since the birth pulse:

The first term in Equation  27, 

(

By

s
�y,t

juvy

)

, is a prediction given the ex-
pected abundance of the effective birth cohort in year y 

(

By
)

, scaled 
by the annual juvenile survival rate 

(

sjuv
)

, and exponential term 
(

�y,t =
(Maxperiod −ωy,t)

Maxperiod

)

 that adjusts sjuvy to account for the number of 
periods since the birth pulse 

(

ωy,t

)

. When the number of primary peri-
ods since birth is zero, this term reduces to 

By

sjuvy−1
, or the initial number 

of juveniles born, and after 26 periods (npt = Maxperiod) it reduces to 
By , the number of juvenile that survive and transition to adults (before 
considering juvenile removals).

2.7  |  No-removal scenario projections

We developed a “no-removal” scenario for each InfoPM model that 
served as a counterfactual example to which to compare the ob-
served population trajectory and to quantify the effectiveness of 
management. The ‘no-removal’ scenario was modeled assuming the 
same survival rates, birth rates, and net migration each year and pri-
mary period as for observed scenario, only without the subtraction 
of removals from the population each period (i.e., dropping Rady,t and 
Rjuvy,t from Equations 23 and 27 and Rtotal

juvy
 from Equation 25). We did 

this within the MCMC model fitting procedure by cloning all abun-
dance and birth cohort variables and dropping the removal terms 
(Appendix E). Animals that are were not removed contribute to the 
future superpopulation size in the no-removal scenario as long as 
they survive and also contribute the birth cohort in subsequent years.

2.8  |  Model evaluation

We estimated the parameters of all variants of both models types 
(RW and InfoPM) separately for each management area and 

determined the best supported model within each model class 
based on fit to the data and model parsimony. We used posterior 
predictive checks as a goodness-of-fit test using the Freeman-Tukey 
test statistic as a measure of and calculated the Bayesian p-value 
and c-hat (variance inflation factor) for each model and manage-
ment area, where values near 0.5 and 1.0, respectively, correspond 
to a perfect fit (Kéry & Royle, 2015). For model selection, we used 
the Widely Applicable Information Criterion statistic, or WAIC (a 
fully Bayesian analog of AIC, Gelman et al., 2014; Hooten & Hobbes, 
2015). WAIC is calculated starting with the computed log pointwise 
posterior predictive density and then adding a correction for ef-
fective number of parameters to adjust for overfitting (calculated 
as the sum of variances of individual terms in the log predictive 
density), where lower WAIC values are preferred. Between models 
with yearly vs yearly and seasonal differences in the mean trends, 
we defaulted to the simpler model (yearly) when WAIC scores were 
very close (delta-WIAC <0.5 units). Because we used a single likeli-
hood formulation for InfoPM (where all ancillary information came 
in as informative priors rather than additional data sets), the num-
ber of data points for each management area was the same as for 
the RW model. Furthermore, additional parameters of the InfoPM 
were informed with prior information. Thus, the total log-likelihood 
values, effective number of parameters, and WAIC scores for the 
InfoPM models can be quite similar to the RW models. Although 
WAIC is appropriate for comparing and selecting the optimal prior 
specification in Bayesian models (e.g., with and without prior infor-
mation, Gelman et al., 2014), we only use WAIC to select between 
models within each model class (i.e., RW vs InfoPM).

2.9  |  MCMC implementation

We used JAGS 4.3 (Plummer, 2003) through R version 3.4.3 (R core 
team, 2017), and the JagsUI package (Kellner, 2017) to implement 
our models. We estimated parameters for each management area 
separately. We initially conducted 10,000 iterations for adapta-
tion, 100,000 for burn in, and 200,000 additional iterations after 
burn in using a thin rate of 10 and three parallel chains for a total 
of 60,000 samples. In some cases (e.g., the RW model for the Core 
management area), longer MCMC runs were required to achieve 
convergence (e.g., 1e6 total iterations with a thin rate of 20). We 
used visual inspection of MCMC chains and R-hat to diagnose con-
vergence, where R-hat values <1.1 indicated convergence. Because 
posterior distributions for the abundance parameter tend to be pos-
itively skewed, we used the posterior median as a point estimator 
(e.g., Link, Converse, et al., 2018). Due to the asymmetry in these 
distributions, we also calculate the 95% credible intervals for su-
perpopulation abundance and available abundance using the 95% 
highest posterior density interval, whereas for all other parameters 
we use a symmetric 95% credible interval based on the 2.5% and 
97.5% quantiles.

