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Abstract
Removal	sampling	data	are	 the	primary	source	of	monitoring	 information	for	many	
populations	(e.g.,	invasive	species,	fisheries).	Population	dynamics,	temporary	emigra-
tion,	 and	 imperfect	 detection	 are	 common	 sources	of	 variation	 in	monitoring	data	
and	are	key	parameters	for	informing	management.	We	developed	two	open	robust-	
design	removal	models	for	simultaneously	modeling	population	dynamics,	temporary	
emigration,	 and	 imperfect	 detection:	 a	 random	walk	 linear	 trend	model	 (estimable	
without	ancillary	information),	and	a	2-	age	class	informed	population	model	(InfoPM,	
closely	related	to	integrated	population	models)	that	incorporated	prior	information	
for	age-	structured	vital	rates	and	relative	juvenile	availability.	We	applied	both	models	
to	multiyear,	removal	trapping	time-	series	of	a	large	invasive	lizard	(Argentine	black	
and	white	 tegu,	Salvator merianae)	 in	 three	management	 areas	 of	 South	 Florida	 to	
evaluate	the	effectiveness	of	management	programs.	Although	estimates	of	the	two	
models	were	similar,	 the	 InfoPMs	generally	returned	more	precise	estimates,	parti-
tioned	dynamics	into	births,	deaths,	net	migration,	and	provided	a	decision	support	
tool	to	predict	population	dynamics	under	different	effort	scenarios	while	accounting	
for	uncertainty.	Trends	in	tegu	superpopulation	abundance	estimates	were	increasing	
in	two	management	areas	despite	generally	high	removal	rates.	However,	tegu	abun-
dance	appeared	to	decline	in	the	Core	management	area,	where	trapping	density	was	
the	highest	and	immigration	the	lowest.	Finally,	comparing	abundance	predictions	of	
no-	removal	scenarios	to	those	estimated	in	each	management	area	suggested	signifi-
cant	population	reductions	due	to	management.	These	results	suggest	that	local	tegu	
population	control	via	systematic	trapping	may	be	feasible	with	high	enough	trap	den-
sity	and	limited	immigration;	and	highlights	the	value	of	these	trapping	programs.	We	
provided	the	first	estimates	of	tegu	abundance,	capture	probabilities,	and	population	
dynamics,	which	 is	critical	 for	effective	management.	Furthermore,	our	models	are	
applicable	to	a	wide	range	of	monitoring	programs	(e.g.,	carcass	recovery	or	removal	
point-	counts).
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1  |  INTRODUC TION

Gaining	 a	 better	 understanding	 of	wildlife	 population	 dynamics	 is	
critical	 for	 effective	 conservation	management	 and	 ecological	 re-
search.	 Monitoring	 programs	 (i.e.,	 the	 repeated	 sampling	 of	 pop-
ulations	over	 time)	provide	 the	empirical	 data	needed	 to	estimate	
population	abundance,	trends,	vital	rates,	and	capture	probabilities	
to	evaluate	the	effectiveness	of	management	programs	and	predict	
future	 population	 dynamics	 under	 different	 scenarios.	 Removal	
sampling,	 the	 repeated	 sampling	 of	 a	 population	without	 replace-
ment	 (Moran,	 1951),	 is	 common	 as	 a	 monitoring	 technique	 (e.g.,	
time-	removal	 counts,	 carcass	 recovery	 programs	 of	 marine	 mam-
mals),	 and	 arises	 naturally	 from	 many	 conservation	 management	
programs	such	as	invasive	animal	population	control	or	harvest	pro-
grams	 (i.e.,	hunting,	 fishing).	 In	 fact,	 in	 the	case	of	 invasive	animal	
management,	time	series	of	removal	data	often	represent	the	most	
relevant	(or	only)	empirical	monitoring	data	available	to	inform	man-
agement	efforts.

1.1  |  Challenges estimating abundance and 
population dynamics

Unfortunately,	 imperfect	detection	and	other	 sources	of	observa-
tion	error	and	process	variation	make	analysis	of	raw	removal	data	
or	other	count	indexes	challenging	(Anderson,	2001).	Removal	mod-
els	(Moran,	1951;	Zippen,	1956)	are	statistical	abundance	estimators	
that	 account	 for	 these	biases	when	estimating	abundance	and	 re-
moval	probabilities	from	removal	sampling	data.	They	are	structur-
ally	similar	to	other	unmarked	abundance	estimators	(e.g.,	N-	mixture	
models,	 Royle,	 2004)	 and	 rely	 on	 the	 assumption	 of	 population	
closure	 (i.e.,	 that	a	population	remains	constant	between	sampling	
events).	Violations	to	population	closure	are	common	in	natural	sys-
tems	and	occur	 from	demographic	change	 (e.g.,	births	and	deaths,	
Dail	&	Madsen,	2011)	and	animal	movement	 (e.g.,	permanent	emi-
gration/immigration,	and	temporary	emigration	[animals	leaving	the	
sample	area	temporarily],	Chandler	et	al.,	2011;	Kendall	et	al.,	1997),	
which	result	in	biased	estimators	(Link,	Converse,	et	al.,	2018).	Thus,	
it	 is	 important	 to	develop	models	 robust	 to	both	 types	of	 closure	
violations.

Temporary-	emigration/availability-	bias	 often	 arise	 in	 sam-
pling	designs	from	the	partial	overlap	of	the	effective	capture	area	
of	 a	 sampling	 array	 with	 animal	 spatiotemporal	 use	 distributions	
(Chandler	et	al.,	2011;	Kendall	et	al.,	1997).	It	is	partially	determined	
by	seasonal	and	daily	weather	patterns	and	movement	behavior	and	
territoriality	of	 the	species	being	sampled.	Availability	bias	can	be	

heterogeneous	within	a	removal	time	series	due	to	changes	in	animal	
activity	centers	and	movement	behavior	throughout	the	course	of	
sampling,	or	from	changes	in	spatial	dispersion	due	to	removing	ani-
mals.	Additionally,	animal	populations	change	throughout	the	course	
of	a	year	due	to	population	dynamics	via	births,	deaths,	and	net	mi-
gration.	When	both	occur	simultaneously	 in	a	removal	time	series,	
it	can	be	difficult	to	determine	if	changes	in	removals	over	time	are	
driven	by	imperfect	detection	(observation	bias),	temporary	change	
(availability	bias),	or	permanent	change	 (demographics),	and	statis-
tical	models	 that	 seek	 to	 explicitly	 disentangle	 all	 these	 are	 often	
nonidentifiable	(Zhou	et	al.,	2019).

Originally	 formulated	 as	 mark-	recapture	 models	 with	 recap-
ture	 probabilities	 of	 zero,	 recent	 removal	 models	 formulated	 as	
unmarked	 abundance	 estimators	 (as	well	 as	 unmarked	 abundance	
estimators	 in	general)	have	been	 improved	 to	accommodate	some	
of	 these	 issues	 (Rodriguez	 de	 Rivera	 &	 McCrea,	 2021).	 This	 in-
cludes	 the	 use	 of:	multinomial	N-	mixture	models	 as	 a	 general	 es-
timation	 procedure	 (Chandler	 et	 al.,	 2011;	 Dorazio	 et	 al.,	 2005; 
Kéry	&	Royle,	2015;	Royle,	2004),	 open	 robust	design	 to	 improve	
estimation	when	 population	 closure	 is	 violated	 (Kéry	 et	 al.,	2009; 
Link,	Schofield,	et	al.,	2018;	Zhao	&	Royle,	2019;	Zhou	et	al.,	2019),	
models	that	consider	the	explicit	dynamics	from	temporary	emigra-
tion/availability	bias	(Chandler	et	al.,	2011;	Zhou	et	al.,	2019),	mod-
els	 with	 explicit	 population	 dynamics	 from	 demographic	 changes	
(Dail	 &	 Madsen,	 2011;	 Matechou	 et	 al.,	 2016),	 and	 models	 with	
age-	structured	population	dynamics	(Zipkin	et	al.,	2014).	However,	
even	when	using	 a	 robust	design	 approach	 (which	 assumes	multi-
ple	primary	periods	of	closure,	and	within	each	there	are	temporally	
replicated	 sampling	 occasions	 to	 estimate	 the	 effective	 capture	
probability;	Kendall	et	al.,	1997),	models	that	 include	both	popula-
tion	dynamics	and	temporary	emigration	remain	challenging	and	are	
often	non-	identifiable	(Zhou	et	al.,	2019).

1.2  |  Two approaches to overcome estimation  
challenges

To	overcome	these	issues,	either	(1)	the	population	dynamics	model	
must	be	simplified	to	a	version	that	is	estimable	or	(2)	more	realistic	
population	 dynamics	models	 (with	 births	 and	 deaths)	 can	 be	 con-
structed	with	 the	aid	of	 ancillary	 information.	Here,	we	 take	both	
approaches	and	develop	two	models:	the	first	a	simplified,	Bayesian	
random	walk,	 linear-	trend	 time-	series	model	 (Holmes	 et	 al.,	2021)	
to	 approximate	 intra-		 and	 inter-	year	 population	 dynamics	 with-
out	 requiring	 ancillary	 information,	 and	 the	 second	 an	 “Informed	
Population	Model”	 (InfoPM)	which	 is	 closely	 related	 to	 integrated	
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population	models	(IPMs)	(Schaub	&	Kéry,	2022),	but	uses	informed	
priors	rather	than	multiple	data	sets	and	likelihoods.