(27)�juvy,t =
By

s
�y,t

juvy

−
∑t

t=bp
Rjuvy,t
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2.10  |  Estimator post-validation

We post-validated our RW abundance estimator (which is based 
on empirical data only) under study conditions with a simulation 
study to assess bias and precision based on the point estimates 
for parameters in each location (e.g., Davis et al., 2016; Kéry & 
Royle, 2015; Zipkin & Saunders, 2018). After dropping simulations 
where the models did not converge, we evaluated 120 simulations 
each for the East and West area scenarios and 114 simulations 
for the Core area scenario. We calculated the bias distributions 
between point estimates from simulated data sets and the true 
values (using the point estimates for parameters from each man-
agement region) used when simulating the data sets and used the 
median as the measure of central tendency. We evaluate estima-
tor accuracy for M using two different measures, the median bias 
for each parameter, and the proportion of point estimates within 
some threshold percentage (e.g., 20%) of the true value (see 
Appendix C for details).

3  |  RESULTS

The RW and informed population models (InfoPM) had similar model 
fits (Table D-7) and parameter estimates (Figure  2), and the top 
models in each management area showed no indication for lack of 
fit to the data (Table D-7). The InfoPM estimates for M and N were 
generally more precise than for the RW except for the West man-
agement area (where estimates were equally precise), and for later 
part of 2018 in the Core region (Figure 2). The most parsimonious 
RW models and InfoPM models had mean trends (RW) and net mi-
gration (InfoPM) terms varying by year in the West and East areas 
and varying by year and season in the Core area (Table D-7). In all 
cases, including zero inflation into the model to account for daily 
temporal suitability greatly improved model support and fit, while 
models without zero inflation often provided a poor fit to the data 
(Table D-7).

In the West management area, superpopulation abundance (M) 
increased steadily from 2016 to 2018 (Figure  2). Superpopulation 
abundance also increased in the East management area from 2017 
to 2018, especially in 2018 (Figure 2). In the Core area, however, M 
declined steadily over time with larger declines estimated for the 
RW than for the InfoPM (Figure 2). Based on these estimates, it ap-
pears that by the end of 2018 that M was higher in the West area 
than in the Core. In fact, abundance estimates in the West by the 
end of 2018 are similar those for the Core at the beginning of 2016. 
The mean available abundance in each area (N) tracks changes in M 
and availability bias ϕ over time, with lowest availability at the start 
(Feb–Mar) and end (Sept–Oct) of the trapping season and a peak in 
late spring and summer (May–June). Following the trend in super-
population abundance and availability bias, the peaks in mean avail-
able abundance each year increased in the West and East areas over 
time and have decreased in the Core (Figure 2).

Estimates for adult recruitment via local births and net migra-
tion each year from the InfoPM indicate that population growth 
in each region was driven by a combination of both processes 
(Figure 3), although the importance of each component was dif-
ferent between management areas and over time. In the Core, 
point estimates for annual net migration were positive and varied 
over time (highest in 2017), but the posterior distributions showed 
some support for zero and negative values (the probabilities that 
total annual net migration was positive was 0.70 [2016], 0.82 
[2017], and 0.72 [2018]). Adult recruitment from local births was 
higher each year than estimates for net migration (and were also 
higher in than the West and East regions) and showed a declining 
trend over time. In the West, posterior estimates for net migration 
were positive with strong non-zero and non-negative support (the 
probability that total annual net migration was positive was 0.75 
[2016], 0.98 [2017], and 0.93 [2018]), and estimates increased be-
tween 2016 and 2017 before leveling off in 2018. Adult recruit-
ment from local births increased each year in the West region and 
reached a similar magnitude as net migration in 2018 and as births 
in the Core in 2016. In the East, net migration was near zero in 
2017, but was positive and significant in 2018 (probability that 
total annual net migration was positive was 0.40 [2017] and 0.98 
[2018]), while births were generally low but increased each year.

Capture efficiency (i.e., capture probability of a single tegu in 
a single trap) varied by year and management area (Appendix D, 
Tables D-2–D-6), showing a decreasing trend in the West and East 
areas over time and an increasing trend in the Core. Estimates for 
effective period capture rates given daily capture rates, availabil-
ity, and zero inflation effective capture were similar between mod-
els within areas (Figure D-1). Estimates of annual effective capture 
probabilities uncorrected for hatchling bias (i.e., effective capture 
probability of the observable/adult population) for animals that 
are in a superpopulation the entire year were high in all locations, 
with point estimates often greater than 0.50. However, correct-
ing for hatchling availability bias and population dynamics led to 
more conservative estimates (Figure 4), with point estimates less 
than 0.5 for all but 1 year and management area (2016 in the West 
management area). Estimates of superpopulation size corrected 
for hatchling bias (M*) compared to the uncorrected superpopu-
lation estimate (M) suggests that estimates for M missed a large 
number of animals immediately after the birth pulse; however, M 
and M* converged almost entirely just prior to the beginning of 
each birth pulse (Figure 4).

The yearly birth rates and population growth rates from the 
InfoPMs were generally more precise than our informative priors 
based on expert elicitations (Figure D-2, Tables  D-4–D-6), which 
speaks to information in the timeseries of count data updating of 
these variables. Yearly survival rates for all age classes did not de-
viate significantly from the priors (Appendix D). Finally, we showed 
that both M and M* (i.e., M corrected for hatchling bias) would be 
significantly higher in each management area by 2018 if removal ac-
tions had not taken place (Figure 5). The difference was greatest in 
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the Core area, which had the highest starting population and highest 
removal effort, but the same pattern was also seen in the West area 
(and also in the East area to a lesser extent).

The results of our simulation study validated our RW abundance 
estimator given the expected field conditions in each management 
area. We found that our estimator was generally unbiased when the 
removal probabilities and superpopulation sizes were reasonably 
high, such as in the Core area (Appendix C, Figure C-1). We found 
that around 99% of all estimates fell within the 95% credible inter-
vals, around 40% of our estimates were within 20% of the true val-
ues when using parameter value for the Core area, and about 20% of 
estimates were within the same range for the West and East areas. 
The best performance in terms of bias and accuracy occurred when 
abundance, removal rates, and availability were high and after the 
first year of sampling.

4  |  DISCUSSION

In this work, we developed two different open robust-design removal 
models to estimate population dynamics, capture probabilities, and 
time-varying availability bias from removal sampling time-series. 
These models were based on previous research in open unmarked 
abundance estimators that account for either temporary emigration 
(Chandler et al., 2011) or population dynamics (Dail & Madsen, 2011; 
Kéry et al., 2009; Matechou et al., 2016; Zipkin et al., 2014). We 
demonstrated the value of these models to inform invasive species 
management by applying them to multi-year removal trapping data 
sets of invasive Argentine black and white tegus in three manage-
ment areas in southern Florida and post-validated the models via 
simulation under study conditions. We also built upon previous 
work in tegu population modeling (Johnson et al., 2017), providing a 

F I G U R E  2 Estimates for superpopulation abundance 
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framework to update vital rate belief distributions with empirical in-
formation in the removal time series (Figure D-2). These models are 
generally applicable to many removal-sampling data sets collected 
in the course of conservation management, such as carcass recovery 
programs for marine mammals, species relocation programs, hunt-
ing time series data, and time-of-detection point counts. The models 
developed here represent important methodological advancements 
that account for common assumption violations in removal models 
and in general unmarked abundance estimators (i.e., N-mixture mod-
els, Royle, 2004).