Bayesian	 random	walk	 time	 series	models,	which	can	be	 formu-
lated	as	state-	space	models	to	account	for	observation	error,	provide	
a	useful	tool	for	time-	series	estimation	(Scheuerell	et	al.,	2015).	IPMs	
combine	count	data	and	matrix	population	models	with	ancillary	data	
sets	on	vital	rates	(e.g.,	mark-	recapture	data)	into	a	single	model	by	in-
tegrating	multiple	likelihoods	(Schaub	&	Kery,	2021).	Importantly,	IPMs	
provide	insights	into	the	relative	roles	of	births,	deaths,	and	migration	
in	age-	structured	population	dynamics	and	could	be	extended	to	ac-
count	 for	age-	structured	availability	biases.	 In	a	sequential	Bayesian	
paradigm,	 some	 or	 all	 of	 these	 ancillary	 data	 sets	 and	 likelihoods	
can	be	replaced	by	informed	priors	for	the	age-	structured	vital	rates	
while	 leading	 to	 comparable	 (and	 in	 some	 cases	 identical)	 inference	
(Schaub	&	Kery,	2021).	In	models	where	all	additional	sources	of	an-
cillary	 information	are	 incorporated	as	 informative	priors	 (e.g.,	Millar	
&	Meyer,	2000;	Thomas	et	al.,	2005)	 as	opposed	 to	additional	data	
sets	and	likelihoods,	they	are	more	accurately	described	as	informed	
population	models	(InfoPM)	because	they	result	in	a	single	likelihood.	
When	the	best	available	prior	 information	on	vital	 rates	 is	based	on	
expert	 elicitation	 (e.g.,	 Johnson	et	 al.,	2017),	 such	models	provide	 a	
formal	mechanism	for	combined	inference	with	the	empirical	removal	
data.	For	example,	the	use	of	all	available	information	about	processes	
of	 interest	 is	commonplace	 in	scientific	 learning,	and	Bayesian	 infer-
ence	provides	formal	way	to	combine	all	available	information	in	a	rig-
orous	way	(Banner	et	al.,	2020;	Lemoine,	2019;	Low	Choy	et	al.,	2009; 
Schaub	&	Kéry,	2022;	Zipkin	&	Saunders,	2018).

Finally,	even	 in	models	 that	account	 for	 temporary	emigration,	
some	portion	of	individuals	will	suffer	mortality	or	permanently	em-
igrate	before	ever	becoming	available,	biasing	removal	probabilities	
high	and	abundance	(and	growth	rates)	estimates	low	(Kendall	et	al.,	
1997).	 This	 bias	 is	 particularly	 likely	 for	 populations	 with	 cryptic	
life	stages,	especially	 if	such	 life	stages	also	have	 low	survival	and	
comprise	a	significant	portion	of	the	populations	 (e.g.,	 juvenile	 life	
stages	of	many	species).	Recent	 formulations	of	unmarked	models	
for	age-	structured	data	(e.g.,	Zipkin	et	al.,	2014)	could	be	extended	
to	an	InfoPM	framework;	however,	if	combined	with	ancillary	infor-
mation	on	age-	specific	vital	rates,	the	timing	of	the	birth	pulse,	and	
relative	 juvenile	availability,	age	structure	can	be	modeled	for	two	
age	classes	even	without	age-	structured	observations.	 In	 fact,	 the	
estimation	of	 “hidden”	or	 “extra”	parameters	 for	which	there	 is	no	
explicit	data	 (e.g.,	 age	 structure)	 is	one	of	 the	main	advantages	of	
using	an	IPM	(or	InfoPM)	approach	(Schaub	&	Kéry,	2022).	This	ap-
proach	is	especially	useful	when	age	information	is	missing	from	re-
moval	programs,	when,	for	example,	animals	are	not	recovered	(e.g.,	
Davis	et	al.,	2016),	age	is	difficult	to	estimate,	acoustic	surveys	are	
used,	or	the	captures	of	some	age	classes	are	too	rare	for	estimation.

1.3  |  Motivating example and empirical application

We	 apply	 both	 models	 to	 the	 case	 study	 of	 Argentine	 black	 and	
white	 tegus	 (Salvator merianae),	 large	 invasive	 lizards	 established	

near	the	Everglades	and	other	important	ecological	areas	in	Florida.	
Tegus	were	first	introduced	over	20 years	ago	(Meshaka	et	al.,	2019),	
and	the	first	breeding	population	in	Miami-	Dade	County	was	discov-
ered	 in	2008	(Pernas	et	al.,	2012).	This	 initial	population	has	since	
grown	in	abundance	and	spatial	extent	across	a	heterogeneous	land-
scape	to	comprise	a	patchy	population	spanning	now	~400 km2.	As	a	
nest	predator	with	high	fecundity,	these	animals	have	significant	po-
tential	for	ecological	impacts	in	the	Greater	Everglades	Ecosystem,	
including	nest	predation	to	threatened	American	crocodiles	or	nest-
ing	birds	(Mazzotti	et	al.,	2015).	Because	tegus	hibernate	in	winter	
months	(McEachern	et	al.,	2015)	and	can	take	advantage	of	anthro-
pogenic	 features	 and	 altered	 ecosystems,	 these	 lizards	 have	 the	
potential	 to	 invade	much	of	 the	 southern	United	States	 (Chiarello	
et	al.,	2010;	Jarnevich	et	al.,	2018;	Klug	et	al.,	2015).	State	and	federal	
partners	collectively	work	to	control	spatially	patchy	populations	of	
breeding	tegus	in	southern	Florida	across	three	management	areas	
(to	the	west,	central/south,	and	east	of	the	initial	point	of	invasion)	
through	 systematic	 removal	 trapping	 programs.	 As	 of	 December	
2018,	over	6000	individuals	were	removed	from	these	management	
areas	 in	 total	 (Meshaka	et	al.,	2019).	These	 removal	 time	series	 in	
each	 management	 area	 provide	 a	 source	 of	 empirical	 monitoring	
data	to	monitor	tegu	population	trends,	evaluate	the	effectiveness	
of	management,	and	support	future	decision	making.

However,	analyzing	tegu	removal	data	sets	is	challenging	due	to	
issues	of	temporally	heterogeneous	availability	bias	and	population	
dynamics.	 Tegus	 hibernate	 underground	 in	 burrows	 in	 the	winter	
(McEachern	et	al.,	2015),	emerge	in	February	and	increase	activity,	
breed	from	March–	May,	hatch	from	May–	August,	and	decline	in	ac-
tivity	in	the	fall	(Meshaka	et	al.,	2019).	In	addition,	tegu	populations	
are	 demographically	 open	 throughout	 the	 year,	with	 a	 birth	 pulse	
in	the	late	spring/early	summer	(Meshaka	et	al.,	2019),	and	mortal-
ity	and	net	migration	throughout	the	year.	Tegu	populations	are	age	
structured,	with	heterogeneities	in	vital	rates	and	capture	probabil-
ities	 between	 life	 stages.	 Furthermore,	 estimating	 tegu	 age	 based	
on	 size	 is	 challenging	 (however	 see	Meshaka	et	 al.,	2019)	 and	 the	
incidence	of	hatchling	captures	is	generally	low.

One	 recent	 population	 analysis	 based	 on	 expert	 elicitation	
(Johnson	 et	 al.,	2017)	 suggested	 that	 the	 juvenile	 age	 class	 com-
prises	a	majority	of	 the	population	at	stable	age	distribution	 (68%	
of	 the	population	after	 the	birth	pulse).	When	combined	with	 low	
survival	rates	and	capture	rates	of	juveniles	(i.e.,	due	to	low	juvenile	
availability),	 this	 presents	 complications	 for	 estimating	 temporary	
emigration	(e.g.,	Kendall	et	al.,	1997)	because	a	large	proportion	of	
animals	are	juveniles,	and	of	those	many	do	not	survive	long	enough	
(or	permanently	emigrate)	before	ever	becoming	available	for	cap-
ture.	Consequently,	we	developed	an	age	structured	InfoPM	based	
on	unstructured	removal	data,	prior	information	for	age-	structured	
vital	rates,	and	matrix	algebra	to	scalarize	the	system.	The	InfoPM	
framework	 can	 also	 serve	 as	 a	 tool	 for	 conducting	 counterfactual	
analysis	 (e.g.,	 Ferraro,	2009;	 Schaub	&	Kéry,	2022)	 by	quantifying	
the	impacts	of	management	interventions,	for	example,	by	modeling	
no-	removal	 (nonintervention)	 scenarios	 and	 comparing	 predicted	
abundances	 to	 the	 estimated	 abundances	 over	 time.	 Importantly,	
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this	 also	 accounts	 for	 future	 survival	 and	 reproductive	 processes	
when	evaluating	the	efficacy	of	removal	programs.

In	summary,	we	develop	novel	models	using	an	open-	robust	de-
sign	 removal	 framework	 to	estimate	 the	 superpopulation	 size	 (the	
total	number	of	animals	with	home	ranges	overlapping	an	effective	
trapping	region),	population	dynamics,	availability	bias,	and	capture	
probabilities	of	animals	from	removal	trapping	time	series.	We	apply	
these	models	 to	 the	 case	 study	of	 tegu	 removal	 trapping	 in	 three	
management	areas	 in	the	Greater	Everglades	Ecosystem	in	Florida	
using	 three	 years	 (2016–	2018)	 of	 data	 collected	 from	 systematic	
trapping	programs.	We	provide	the	 first	empirical	population	esti-
mates	and	capture	probabilities	of	tegus	in	each	management	area.	
By	estimating	trends	and	annual	removal	probabilities	in	addition	to	
no-	removal	scenarios,	we	also	provide	rigorous	evaluation	of	the	ef-
ficacy	of	removal	programs.

2  |  METHODS

2.1  |  Data collection and study areas

Tegu	removal	data	were	collected	from	systematic	trapping	programs	
in	 three	areas	 (Core,	East,	West)	where	 trapping	 is	 carried	out	by	
multiple	agency	partners	(Appendix	A	and	Figure 1).	Tegu	trap	types,	
modifications,	and	number	of	traps	deployed	each	week	varied	by	
location	 and	 year	 (see	Appendix	A	 for	 full	 description	of	 trapping	
methods	 in	each	 location).	Trap	 lines	 in	each	 location	consisted	of	
wire	live	traps	(Havahart	and	Tomahawk)	of	various	sizes	baited	with	
chicken	eggs,	and	each	trap	is	designed	to	capture	a	single	animal.	
Traps	were	sometimes	modified	to	increase	tegu	capture	probability	
(Appendix	A).	Traps	were	deployed	(often	in	pairs)	alongside	roads,	
canals,	 and	 levees,	 and	 in	 other	 vegetated	 and	 shaded	 locations.	
When	surrounded	by	marsh	or	wet-	prairie	habitat,	tegus	appear	to	
spend	more	time	in	drier,	higher-	elevation	areas	(Klug	et	al.,	2015),	
and	configuration	of	suitable	habitat	varied	by	locations.	For	exam-
ple,	suitable	habitat	in	the	Core	area	is	mostly	located	along	linear	
features	interspersed	within	mostly	unsuitable	sawgrass	marsh	habi-
tat.	While	these	features	dominate	in	the	West	and	East	areas,	they	
are	often	 adjacent	 to	other	 suitable	 agricultural	 or	 natural	 habitat	
(Figure 1,	Appendix	A),	 including	some	 that	are	ecologically	 sensi-
tive	(e.g.,	pine	rockland	habitats	in	Everglades	National	Park).	Traps	
were	deployed	daily	from	Feb-	Oct	each	year	with	the	exception	of	
closures	due	to	hurricanes	or	force majeure,	and	daily	effort	varied	by	
year	and	area	(Appendix	A).

2.2  |  Modeling approach

We	 used	 an	 open	 robust	 design	 framework	 (Kendall	 et	 al.,	 1997; 
Pollock	 et	 al.,	 1990)	 to	 structure	 temporal	 dynamics,	 assuming	
time	 is	 divided	 into	primary	 sampling	periods	 t	 each	 consisting	of	
multiple	 secondary	occasions	 j,	 across	which	 the	population	 is	 as-
sumed	 closed,	 and	 between	 which	 the	 population	 changes.	 Such	
an	 approach	 has	 been	 previously	 applied	 to	 estimate	 abundance,	

population	 trends,	 and	 detection	 in	 unmarked	 populations	 (Kéry	
et	al.,	2009).	While	such	models	often	represent	 interyear	dynam-
ics,	 robust	 design	 has	 also	 been	 applied	 to	 approximate	 intrayear	
dynamics	 resulting	 from	 temporary	 emigration	 in	 removal	models	
(Zhou	et	al.,	2019)	by	subdividing	removal	effort	throughout	a	year	
into	multiple	primary	periods	(Table 1).

In	general,	we	envisioned	a	 removal	 sampling	 time	series	 for	a	
trapping	 array	made	up	of	 the	 total	 daily	 removals	 and	 total	 daily	
trap	effort	in	each	management	area	across	multiple	years.	We	as-
sumed	 that	 temporary	emigration	 resulted	 from	partial	 overlap	of	
home	ranges	with	effective	capture	arrays,	and	that	the	probability	
of	temporary	emigration	changes	throughout	the	year	as	both	the	
activity	 centers	 and	 sizes	of	 animal	 home	 ranges	 shifted	 through-
out	the	year	(and	as	animals	are	removed	throughout	the	year).	The	
total	number	of	animals	with	home-	ranges	overlapping	the	effective	
trapping	 area	 within	 a	 primary	 period	was	 termed	 the	 superpop-
ulation,	Mt,	 and	 the	 total	 number	 of	 animals	 available	 for	 capture	
within	 the	 trapping	area	at	a	given	primary	period	 t	 and	 sampling	
occasion	 j	was	the	available	population	Ntj.	Because	the	total	trap-
ping	area	 in	each	management	area	was	 relatively	consistent	over	
the	timeframe	of	interest	(and	data	were	not	included	from	traps	in	
later	years	that	were	deployed	beyond	the	original	capture	area),	we	
assumed	that	comparisons	in	the	superpopulation	from	year	to	year	
were	meaningful.	 However,	 if	 a	measure	 of	 the	 effective	 capture	
area	each	year	could	be	calculated	then	 it	could	be	used	to	adjust	
superpopulation	size	accordingly.	We	assumed	the	superpopulation	
abundance	 changes	 over	 time	 through	births,	 deaths,	 and	net	mi-
gration	throughout	the	year,	which	we	approximated	with	different	
transition	functions.	Because	the	composition	of	traps	and	sampling	
locations	vary	among	 locations	and	years,	we	modeled	a	different	
average	capture	efficiency	for	each	 location	and	year.	Then,	given	
the	total	daily	removals,	capture	efficiency,	and	total	capture	effort	
in	each	primary	period,	we	estimated	the	daily	capture	probability	of	
an	entire	trap	array,	and	the	abundance	of	the	superpopulation	and	
available	population	of	animals	corresponding	to	the	total	trapping	
area	in	each	primary	period.

We	 found	 after	 some	 preliminary	 investigation	 that	 a	 2-	week	
sampling	window	provided	a	good	compromise	in	our	application	to	
tegus,	with	removal	rates	high	enough	for	rigorous	estimation	(e.g.,	
Davis	et	al.,	2016),	and	sampling	windows	reasonably	short	enough	
to	 assume	population	 closure	 (other	 than	 removal	 and	 temporary	
migration)	 given	 the	 study	 system.	 In	 comparison,	 total	 removal	
rates	were	generally	not	high	enough	for	reliable	estimation	when	
using	 1-	week	 primary	 periods,	 whereas	 we	 viewed	 primary	 peri-
ods	of	3 weeks	or	greater	as	 too	 long	 for	which	 to	 reasonably	as-
sume	population	closure.	We	subdivided	the	trapping	season	each	
year	into	two-	week	primary	periods	(t)	for	a	total	of	26	each	year,	
each	made	up	of	multiple	sampling	occasions	 (i.e.,	capture	days)	 j. 
Because	the	range	and	frequency	of	trapping	days	differed	between	
management	 regions,	 the	number	of	 active	 trap	days	 in	 each	pri-
mary	period	 and	number	of	 active	primary	periods	 each	year	dif-
fered	among	management	areas	 (Appendix	A).	 In	our	analysis,	we	
only	used	data	from	March–	October	when	tegus	are	most	active	to	
avoid	estimation	issues	resulting	from	extreme	rarity.
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2.3  |  Observation model

We	extended	previously	established	unmarked	methods	for	demo-
graphically	closed	populations	with	temporary	emigration	(Chandler	
et	al.,	2011)	to	open	population	dynamics	using	open	robust	design	
and	transition	functions	for	abundance	over	time.	We	assume	that	
superpopulation	abundance	

(

Mt

)

	in	each	primary	period	comes	from	
a	 point	 pattern	 process	 based	 on	 a	 Poisson	 distribution	with	 rate	
parameter	(expected	abundance),	�t.Here	we	develop	the	case	of	a	
single	year	but	extend	the	 logic	for	multiple	years	 in	 later	sections	
(e.g.,	�y,t ).

We	also	assume	that	the	available	abundance	
(

Ntj

)

 each period t 
and	day	 j	comes	from	a	binomial	process	given	the	superpopulation	
abundance	

(

Mt

)

	and	availability	
(

�t

)

	for	each	period,	and	that	capture	
histories 

(

ytj
)

	follow	a	multinomial	process	with	�tj	as	the	multinomial	
cell	probabilities	for	capture	each	day	 j	and	period	t.	Thus,	the	like-
lihood	of	the	model	can	be	specified	using	an	analytical	Poisson	ap-
proximation	(Dorazio	et	al.,	2005;	Kéry	&	Royle,	2015;	Royle,	2004; 
Royle	&	Dorazio,	2008):

Here,	�t	 refers	 to	 the	 expected	 superpopulation	 abundance,	�t ∗�tj 
is	 equal	 to	 the	 multinomial	 probability	 vector	 after	 accounting	 for	(1)Mt

∼ Poisson
(

�t
)

(2)ytj
∼ Poisson

(

�t ∗�tj ∗�tj
)

F I G U R E  1 A	map	of	tegu	trap	lines	in	2017	(the	first	year	of	trapping	in	the	east),	a	tegu	in	a	trap,	and	the	bi-	weekly	trap	effort	and	
mean	captures	for	each	management	area.	(a)	Trap	locations	and	management	areas	representing	the	collective	efforts	of	all	partners	in	
2017	to	study,	contain,	and	control	tegus.	The	pink	circle	represents	the	approximate	location	where	the	population	was	first	recognized	
as	established	in	2008.	The	Core	management	area	is	largely	located	in	the	Southern	Glades	marshland	south	of	Homestead,	the	West	
management	area	represents	the	boundary	lands	outside	Everglades	National	Park,	and	the	East	management	area	consist	of	two	major	
roads	between	the	initial	invasion	site	and	Turkey	Point	Power	Plant.	In	general,	traps	are	deployed	along	levies,	canals,	and	roads.	Some	of	
these	sites	are	in	raised	habitat	within	a	matrix	of	seasonally	inundated	wetlands	and	marshes,	and	other	sites	are	within	a	matrix	of	natural	
and	agricultural	lands.	(b)	an	adult	tegu	caught	in	a	live	trap,	baited	with	a	chicken	egg	(photo	credit:	Dan	Quinn).	(c)	bi-	weekly	trap	effort	
(mean	traps	per	day),	(d)	capture	data	(mean	tegus	per	day),	and	(e)	CPUE	in	each	management	area.
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availability,	and	�tj	is	defined	for	each	day	 j	of	each	period	t	based	on	
daily	capture	probability	

(

pt
)

	for	each	period:

Because	it	is	important	to	account	for	variation	in	removal	effort	(Davis	
et	al.,	2016;	St.	Clair	et	al.,	2012),	we	model	daily	capture	probability	
in	each	primary	period	

(

pt
)

	based	on	the	total	effort	(number	of	traps,	
Trapst)	 and	 the	 yearly	 capture	 efficiency	�y	 (i.e.,	 the	 per	 unit	 effort	
probability	of	capture):

where 
(

1−�y
)Trapst	 is	 the	 probability	 of	 not	 being	 trapped.	 Thus,	

while pt	 varies	 between	 primary	 periods	 based	 on	 the	 number	 of	
traps	deployed	 in	each,	we	assume	that	�y	 is	constant	within	each	
year.