Because we constructed a single likelihood for total removals in 
the InfoPM, the fit of the two models to the count data are directly 
comparable (Table D-7). Furthermore, the RW and InfoPM have pa-
rameters in common that allow for direct comparison including the 
uncorrected superpopulation (Mt) and mean available abundance 
(

Nt

)

 (Figure 2). These estimates were often similar between the RW 
and InfoPM models (Figure 2) but were generally more precise for 
the InfoPMs. Comparing M to M* (the superpopulation estimate 
corrected for relative juvenile availability) highlights the importance 
of accounting for juvenile availability bias (Figure 4). Furthermore, 
because M can be interpreted as the superpopulation of animals old 
enough to respond to baited traps, both M and M* are meaningful 
quantities for ecological impacts and conservation management.

Parameter estimates for M and N from both models indicate 
that tegu abundance is increasing in the West and East management 
areas (Figure 2), which is consistent with rapid spread from the ini-
tial invasion point followed by local population growth despite man-
agement efforts. As of the end of 2018, our analysis suggests that 

tegu abundance in the West area is likely as large as or larger than 
in the Core area (Figure 2). This result is troubling given that West 
area is adjacent to and includes parts of Everglades National Park, an 
area with unique and threated biodiversity recognized as a UNESCO 
World Heritage Site. The increased abundance trend in the East area 
is also troubling given its proximity to threated American crocodiles 
and other biodiversity at Turkey Point Power Plant. The InfoPM sug-
gests much of the population growth in the West and East areas 
is driven by net migration (Figure 3, Appendix D, Tables D-5–D-6), 
whereas adult recruitment from local births was most dominant in 
the Core area. In 2018 in the West, our results suggest that births 
and net migration contributed similarly. However, because births 
and immigration processes are confounded without ancillary data, 
the degree to which they can be reliably separated depends on the 
quality of prior information included for survival and birth rates. We 
used informative priors for survival and birth rates derived from 
expert elicitation, and these results should be interpreted consid-
ering the prior information and the model assumptions (e.g., Riecke 
et al., 2019).

Our analyses suggest that tegu abundance (M and M*) either de-
creased (RW and InfoPM) or at very least stabilized (InfoPM) each 
year since 2016 in the Core management area (Figure 2), where it 
would have grown otherwise without removal efforts (Figure  5). 
Given the model assumptions, our results suggest that tegu popula-
tions may be controllable, at least locally, given present trap densi-
ties in the Core region and similar levels of local population control 
may be also achievable in the West and East management areas with 
increased trapping effort. However, caution is warranted because 

F I G U R E  3 Partitioning adult 
recruitment each year in each 
management area into contributions 
of local births and net migration based 
on the InfoPM, depicting the posterior 
distributions (medians and 95% credible 
intervals) for each parameter. Net 
migration is summed over the entire year 
for each location, while ‘births’ represent 
effective births (or juveniles that are born 
the previous year, survive to the next 
birth pulse, and transition to adults) each 
year. Because the birth pulse is mid-
year, a single tegu cohort spans multiple 
capture seasons. Thus, we estimate one 
additional year of birth cohorts compared 
to estimates for net migration, where year 
for ‘births’ corresponds to the year of 
adult transition.
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tegus are prolific breeders (Meshaka et al., 2019) and large-scale har-
vest in the native range for the skin trade appears to be sustainable 
(Fitzgerald, 1994), indicating that local control in the invasive range 
will be challenging. Furthermore, this conclusion is based on model 
assumptions and there may be other important processes responsi-
ble for this decline that we did not include in these models, such as 
density dependence, migration from the Core to other management 
areas, or fluctuation in habitat quality. Furthermore, because net mi-
gration was an important source of adult recruitment in the West 
and East management areas (Figure  3), immigration from outside 
locations could lead to population growth or maintenance growth 
despite otherwise local control. We also note that the number of 
traps and the density of traps based on area alone are not a directly 
comparable metric between areas given differences in trapping 

methods and in sizes of the effective capture area based on habitat 
configuration. Thus, we only model the effect of total effort relative 
to each area and year. However, ongoing habitat-selection studies 
and tegu-specific habitat maps are under development, which may 
facilitate efforts for comparable trap-density measures and changes 
in the effective capture area over time. Further investigation into 
effort relationships, especially those relaxing the independence as-
sumption, could help to gain a better understanding of the optimal 
formulation.