We	estimated	parameters	for	each	management	area	separately.	
We	assumed	that	capture	efficiency	

(

�y
)

	varied	by	year	and	had	a	
vague	 beta	 prior	 (�y ∼Beta(1, 1)).	We	 also	 assumed	 the	 availability	
bias	varied	each	primary	period,	with	a	vague	beta	prior:

Because	 there	 was	 a	 high	 incidence	 of	 zeros	 in	 the	 removal	
data,	 we	 accounted	 for	 zero-	inflation	 (i.e.,	 temporal	 suitability,	
some	days	are	not	suitable	capturing	any	 individuals)	assuming	a	
Bernoulli	random	effect	(Kéry	&	Royle,	2015)	at	each	sampling	oc-
casion	given	the	temporal	suitability	parameter	

(

zproby

)

,	and	daily	
temporal	replication	for	ztj	each	within	each	year	(Equation 6).	We	
incorporated	zero-	inflation	into	the	likelihood	using	zero-	inflated	
Poisson	model	(Equation 7):

(3)�tj = pt ∗
(

1−pt
)j−1

(4)pt = 1 −
(

1−�y
)Trapst

(5)�t
∼Beta(1, 1)

(6)ztj
∼Bernoulli

(

zproby

)

TA B L E  1 Parameter	symbols	and	definitions	for	both	models

Parameter Definition Model

My,t Superpopulation	abundance Both

�y,t Poisson	abundance	rate Both

�y,t Availability	bias Both

Ny,t,j Available	abundance	(day	and	period) Both

N̂y,t
Available	population	abundance Both

�y,tj Multinomial	probability	vector Both

yy,tj Daily	removals Both

py,t Daily	capture	probability	per	year	and	
period

Both

�y Yearly	capture	efficiency Both

1 − zproby The	daily	zero-	inflation	rate	per	year Both

zy,tj Daily	temporal	suitability	rate Both

psety,t Period	effective	capture	probability	
(superpopulation)

Both

pyeary Yearly	effective	capture	probability	of	
the	superpopulation

Both

Ry,t Total	removals	each	year	and	period RW

Δy,t Random	variable	for	change	in	
superpopulation	during	each	time	
step	between	periods	for	each	year	
and	period

RW

�trendy
Mean	of	the	normal	distribution	for	time	
steps	for	periods

RW

sdtrendy Standard	deviation	of	the	normal	
distribution	for	time	steps	for	
periods

RW

Δyeary
Random	time	step	between	years RW

sdyeary Standard	deviation	of	the	normal	
distribution	for	time	steps	for	years

RW

�ady,t Expected	adult	population	each	year	and	
period

InfoPM

sad Period	survival	rate	of	adults InfoPM

sadyear Adult	survival	rate	each	year InfoPM

BtAy,t Animals	transitioning	to	the	adult	age	
class each period

InfoPM

IEy,t Net	migration	each	year	and	period InfoPM

Rady,t Expected	adult	removals	each	year	and	
period

InfoPM

bpy Period	of	the	birth	pulse	each	year InfoPM

by−1 Effective	birth	rate	in	year	y-	1	including	
juvenile	survival

InfoPM

�ady−1,t=bpy−1
Adult	abundance	during	at	the	birth	
pulse	in	year	y-	1

InfoPM

�IEy
Mean	net	migration	each	period InfoPM

sdIEy Standard	deviation	of	net	migration	each	
period

InfoPM

pcady,t Relative	catchability	of	adults	to	
juveniles	each	period	and	year

InfoPM

pcjuvy,t Relative	catchability	of	juveniles	to	
adults	each	period	and	year

InfoPM

Parameter Definition Model

sjuv Juvenile	annual	survival	in	year	y-	1 InfoPM

Rjuvy,t Expected	juvenile	removals	each	year	
and	period

InfoPM

�juvy,t Expected	juvenile	abundance	each	year	
and	period

InfoPM

npy,t Number	of	periods	since	the	birth	pulse	
each	period	and	year

InfoPM

Maxperiod Maximum	number	of	periods	in	a	year	
cycle	(26	for	tegus)

InfoPM

�juvy,t
Relative	juvenile	availability InfoPM

�emergey
Mean	of	the	relative	juvenile	availability	
distribution

InfoPM

sdemergey
Standard	deviation	of	the	relative	
juvenile	availability	distribution

InfoPM

M∗
y,t

Superpopulation	abundance	corrected	
for	juvenile	availability

InfoPM

TA B L E  1 (Continued)
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We	 also	 calculated	 derived	 parameters	 for	 the	 total	 effective	
removal	 probabilities	 of	 the	 superpopulation	 each	 primary	 period	
(psett),	 given	daily	 capture	 rates	 (pt),	 availability	 (ϕt),	 and	 temporal	
suitability	

(

zproby

)

 as:

This	rate	is	relevant	for	both	management	and	for	model	estimability	
(e.g.,	Davis	et	al.,	2016)	as	the	effective	removal	rate	of	the	superpop-
ulation	each	primary	period.	We	obtained	annual	removal	rate	of	ani-
mals	which	are	present	in	the	superpopulation	as:

2.4  |  Population dynamics

We	imposed	a	Markovian	structure	on	the	expected	superpopula-
tion	abundance	each	primary	period	by	specifying	an	autoregressive	
function,	�t+1 = f

(

�t − Rt
)

,	where	Rt	 is	 the	 total	number	of	 animals	
removed	 each	 primary	 period.	 Population	models	 such	 as	 the	 ex-
ponential	or	 logistic	could	be	specified	for	 function	 f 	 (Hostetler	&	
Chandler,	2015).	However,	recent	work	on	removal	models	that	also	
include	 temporary	 emigration	 and	 robust	 design	 suggests	 that	 a	
transition	function	with	births	and	survival	is	not	identifiable	without	
ancillary	information	(Zhou	et	al.,	2019).	Thus,	either	simplified	tran-
sition	models	which	can	be	estimated	without	ancillary	information,	
or	more	complex	demographic	models	which	can	incorporate	ancil-
lary	information	are	required.	We	implemented	both	approaches.

The	 first	 approach	 uses	 a	 temporal	 random	walk	 (RW)	with	 a	
linear	trend	(e.g.,	Holmes	et	al.,	2021),	diffuse	priors,	and	does	not	
require	 ancillary	 information.	 These	 models	 are	 also	 structurally	
similar	 to	 previous	 work	 in	 modeling	 nonlinear	 population	 trends	
in	expected	value	of	unmarked	populations	under	a	 robust	design	
(Kéry	et	al.,	2009).	The	second	approach	extends	the	first	to	an	age-	
structured,	 informed	 population	model	 (InfoPM)	 using	 prior	 infor-
mation	on	birth	rates,	survival	rates,	timing	of	the	birth	pulse,	and	
relative	availability	of	juveniles	to	construct	a	single	combined	like-
lihood	for	all	removals.	The	second	model	estimates	an	uncorrected	
superpopulation	 abundance	(M)	 that	 is	 directly	 comparable	 to	 the	
estimate	 from	 the	RW	model,	 in	 addition	 to	 a	 second	 superpopu-
lation	abundance	estimate	(M∗)	that	is	corrected	for	age	structured	
population	dynamics	and	capture	rates.

2.5  |  Random walk model

2.5.1  | Within	year	dynamics

The	RW	model	(e.g.,	Holmes	et	al.,	2017;	Scheuerell	et	al.,	2015)	is	a	
state-	space	model	that	treats	a	time	series	of	changes	in	abundance	

as	random	steps	
(

Δy,t

)

	that	come	from	a	common	distribution	(usu-
ally	a	Gaussian)	with	an	underlying	mean	trend	

(

�trend

)

	and	variance	
(

sd2
trend

)

.	 The	 linear	 trend	 is	 also	 termed	 the	 “drift”	 for	 each	 time	
step.	Adding	 in	an	 index	y	 for	year,	these	models	have	the	general	
functional	form	of:

 

Here	the	mean	and	standard	deviation	may	vary	based	on	temporal	co-
variates	(e.g.,	season,	year).	We	develop	two	different	RW	models	with	
differing	 assumptions	 for	�trend:	 a	 yearly	 trend	model	 (where	means	
and	sd	differ	by	year),	and	a	seasonal	trend	model	(where	means	differ	
by	season	and	year,	and	sd	varies	by	year).

We	 defined	 four	 seasons	 based	 on	 tegu	 biology	 (Meshaka	
et	al.,	2019):	March–	April	 (copulation/breeding),	May–	June	 (hatch-
ing),	 July–	August	 (post-	hatching),	 and	 September–	October	 (pre-	
hibernation).	We	 included	 the	 total	 removals	 each	 primary	 period	
(

Rt
)

	into	the	transition	function	as	follows:

 

We	 specified	 vague	 normal	 priors	 for	�trend,	 and	 a	 weakly	 in-
formative	 half	 Cauchy	 prior	 (e.g.,	 Lemoine,	 2019)	 for	 sdtrend as: 
sdtrend

∼ halfT(1, 5).

2.5.2  |  Between	year	dynamics

After	the	first	year	of	sampling,	we	linked	the	time	series	between	
years	 (where	�y,t=1	 is	 the	 abundance	 in	 the	 first	 primary	period	of	
year	y,	and	�y−1,t=T	is	abundance	in	the	last	primary	period	of	year	−1)	
assuming	 a	 single	 random	 time	 step	

(

Δyear
y

)

	 between	 each	 set	 of	
years,	each	with	independent	normal	priors:

 

Finally,	 we	 linked	 the	 primary	 periods	 between	 years	 as	 described	
above	 in	Equation 14,	 assuming	an	 independent	 step	 from	a	nonin-
formative	normal	distribution.	Given	that	tegus	hibernate	most	of	the	
time	between	trapping	seasons	(November	to	February),	we	assumed	
sdyear	was	equal	to	31.62	(precision	=	0.001),	which	is	a	weakly	infor-
mative	prior	that	suggests	the	change	in	the	superpopulation	between	
the	end	of	1 year's	trapping	season	and	start	of	the	next	years	trapping	
season	will	likely	fall	within	± 2∗ sdyear

y
	(approximately	63	individuals).	

A	graphical	depiction	of	the	RW	model	(Figure	E-	1)	and	example	JAGS	
code	are	provided	in	Appendix	E.	See	the	corresponding	data	release	
for	this	publication	(Waddle	et	al.,	2022)	for	the	full	code	and	data	sets.

(7)ytj
∼ Poisson

(

�t ∗�t ∗�tj ∗ ztj
)

(8)psett = 1 −

(

1−pt ∗ zproby ∗�t

)Ndays

(9)pyear = 1 −
∏

(

1 − psett
)

(10)�y,t+1 = �y,t + Δy,t

(11)Δy,t
∼Normal

(

�trend,sdtrend
)

(12)�t = �t−1 + Δt − Rt

(13)Δ�t
∼Normal

(

�trend, sdtrend
)

(14)�y,t=1 = �y−1,t=T + Δyear
y

(15)Δyear
y

∼Normal
(

0, sdyear
y

)
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2.6  |  2- age class informed population model

2.6.1  | Model	formulation

There	 are	 three	 primary	 limitations	 to	 the	 RW	 approach:	 (1)	 the	
changes	 in	abundance	are	not	partitioned	 into	births,	deaths,	and	
net	 migration,	 (2)	 the	 model	 does	 not	 account	 for	 age	 structure	
or	 bias	 due	 to	 low	 juvenile	 availability	 (and	 thus	 underestimates	
population	 size	 and	 overestimates	 removal	 probabilities),	 and	 (3)	
the	population	cannot	be	reliably	projected	 into	 the	 future	under	
different	 effort	 scenarios.	 Our	 second	 approach	 built	 upon	 the	
RW	 model	 to	 develop	 a	 2-	age	 class	 informed	 population	 model	
(InfoPM),	 by	using	prior	 information	on	age-	structured	vital	 rates	
(productivity	and	survival	probabilities)	and	juvenile	availability	to	
overcome	these	limitations.

Given	that	empirical	data	sets	on	tegu	vital	rates	in	the	invaded	
range	are	nonexistent,	our	source	of	prior	information	was	a	previ-
ous	work	by	Johnson	et	al.	(2017),	who	used	a	3-	point	expert	elici-
tation	process	with	11	species	experts	to	estimate	stochastic	belief	
distributions	 for	 tegu	 age-	structured	 vital	 rates	 while	 quantifying	
uncertainty.	While	our	use	of	an	informed	vs	integrated	population	
model	was	currently	out	of	necessity,	the	same	sequential	Bayesian	
model	structure	could	also	be	used	when	empirical	estimates	of	vital	
rates	become	available.	Because	tegu	removal	counts	were	non-	age	
structured,	 we	 develop	 a	 single	 combined	 likelihood	 function	 for	
removals	 across	 all	 age	 classes.	 Furthermore,	we	 formulated	 it	 so	
that	we	can	estimate	similar	quantities	and	infer	to	degree	to	which	
estimates	for	abundance	and	removal	rates	are	biased	when	we	do	
not	account	for	age	structure	and	relative	juvenile	availability	bias.

Building	directly	on	methods	and	data	from	Johnson	et	al.	(2017),	
we	 started	with	 a	 post-	birth-	pulse,	 4-	age	 class	matrix	model	with	
juveniles,	1,	2,	and	3+ years	(breeders)	individuals	(Appendix	B).	We	
reformulated	 this	model	 as	 a	 pre-	birth-	pulse	 Leslie	matrix,	 where	
juveniles	were	assumed	implicit	(i.e.,	the	census	takes	place	before	
the	birth	pulse,	thus	only	animals	in	age	classes	1	year	and	older	are	
explicit	in	the	model)	and	used	matrix	algebra	to	scalarize	this	pop-
ulation	model	as	a	single	age	class	(Appendix	B).	By	combining	this	
model	with	a	prediction	 for	 the	 juvenile	age	class	 (given	 informed	
priors	for	vital	rates	and	time	since	birth	for	each	primary	period),	we	
formulated	a	2-	age	class	model	with	an	implicit	juvenile	class	and	an	
explicit	‘adult’	class	of	all	animals	1	year	and	older.

The	population	model	that	we	used	to	derive	informative	priors	
assumed	yearly	 time	steps,	whereas	 the	 time	step	 for	 the	 InfoPM	
models	was	 a	 2-	week	 period.	 Because	we	 assumed	 a	 single	 birth	
pulse,	we	did	not	need	to	scale	the	birth	rates;	however,	annual	sur-
vival	rates	needed	to	be	scaled	to	correspond	with	the	length	of	the	
primary	periods	(14 days).	We	made	the	simplifying	assumption	that	
survival	rates	for	each	primary	period	were	constant	given	the	an-
nual	survival	rate,	although	survival	is	likely	to	vary	throughout	the	
year	(e.g.,	during	winter).	Accordingly,	the	adult	survival	rate	scaled	
to	the	primary	period	

(

sad
)

	was	defined	as	
sad

(

1

Maxperiod

)

year
.	We	assumed	

26	primary	periods	each	year	(Maxperiod = 26
),	of	which	between	14–	

18 were sampled.
Given	 this	 formulation,	 we	 modeled	 the	 two	 state	 variables:	

the	adult	superpopulation	
(

�ady,t

)

	which	has	a	population	dynamics	
function	defining	 the	 transition	between	primary	periods,	and	 the	
juvenile	 superpopulation	

(

�juvy,t

)

	 for	 which	 we	 make	 a	 prediction	
every	primary	period.	Because	the	functions	for	predicting	�ady,t	and	
�juvy,t	depend	on	the	observation/removal	model	to	predict	removals	
from	 each	 age	 class,	we	 first	 describe	 the	 observation	model	 be-
fore	detailing	the	transition	functions.	A	graphical	depiction	of	the	
InfoPM	model	(Figure	E-	1)	and	example	JAGS	code	are	provided	in	
Appendix	E.

2.6.2  |  Observation	removal	model	for	2-	age	
class mode

We	defined	relative	juvenile	availability	�juvy,t
	as	a	proportion	of	adult	

availability,	which	ranged	from	zero	at	the	time	of	birth	pulse	to	one	
just	before	the	transition	to	the	adult	age	class.	Thus,	overall	juvenile	
availability	(�y,t ∗�juvy,t

)	also	tracks	changes	in	adult	availability	over	
time	based	on	seasonal	influences.	We	assumed	that	after	account-
ing	for	differential	availability,	animals	were	captured	with	the	same	
probability.	 Relative	 availability	 of	 juveniles	was	 likely	 driven	 by	 a	
combination	of	factors	including	differences	in	movement	behavior,	
prey	preference	(e.g.,	likelihood	of	responding	to	egg	bait),	risk	tol-
erance,	and	size	of	individuals.	We	assumed	that	these	differences	
disappeared	entirely	by	the	time	juveniles	transitioned	to	adults.

Matechou	et	al.	(2016)	modeled	births	in	open	removal	models	
using	 the	 concept	of	 “emergence	 groups”	which	become	available	
for	capture	according	to	a	cumulative	normal	distribution.	We	used	
a	similar	approach	to	model	the	relative	juvenile	availability	process	
as	 a	 cumulative	 normal	 distribution,	 with	 the	 parameters	 �emerge 
(corresponding	 to	 the	 day	 since	 birth	 where	 the	 relative	 juvenile	
availability	is	equal	to	0.5)	and	sdemerge	which	controls	the	rate	of	in-
crease.	To	include	uncertainty	in	this	relationship,	we	assume	�emerge 
and	sdemerge	are	also	random	variables	with	prior	distributions.	Based	
on	discussions	with	tegu	biologist	and	patterns	in	age-	cohorts	in	re-
cently	published	capture	data	(Meshaka	et	al.,	2019),	we	assumed	a	
uniform	prior	between	150	and	210 days	since	birth	(with	a	mean	of	
180 days)	for	�emerge,	and	a	half	normal	distribution	(mean	=	60,	pre-
cision	=	0.005)	for	sdemerge,	with	hyper-	parameters	varying	by	year	
and	management	area.

Another	 way	 to	 envision	 the	 relative	 juvenile	 availability	 pro-
cess	is	as	a	threshold	rather	than	a	proportion	of	adult	availability,	
where �juv	 refers	 the	proportion	of	 juveniles	which	 are	 above	 the	
size	threshold	needed	to	be	available	with	the	same	rate	as	adults	
(i.e.,	large	enough	to	encounter	and	respond	to	a	baited	trap).	Under	
this	interpretation,	half	of	juveniles	would	reach	this	size	by	�emerge,	
and	�juvy,t

∗�juvy,t	is	the	number	of	animals	catchable	at	the	same	rate	
as	adults.
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2.6.3  |  Combined	likelihood	of	adults	and	juveniles

We	developed	a	combined	likelihood	for	total	removals	given	the	val-
ues	of	each	state	variable,	and	the	relative	availability	of	each	age	class:

where	the	first	part	of	the	expected	value	(before	the	addition	sign)	
corresponds	to	the	expected	number	of	adult	 removals,	and	second	
part	(after	the	addition	sign)	corresponds	to	the	expected	number	of	
juvenile	removals.	This	model	is	comparable	to	the	non-	age	structured	
RW	model,	and	can	be	rearranged	as

Thus	
(

�ady,t + �juvy,t
∗�juvy,t

)

	 is	equivalent	 to	�y,t	 (the	expectation	
for	My,t)	 in	 Equation 7,	which	 is	 the	 superpopulation	 size	 estimate	
from	the	RW	model	that	does	not	account	for	the	bias	from	a	cryptic	
juvenile	stage.	We	denoted	the	superpopulation	size	corrected	for	
juvenile	bias	as	M∗

y,t
,	which	had	the	expected	value	�∗

y,t
= �ady,t + �juvy,t .	