Estimates of availability in each management area supported our 
a priori expectations of tegu availability throughout the year, being 
lowest at the start (March) and end (October) of the year (cold sea-
son) and highest in the early summer (Figure 2). This trend was most 
pronounced in the Core area but was also present in the West and 

F I G U R E  4 Predictions from the top InfoPM model for the superpopulation abundance and annual capture rates both uncorrected, and 
corrected, for relative juvenile availability bias. (a) Predictions from the top InfoPM model in each location comparing the superpopulation 
abundance (M) uncorrected for hatchling bias and the corrected superpopulation estimate (M∗). The difference in these parameters is driven 
by juvenile abundance, survival, and relative availability bias. The parameter estimates are most different directly after the birth pulse, and 
they converge to similar estimates directly before the birth pulse the next year. (b) Yearly effective capture probability in each location and 
year without and with corrections for juvenile availability bias. Annual capture probabilities 

(

pyear
)

 account for capture efficiency, trap effort, 
availability bias, and zero inflation (daily suitability) in each year, whereas p∗

year
 accounts for these processes in addition to juvenile availability 

and age-structure throughout the year.
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East areas (Figure 2). It could be that availability is easier to estimate 
in the Core area given the higher removal rates, or there are less 
suitable hibernation sites in the Core area due to generally shallower 
bedrock compared to the West and East areas, though there is no 
direct evidence of such a difference. Furthermore, suitable habitat 
for tegus is more isolated in the Core area compared to the West 
and East, where the effective trapping regions are adjacent to other 
upland habitat. Thus, opportunities for temporary migration may be 
lower in the Core than in the other areas during the middle of the 
year. Finally, fluctuation in availability in the East and West manage-
ment areas highlights that availability is a complex process driven 
by the spatial distribution of tegus, movement and density depen-
dent behaviors, the spatial distribution of food sources, and spatial 

arrangement of trap effort. Over time, removing tegus also alters 
the spatial distribution of tegus, and how they respond to these 
removals will influence availability. Fluctuating availability through-
out the year highlights the importance of accounting for this bias 
when modeling population dynamics, lest changes in availability be 
misinterpreted as dynamics in superpopulation abundance. While 
informative covariates can be quite useful for estimating availabil-
ity (Zhao & Royle, 2019), and a quadratic effect for day of year ap-
pears reasonable, additional covariates and random effects are likely 
needed to sufficiently inform these parameters, so we opted to esti-
mate the availability directly from temporal replication.

By comparing the uncorrected estimates for M and annual cap-
ture probabilities to those corrected for relative juvenile available 