We	made	predictions	for	both	My,t	and	M∗
y,t
	assuming	a	Poisson	distri-

bution	with	expectations	
(

�ady,t + �juvy,t
∗�juvy,t

)

	and	�∗
y,t

.

2.6.4  |  Adjusting	effective	removal	rates	for	M∗

t

We	 calculate	 the	 total	 effective	 capture	 probabilities	 each	 period	
(

pset∗
y,t

)

,	and	annual	capture	probabilities	
(

p∗
yeary

)

	 in	each	manage-
ment	area,	adjusting	for	the	proportion	of	catchable	to	uncatchable	
animals	due	to	juvenile	bias	from	relative	availability	and	age	distri-
bution	each	period	as

 

 

2.6.5  |  Allocating	adult	and	juvenile	removals

Given	 the	 superpopulation	 of	 adults	 and	 juveniles	 in	 each	 period,	
along	with	the	juvenile	availability	�juvy,t

,	we	calculate	the	expected	
age	distribution	of	catchable	animals	that	are	adults	

(

pcad
y,t

)

 compared 
to	juveniles	(i.e.,	the	proportion	of	catchable	animals	that	are	adults),	
which	we	used	to	calculate	the	expected	number	of	removals	in	each	
age class as

 

where	adult	removals	are	defined	as	Rady,t = pcad
y,t
∗Ry,t	and	juvenile	re-

movals	are	defined	as:	Rjuvy,t = pc
juv

y,t
∗Ry,t.

2.6.6  |  Adult	population	dynamics	between	
primary	periods

The	 population	 dynamic	 function	 for	 the	 adult	 age	 class	 for	 each	
year	and	primary	period	was	defined	as

where �ady,t+1	and	�ady,t	are	the	expected	number	of	adults	 in	year	y 
and	period	t +	1	and	period	t,	respectively.	sad	is	the	scalarized	adult	
survival	probability	between	primary	periods	that	accounts	for	age-	
structured	 survival	 rate	 and	 the	 stable	 age	distribution	of	 animals	
1	year	to	3+ years	old	(Appendix	B).	IEy,t	is	the	net	migration	between	
primary	 periods,	Rady,t	 is	 a	 prediction	 for	 the	 number	 of	 adults	 re-
moved	 in	year	y	 and	primary	period	 t,	 and	BtAy,t	 is	 the	number	of	
juveniles	that	transition	to	adults	 in	each	year	and	primary	period,	
which	is	zero	except	for	when	t	is	the	primary	period	the	birth	pulse	
each	year.	We	assume	net	migration	

(

IEy,t
)

	follows	a	RW	process	with	
vague	priors:

We	developed	models	with	the	same	assumptions	for	IEy,t	as	we	did	for	
the Δy,t	in	our	set	of	RW	models.	Rady,t	in	Equation 23	is	the	expected	
number	of	adult	removals	each	year	and	primary	period	given	the	total	
number	of	removals	Ry,t	and	the	proportion	of	catchable	animals	that	
are	 adults	 each	primary	period	

(

pcad
y,t

)

,	where	pcady,t	 is	 based	on	 age	
structure	and	juvenile	availability	each	primary	period	(Equation 21).	
BtAy,t	 is	 the	number	of	tegus	transitioning	to	year 1	 individuals	each	
primary	period,	which	is	zero	in	all	periods	except	for	the	anniversary	
of	the	birth	pulse	

(

t = bpt
)

:

 

where By	is	the	effective	birth	cohort	after	juvenile	survival	before	ac-
counting	 for	 removals,	 (i.e.,	 the	 total	 size	of	 the	 juvenile	cohort	 that	
was	born	 in	year	y − 1,	 that	also	survived	the	until	 the	birth	pulse	 in	
year	y).	By	 is	calculated	based	on	by−1,	 the	effective	birth	rate	of	the	
previous	year	(including	juvenile	survival),	and	the	adult	population	at	
the	time	of	the	birth	pulse	in	the	previous	year.	We	used	informative	
priors	for	by−1	each	year	(Appendix	B).	Rtotaljuvy

	is	a	prediction	for	the	total	
number	of	juveniles	that	have	been	removed	since	the	birth	pulse	in	
year	y − 1 ,	and	it	used	to	correct	the	size	of	the	effective	juvenile	co-
hort	transitioning	to	adults	

(

BtAy,t

)

.
We	considered	May	1st	to	be	the	anniversary	date	of	the	birth	

pulse,	when	juveniles	begin	hatching	from	eggs.	We	estimated	the	
initial	superpopulation	abundance	of	adults	�ady=1,t=1	in	the	first	year	

(16)
yy,t,j

∼ Poisson
(

�y,t,j ∗ zy,t,j ∗�y,t ∗�ady,t + �y,t,j ∗ zy,t,j ∗�y,t ∗�juvy,t
∗�juvy,t

)

(17)yy,t,j
∼ Poisson

((

�ady,t + �juvy,t
∗�juvy,t

)

∗�y,t,j ∗ zy,t,j ∗�y,t

)

(18)pcatchy,t =
�ady,t + �juvy,t

∗�juvy,t

�ady,t + �juvy,t

(19)pset∗
y,t

= 1 −

(

1−pcatchy,t ∗py,t ∗ zproby ∗�y,t

)Ndayst

(20)p∗
yeary

= 1 −
∏

(

1 − pset∗
y,t

)

(21)pcad
y,t

=
�ady,t

�ady,t + �juvy,t
∗�juvy,t

(22)pc
juv

y,t
= 1 − pcadt

(23)�ady,t+1 = �ady,t ∗ sad + IEy,t − Rady,t + BtAy,t

(24)IEy,t
∼Normal

(

�IEy
,sdIEy

)

(25)BtAy,t = I
(

y, t = bpy
)

∗

(

By − Rtotal
juvy

)

(26)By = by−1 ∗�ady−1,t=bpy−1
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of	 sampling	 assuming	 a	 vague	 prior,	Gamma(0.5,0.000001),	 which	
approximates	 Jeffrey's	 prior	 for	 a	 Poisson	 rate	 parameter	 (Lunn	
et	 al.,	2012).	 The	birth	 cohort	 in	 the	 first	 year	 of	 sampling	By=1 is 
dependent	on	the	adult	population	in	the	year	before	the	first	year	
of	removal	data	

(

�ad0,t=bpy−1

)

,	and	we	use	a	uniform	prior	set	to	rea-
sonable	bounds	for	this	parameter	for	each	management	area	(e.g.,	
between	0	and	1500	in	the	Core	area).

2.6.7  |  Juvenile	abundance	each	primary	period

We	make	a	prediction	for	the	expected	abundance	of	 the	 juvenile	
cohort	each	primary	period	

(

�juvy,t

)

	based	on	the	expected	size	of	
the	initial	cohort	after	birth,	the	juvenile	survival	rate,	and	a	predic-
tion	for	the	total	number	of	juveniles	removed	since	the	birth	pulse:

The	 first	 term	 in	 Equation 27,	

(

By

s
�y,t

juvy

)

,	 is	 a	 prediction	 given	 the	 ex-
pected	abundance	of	the	effective	birth	cohort	in	year	y 

(

By
)

,	scaled	
by	 the	 annual	 juvenile	 survival	 rate	

(

sjuv
)

,	 and	 exponential	 term	
(

�y,t =
(Maxperiod −ωy,t)

Maxperiod

)

	 that	 adjusts	 sjuvy	 to	 account	 for	 the	 number	 of	
periods	since	the	birth	pulse	

(

ωy,t

)

.	When	the	number	of	primary	peri-
ods	since	birth	is	zero,	this	term	reduces	to	

By

sjuvy−1
,	or	the	initial	number	

of	juveniles	born,	and	after	26	periods	(npt = Maxperiod)	 it	reduces	to	
By ,	the	number	of	juvenile	that	survive	and	transition	to	adults	(before	
considering	juvenile	removals).

2.7  |  No- removal scenario projections

We	developed	a	“no-	removal”	scenario	for	each	InfoPM	model	that	
served	 as	 a	 counterfactual	 example	 to	 which	 to	 compare	 the	 ob-
served	 population	 trajectory	 and	 to	 quantify	 the	 effectiveness	 of	
management.	The	‘no-	removal’	scenario	was	modeled	assuming	the	
same	survival	rates,	birth	rates,	and	net	migration	each	year	and	pri-
mary	period	as	for	observed	scenario,	only	without	the	subtraction	
of	removals	from	the	population	each	period	(i.e.,	dropping	Rady,t	and	
Rjuvy,t	from	Equations 23	and	27	and	Rtotal

juvy
	from	Equation 25).	We	did	

this	within	the	MCMC	model	fitting	procedure	by	cloning	all	abun-
dance	 and	 birth	 cohort	 variables	 and	 dropping	 the	 removal	 terms	
(Appendix	E).	Animals	that	are	were	not	removed	contribute	to	the	
future	 superpopulation	 size	 in	 the	 no-	removal	 scenario	 as	 long	 as	
they	survive	and	also	contribute	the	birth	cohort	in	subsequent	years.

2.8  |  Model evaluation

We	estimated	the	parameters	of	all	variants	of	both	models	types	
(RW	 and	 InfoPM)	 separately	 for	 each	 management	 area	 and	

determined	 the	 best	 supported	 model	 within	 each	 model	 class	
based	on	fit	to	the	data	and	model	parsimony.	We	used	posterior	
predictive	checks	as	a	goodness-	of-	fit	test	using	the	Freeman-	Tukey	
test	statistic	as	a	measure	of	and	calculated	the	Bayesian	p-	value	
and	 c-	hat	 (variance	 inflation	 factor)	 for	 each	model	 and	manage-
ment	area,	where	values	near	0.5	and	1.0,	respectively,	correspond	
to	a	perfect	fit	(Kéry	&	Royle,	2015).	For	model	selection,	we	used	
the	Widely	Applicable	 Information	Criterion	 statistic,	 or	WAIC	 (a	
fully	Bayesian	analog	of	AIC,	Gelman	et	al.,	2014;	Hooten	&	Hobbes,	
2015).	WAIC	is	calculated	starting	with	the	computed	log	pointwise	
posterior	 predictive	 density	 and	 then	 adding	 a	 correction	 for	 ef-
fective	number	of	parameters	 to	adjust	 for	overfitting	 (calculated	
as	 the	 sum	 of	 variances	 of	 individual	 terms	 in	 the	 log	 predictive	
density),	where	lower	WAIC	values	are	preferred.	Between	models	
with	yearly	vs	yearly	and	seasonal	differences	in	the	mean	trends,	
we	defaulted	to	the	simpler	model	(yearly)	when	WAIC	scores	were	
very	close	(delta-	WIAC	<0.5	units).	Because	we	used	a	single	likeli-
hood	formulation	for	InfoPM	(where	all	ancillary	information	came	
in	as	informative	priors	rather	than	additional	data	sets),	the	num-
ber	of	data	points	for	each	management	area	was	the	same	as	for	
the	RW	model.	Furthermore,	additional	parameters	of	the	InfoPM	
were	informed	with	prior	information.	Thus,	the	total	log-	likelihood	
values,	effective	number	of	parameters,	and	WAIC	scores	for	the	
InfoPM	models	 can	be	quite	 similar	 to	 the	RW	models.	Although	
WAIC	is	appropriate	for	comparing	and	selecting	the	optimal	prior	
specification	in	Bayesian	models	(e.g.,	with	and	without	prior	infor-
mation,	Gelman	et	al.,	2014),	we	only	use	WAIC	to	select	between	
models	within	each	model	class	(i.e.,	RW	vs	InfoPM).

2.9  |  MCMC implementation

We	used	JAGS	4.3	(Plummer,	2003)	through	R	version	3.4.3	(R	core	
team,	2017),	and	the	JagsUI	package	 (Kellner,	2017)	 to	 implement	
our	models.	We	estimated	parameters	 for	each	management	area	
separately.	 We	 initially	 conducted	 10,000	 iterations	 for	 adapta-
tion,	100,000	 for	burn	 in,	 and	200,000	additional	 iterations	after	
burn	in	using	a	thin	rate	of	10	and	three	parallel	chains	for	a	total	
of	60,000	samples.	In	some	cases	(e.g.,	the	RW	model	for	the	Core	
management	 area),	 longer	MCMC	 runs	 were	 required	 to	 achieve	
convergence	 (e.g.,	 1e6	 total	 iterations	with	 a	 thin	 rate	 of	 20).	We	
used	visual	inspection	of	MCMC	chains	and	R-	hat	to	diagnose	con-
vergence,	where	R-	hat	values	<1.1	indicated	convergence.	Because	
posterior	distributions	for	the	abundance	parameter	tend	to	be	pos-
itively	skewed,	we	used	the	posterior	median	as	a	point	estimator	
(e.g.,	Link,	Converse,	et	al.,	2018).	Due	to	the	asymmetry	 in	these	
distributions,	we	 also	 calculate	 the	 95%	 credible	 intervals	 for	 su-
perpopulation	 abundance	 and	 available	 abundance	using	 the	95%	
highest	posterior	density	interval,	whereas	for	all	other	parameters	
we	use	a	symmetric	95%	credible	 interval	based	on	 the	2.5%	and	
97.5%	quantiles.

(27)�juvy,t =
By

s
�y,t

juvy

−
∑t

t=bp
Rjuvy,t
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2.10  |  Estimator post- validation

We	post-	validated	our	RW	abundance	estimator	 (which	 is	based	
on	empirical	data	only)	under	study	conditions	with	a	simulation	
study	 to	 assess	 bias	 and	precision	based	on	 the	point	 estimates	
for	 parameters	 in	 each	 location	 (e.g.,	 Davis	 et	 al.,	2016;	 Kéry	&	
Royle,	2015;	Zipkin	&	Saunders,	2018).	After	dropping	simulations	
where	the	models	did	not	converge,	we	evaluated	120	simulations	
each	 for	 the	 East	 and	West	 area	 scenarios	 and	 114	 simulations	
for	 the	Core	 area	 scenario.	We	 calculated	 the	 bias	 distributions	
between	 point	 estimates	 from	 simulated	 data	 sets	 and	 the	 true	
values	(using	the	point	estimates	for	parameters	from	each	man-
agement	region)	used	when	simulating	the	data	sets	and	used	the	
median	as	the	measure	of	central	tendency.	We	evaluate	estima-
tor	accuracy	for	M	using	two	different	measures,	the	median	bias	
for	each	parameter,	and	the	proportion	of	point	estimates	within	
some	 threshold	 percentage	 (e.g.,	 20%)	 of	 the	 true	 value	 (see	
Appendix	C	for	details).

3  |  RESULTS

The	RW	and	informed	population	models	(InfoPM)	had	similar	model	
fits	 (Table	D- 7)	 and	 parameter	 estimates	 (Figure 2),	 and	 the	 top	
models	 in	each	management	area	showed	no	indication	for	 lack	of	
fit	to	the	data	(Table	D- 7).	The	InfoPM	estimates	for	M	and	N were 
generally	more	precise	than	for	the	RW	except	for	the	West	man-
agement	area	(where	estimates	were	equally	precise),	and	for	later	
part	of	2018	in	the	Core	region	(Figure 2).	The	most	parsimonious	
RW	models	and	InfoPM	models	had	mean	trends	(RW)	and	net	mi-
gration	(InfoPM)	terms	varying	by	year	in	the	West	and	East	areas	
and	varying	by	year	and	season	in	the	Core	area	(Table	D- 7).	 In	all	
cases,	 including	 zero	 inflation	 into	 the	model	 to	 account	 for	 daily	
temporal	 suitability	greatly	 improved	model	 support	and	 fit,	while	
models	without	zero	inflation	often	provided	a	poor	fit	to	the	data	
(Table	D- 7).

In	the	West	management	area,	superpopulation	abundance	(M)	
increased	 steadily	 from	2016	 to	 2018	 (Figure 2).	 Superpopulation	
abundance	also	increased	in	the	East	management	area	from	2017	
to	2018,	especially	in	2018	(Figure 2).	In	the	Core	area,	however,	M 
declined	 steadily	 over	 time	with	 larger	 declines	 estimated	 for	 the	
RW	than	for	the	InfoPM	(Figure 2).	Based	on	these	estimates,	it	ap-
pears	that	by	the	end	of	2018	that	M	was	higher	in	the	West	area	
than	 in	the	Core.	 In	 fact,	abundance	estimates	 in	the	West	by	the	
end	of	2018	are	similar	those	for	the	Core	at	the	beginning	of	2016.	
The	mean	available	abundance	in	each	area	(N)	tracks	changes	in	M 
and	availability	bias	ϕ	over	time,	with	lowest	availability	at	the	start	
(Feb–	Mar)	and	end	(Sept–	Oct)	of	the	trapping	season	and	a	peak	in	
late	 spring	 and	 summer	 (May–	June).	 Following	 the	 trend	 in	 super-
population	abundance	and	availability	bias,	the	peaks	in	mean	avail-
able	abundance	each	year	increased	in	the	West	and	East	areas	over	
time	and	have	decreased	in	the	Core	(Figure 2).

Estimates	for	adult	recruitment	via	local	births	and	net	migra-
tion	each	year	 from	the	 InfoPM	 indicate	 that	population	growth	
in	 each	 region	 was	 driven	 by	 a	 combination	 of	 both	 processes	
(Figure 3),	 although	 the	 importance	of	each	component	was	dif-
ferent	 between	 management	 areas	 and	 over	 time.	 In	 the	 Core,	
point	estimates	for	annual	net	migration	were	positive	and	varied	
over	time	(highest	in	2017),	but	the	posterior	distributions	showed	
some	support	for	zero	and	negative	values	(the	probabilities	that	
total	 annual	 net	 migration	 was	 positive	 was	 0.70	 [2016],	 0.82	
[2017],	and	0.72	[2018]).	Adult	recruitment	from	local	births	was	
higher	each	year	than	estimates	for	net	migration	(and	were	also	
higher	in	than	the	West	and	East	regions)	and	showed	a	declining	
trend	over	time.	In	the	West,	posterior	estimates	for	net	migration	
were	positive	with	strong	non-	zero	and	non-	negative	support	(the	
probability	that	total	annual	net	migration	was	positive	was	0.75	
[2016],	0.98	[2017],	and	0.93	[2018]),	and	estimates	increased	be-
tween	2016	and	2017	before	 leveling	off	 in	2018.	Adult	 recruit-
ment	from	local	births	increased	each	year	in	the	West	region	and	
reached	a	similar	magnitude	as	net	migration	in	2018	and	as	births	
in	 the	Core	 in	2016.	 In	 the	East,	 net	migration	was	near	 zero	 in	
2017,	 but	 was	 positive	 and	 significant	 in	 2018	 (probability	 that	
total	annual	net	migration	was	positive	was	0.40	[2017]	and	0.98	
[2018]),	while	births	were	generally	low	but	increased	each	year.