F I G U R E  5 Evaluating the effectiveness of removal actions by comparing estimated trends in uncorrected (M) and corrected (M∗) 
superpopulation abundance estimates to predictions from no-removal scenarios assuming the same dynamics parameters (birth rates, 
survival, and net migration) in each location and year except for the amount of removed animals. (a) No-removal scenarios compared to 
estimates for catchable population (M) in each location over time. (b) No-removal scenarios compared to estimates for total abundance 
corrected for the juvenile age class (M∗) in each location over time.
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and age distribution throughout the year, we can glean the utility of 
using the InfoPM approach (Figure 4). Our results indicate that the M 
and M* can vary greatly throughout the year, with the largest differ-
ence directly after the birth pulse, and the least difference directly 
before the birth pulse. In fact, directly before the birth pulse the 
estimates converge, and thus this time of the year may be the best 
to estimate abundance using the RW approach. In all management 
areas, the annual removal rate uncorrected for juvenile bias (i.e., the 
capture rate of adult tegus) suggests that individuals have over a 50% 
probability of capture by the end of each year if they are present 
in the superpopulation for the entire year (Figure 4). However, this 
finding is hard to reconcile with increasing superpopulation abun-
dance in the West and East areas (Figure 2). Furthermore, this esti-
mate is somewhat at odds with the low incidence of recapture rates 
for telemetered animals in the West management area; however, 
trap avoidance after first capture may help to explain this difference. 
After correcting for juvenile bias due to relative juvenile availability 
and the expected proportion of juveniles in the population through-
out the year, the annual removal rates were still generally high but 
more conservative (Figure 4) and provided more realistic estimates 
of removal rates given abundance trends. Importantly, these esti-
mates for annual capture probabilities account for every source of 
bias estimated in these models (detection, availability, temporal 
suitability, relative juvenile availability, and proportion of juveniles 
in the population), and heterogeneity in these parameters across pri-
mary periods each year. Previous work on tegu population modeling 
found a removal rate of approximately 20% is needed to stabilize a 
single age-structured population when there are no sources of im-
migration, and when all individuals are equally catchable (Johnson 
et al., 2017). However, hatchlings are removed at a lower rate than 
adults, and net migration is present (and often positive) in all popula-
tions, thus the true removal rate needed to stabilize or reduce these 
populations is likely much higher. We found that annual removal 
rates around 40% in the Core management area appear to have sta-
bilized populations, while in the West and East areas, populations 
continued to increase despite annual removal rates of around 30%. 
Technically, when dynamics are maintained by net migration from a 
separate source, populations could increase or be maintained locally 
through continued immigration even with removal rates near 1, es-
pecially if the source population is large.

Thus, it is possible that the areas adjacent to the effective trap-
ping area in each management area could maintain populations de-
spite local control efforts. This is worth noting because the results 
from the InfoPM suggest that net migration was a large and signifi-
cant driver of adult recruitment in the West and East management 
areas (Figure 3) and also to a lesser extent in the Core area. While 
the source of these migrants is unclear, private lands bordering the 
Core and West areas are mostly agricultural areas that are not man-
aged through similar systematic trapping programs due to logistical 
difficulties. Such adjacent and unmanaged areas may provide critical 
spatial refugia from removal efforts and could hamper local popu-
lation control efforts through spillover. Further research into the 
distribution and abundance of tegus in these locations combined 

with decision support tools for spatial population management 
may help to effectively plan the control of such spatially structured 
populations.

In this work, we used the InfoPM framework to predict an addi-
tional ‘no-removal’ scenario in each management area to evaluate 
the past effectiveness of each removal program on tegu population 
dynamics. This model allows managers to address the questions of 
how removal efforts have affected the population directly, through 
present mortality, and indirectly, given future survival (i.e., some ani-
mals would have died nonetheless) and birth processes (i.e., removed 
animals cannot contribute to births). We demonstrate through coun-
terfactual analysis that even though the populations have increased 
in the West and East areas, tegu abundances (both M*and M) would 
be significantly higher without trapping effort, and abundance in the 
Core area would have grown rather than declined (Figure  4). This 
framework could also be used to forecast the tegu populations in 
each management area under different management scenarios as-
suming average availability and capture conditions throughout a 
year. Furthermore, the estimates obtained from the InfoPM could 
be included in formal decision analysis, such as a Markov Decision 
Process (e.g., Williams, 2009) model where the actions are to decide 
the amount of trap effort to allocate at each primary period of the 
year.

The simulation study post-validated the results of the RW model 
under similar conditions to those estimated for each management 
area and year. Our results indicate that we can reliably estimate su-
perpopulation abundance and removal probabilities in all locations 
with reasonable precision and bias when removal rates and starting 
population sizes are high. The lowest biases were found in the Core 
area (median biases each year were within 2%) where removal prob-
abilities and the starting superpopulation was highest. In the West 
and East areas, where starting M and removal probabilities were 
lower, estimates were less accurate (Appendix C, Figure C-1), which 
agrees with previous work on estimating removal model parameters 
(Davis et al.,  2016). For application for invasive species, we view 
these levels of bias as acceptable, especially given that alternatives 
(e.g., CPUE) have additional and unmeasured biases including im-
perfect detection and availability bias (Anderson, 2001). However, 
when applying this model to systems with lower starting population 
sizes or lower removal rates, biases would likely be larger, thus it is 
important to ensure the bias levels are acceptable for the intended 
application.

These models and applications have several limitations. The 
first is that we did not account for finer spatial influences in both 
the capture and population dynamics processes, but rather mod-
eled the superpopulation corresponding to effective capture area 
in each management area. Future work may extend these models 
to a spatially explicit version using methods developed for spatially 
structured removal models (e.g., Kéry & Royle,  2015). A further 
enhancement would include specifying spatially explicit transi-
tion functions for local growth and movement probabilities. For 
example, recent work in open removal models with spatially ex-
plicit movement probabilities (Link, Schofield, et al., 2018) appears 
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promising if extended to include availability bias or age-structure. 
A spatial approach would also allow for more precise estimates of 
the relationship between capture probabilities and trap effort and 
could incorporate spatial covariates; however, the degree of tem-
porary emigration bias due to partial overlap of home ranges will 
likely be higher which could make estimation challenging. A second 
limitation is that we used non-age-structured removal data in our 
InfoPM framework. Recent methods (Meshaka et al., 2019) to age 
tegus given size and time of year, or skeleton chronology, could be 
used in future work to explicitly include age-structured removal data 
into the likelihood (e.g., Zipkin et al., 2014), but given the generally 
low incidence of juvenile captures, prior information may still be re-
quired. Because we make a prediction for the expected captures of 
adults and juveniles already with our combined likelihood approach 
(Equation  16), extending out InfoPM to age-structured removals 
would only require separating the first half the of the combined 
equation the likelihood for adult removals, and the second half of the 
equation as: the likelihood for juvenile removals. Such an approach 
would also provide additional empirical information to estimate the 
relative juvenile availability distribution, vital rates, and abundance. 
A third limitation is that we did not incorporate density dependence, 
which becomes more important as populations continue to grow 
larger over time. A fourth limitation is the assumption that adult and 
juvenile survival are constant throughout the year since these are 
likely to vary due to seasonal influences. However, with the current 
formulation of net migration each period, a model with time varying 
survival would be overparameterized. Net migration is informed by 
the difference in population dynamics each period that is not ex-
plained by birth rates and constant survival rates, thus the net migra-
tion process absorbs differences in time varying survival, and it may 
be better termed “apparent net migration”.

Another key assumption of our model was that data are collected 
using a robust-design framework; however, our data were collected 
throughout the entire year and so primary periods and temporal 
dynamics were approximated. We used a time period of 2-weeks 
to designate primary periods, was long enough period to achieve 
high enough total removal rates to estimate the models (e.g., Davis 
et al.,  2016), and short enough to reasonable assume population 
closure other than temporary emigration. Future work may evalu-
ate the optimal blocking structure for estimating abundance given 
capture rates and collection periods. Finally, we did not account for 
differences in multiple types of removal methods (e.g., trap types); 
rather, we estimate the average capture efficiency of traps based in 
each location each year. Future work could extend this framework 
to estimate the capture efficiency of traps separately or investigate 
different relationships between effort and capture probabilities.

In this work, we developed open removal abundance estimators 
to overcome common violations of assumptions in removal time se-
ries, which arise due to population dynamics and time-varying avail-
ability bias. Such models provide an important monitoring tools for 
invasive species management programs to evaluate past effort and 
efficiently plan for future management efforts. We demonstrated 
the utility of these models for the Argentine black and white tegus in 

South Florida and provide important insights into the past and future 
effectiveness of trapping programs. We importantly provided the 
first empirical evidence that populations may be controllable locally 
given present levels of trap densities in the Core management area, 
which provides an opportunity for successful control of invasive 
tegu populations. However, we highlight continued growth in the 
West and East areas, possible source locations in nearby spatial refu-
gia, and continued potential for spread to ecologically sensitive areas 
as remaining challenges for management. Finally, the models we de-
veloped here can be applied to other removal monitoring programs 
to estimate population dynamics and inform conservation manage-
ment while accounting for capture probabilities and availability bias.
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