Capture	efficiency	(i.e.,	capture	probability	of	a	single	tegu	in	
a	single	 trap)	varied	by	year	and	management	area	 (Appendix	D,	
Tables D-	2–	D-	6),	showing	a	decreasing	trend	in	the	West	and	East	
areas	over	time	and	an	increasing	trend	in	the	Core.	Estimates	for	
effective	period	capture	rates	given	daily	capture	rates,	availabil-
ity,	and	zero	inflation	effective	capture	were	similar	between	mod-
els	within	areas	(Figure	D- 1).	Estimates	of	annual	effective	capture	
probabilities	uncorrected	for	hatchling	bias	(i.e.,	effective	capture	
probability	 of	 the	 observable/adult	 population)	 for	 animals	 that	
are	in	a	superpopulation	the	entire	year	were	high	in	all	locations,	
with	point	 estimates	often	greater	 than	0.50.	However,	 correct-
ing	for	hatchling	availability	bias	and	population	dynamics	 led	to	
more	conservative	estimates	(Figure 4),	with	point	estimates	less	
than	0.5	for	all	but	1	year	and	management	area	(2016	in	the	West	
management	 area).	 Estimates	 of	 superpopulation	 size	 corrected	
for	hatchling	bias	 (M*)	compared	 to	 the	uncorrected	superpopu-
lation	estimate	 (M)	 suggests	 that	estimates	 for	M missed a large 
number	of	animals	immediately	after	the	birth	pulse;	however,	M 
and	M*	 converged	 almost	 entirely	 just	 prior	 to	 the	 beginning	 of	
each	birth	pulse	(Figure 4).

The	 yearly	 birth	 rates	 and	 population	 growth	 rates	 from	 the	
InfoPMs	were	 generally	more	 precise	 than	 our	 informative	 priors	
based	 on	 expert	 elicitations	 (Figure	D- 2,	 Tables	 D-	4–	D-	6),	 which	
speaks	 to	 information	 in	 the	 timeseries	of	 count	data	updating	of	
these	variables.	Yearly	survival	rates	for	all	age	classes	did	not	de-
viate	significantly	from	the	priors	(Appendix	D).	Finally,	we	showed	
that both M	and	M*	 (i.e.,	M	corrected	for	hatchling	bias)	would	be	
significantly	higher	in	each	management	area	by	2018	if	removal	ac-
tions	had	not	taken	place	(Figure 5).	The	difference	was	greatest	in	
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the	Core	area,	which	had	the	highest	starting	population	and	highest	
removal	effort,	but	the	same	pattern	was	also	seen	in	the	West	area	
(and	also	in	the	East	area	to	a	lesser	extent).

The	results	of	our	simulation	study	validated	our	RW	abundance	
estimator	given	the	expected	field	conditions	in	each	management	
area.	We	found	that	our	estimator	was	generally	unbiased	when	the	
removal	 probabilities	 and	 superpopulation	 sizes	 were	 reasonably	
high,	such	as	 in	the	Core	area	(Appendix	C,	Figure	C- 1).	We	found	
that	around	99%	of	all	estimates	fell	within	the	95%	credible	inter-
vals,	around	40%	of	our	estimates	were	within	20%	of	the	true	val-
ues	when	using	parameter	value	for	the	Core	area,	and	about	20%	of	
estimates	were	within	the	same	range	for	the	West	and	East	areas.	
The	best	performance	in	terms	of	bias	and	accuracy	occurred	when	
abundance,	 removal	 rates,	and	availability	were	high	and	after	 the	
first	year	of	sampling.

4  |  DISCUSSION

In	this	work,	we	developed	two	different	open	robust-	design	removal	
models	to	estimate	population	dynamics,	capture	probabilities,	and	
time-	varying	 availability	 bias	 from	 removal	 sampling	 time-	series.	
These	models	were	based	on	previous	research	in	open	unmarked	
abundance	estimators	that	account	for	either	temporary	emigration	
(Chandler	et	al.,	2011)	or	population	dynamics	(Dail	&	Madsen,	2011; 
Kéry	 et	 al.,	2009;	Matechou	 et	 al.,	2016;	 Zipkin	 et	 al.,	2014).	We	
demonstrated	the	value	of	these	models	to	inform	invasive	species	
management	by	applying	them	to	multi-	year	removal	trapping	data	
sets	of	 invasive	Argentine	black	and	white	tegus	 in	three	manage-
ment	 areas	 in	 southern	 Florida	 and	 post-	validated	 the	models	 via	
simulation	 under	 study	 conditions.	 We	 also	 built	 upon	 previous	
work	in	tegu	population	modeling	(Johnson	et	al.,	2017),	providing	a	

F I G U R E  2 Estimates	for	superpopulation	abundance	
(

My,t

)

	(posterior	medians	and	95%	CRIs),	expected	available	abundance	
(

N̂y,t

)

 
(posterior	medians	and	95%	CRIs)	and	availability	bias	

(

�y,t

)

	(posterior	medians	and	95%	CRIs)	in	each	management	area	using	the	best	
supported	RW	(orange)	and	InfoPM	(blue)	models.	(a)	Superpopulation	abundance	

(

My,t

)

	each	primary	period	and	year	for	each	area,	(b)	mean	
available	abundance	

(

N̂y,t

)

	each	primary	period	and	year	for	each	area,	and	(c)	availability	bias	
(

�y,t

)

	each	primary	period	and	year	for	each	
area.
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framework	to	update	vital	rate	belief	distributions	with	empirical	in-
formation	in	the	removal	time	series	(Figure	D- 2).	These	models	are	
generally	applicable	 to	many	removal-	sampling	data	sets	collected	
in	the	course	of	conservation	management,	such	as	carcass	recovery	
programs	 for	marine	mammals,	 species	 relocation	programs,	hunt-
ing	time	series	data,	and	time-	of-	detection	point	counts.	The	models	
developed	here	represent	important	methodological	advancements	
that	account	for	common	assumption	violations	in	removal	models	
and	in	general	unmarked	abundance	estimators	(i.e.,	N-	mixture	mod-
els,	Royle,	2004).

Because	we	constructed	a	single	likelihood	for	total	removals	in	
the	InfoPM,	the	fit	of	the	two	models	to	the	count	data	are	directly	
comparable	(Table	D- 7).	Furthermore,	the	RW	and	InfoPM	have	pa-
rameters	in	common	that	allow	for	direct	comparison	including	the	
uncorrected	 superpopulation	 (Mt)	 and	 mean	 available	 abundance	
(

Nt

)

	(Figure 2).	These	estimates	were	often	similar	between	the	RW	
and	InfoPM	models	 (Figure 2)	but	were	generally	more	precise	for	
the	 InfoPMs.	 Comparing	M to M*	 (the	 superpopulation	 estimate	
corrected	for	relative	juvenile	availability)	highlights	the	importance	
of	accounting	 for	 juvenile	availability	bias	 (Figure 4).	Furthermore,	
because	M	can	be	interpreted	as	the	superpopulation	of	animals	old	
enough	to	respond	to	baited	traps,	both	M	and	M*	are	meaningful	
quantities	for	ecological	impacts	and	conservation	management.

Parameter	 estimates	 for	M	 and	N	 from	 both	 models	 indicate	
that	tegu	abundance	is	increasing	in	the	West	and	East	management	
areas	(Figure 2),	which	is	consistent	with	rapid	spread	from	the	ini-
tial	invasion	point	followed	by	local	population	growth	despite	man-
agement	efforts.	As	of	the	end	of	2018,	our	analysis	suggests	that	

tegu	abundance	in	the	West	area	is	likely	as	large	as	or	larger	than	
in	the	Core	area	(Figure 2).	This	result	is	troubling	given	that	West	
area	is	adjacent	to	and	includes	parts	of	Everglades	National	Park,	an	
area	with	unique	and	threated	biodiversity	recognized	as	a	UNESCO	
World	Heritage	Site.	The	increased	abundance	trend	in	the	East	area	
is	also	troubling	given	its	proximity	to	threated	American	crocodiles	
and	other	biodiversity	at	Turkey	Point	Power	Plant.	The	InfoPM	sug-
gests	much	 of	 the	 population	 growth	 in	 the	West	 and	 East	 areas	
is	driven	by	net	migration	(Figure 3,	Appendix	D,	Tables	D- 5–	D- 6),	
whereas	adult	recruitment	from	local	births	was	most	dominant	 in	
the	Core	area.	In	2018	in	the	West,	our	results	suggest	that	births	
and	 net	 migration	 contributed	 similarly.	 However,	 because	 births	
and	 immigration	processes	are	confounded	without	ancillary	data,	
the	degree	to	which	they	can	be	reliably	separated	depends	on	the	
quality	of	prior	information	included	for	survival	and	birth	rates.	We	
used	 informative	 priors	 for	 survival	 and	 birth	 rates	 derived	 from	
expert	 elicitation,	 and	 these	 results	 should	 be	 interpreted	 consid-
ering	the	prior	information	and	the	model	assumptions	(e.g.,	Riecke	
et	al.,	2019).

Our	analyses	suggest	that	tegu	abundance	(M	and	M*)	either	de-
creased	 (RW	and	InfoPM)	or	at	very	 least	stabilized	 (InfoPM)	each	
year	since	2016	 in	 the	Core	management	area	 (Figure 2),	where	 it	
would	 have	 grown	 otherwise	 without	 removal	 efforts	 (Figure 5).	
Given	the	model	assumptions,	our	results	suggest	that	tegu	popula-
tions	may	be	controllable,	at	least	locally,	given	present	trap	densi-
ties	in	the	Core	region	and	similar	levels	of	local	population	control	
may	be	also	achievable	in	the	West	and	East	management	areas	with	
increased	 trapping	 effort.	However,	 caution	 is	warranted	because	

F I G U R E  3 Partitioning	adult	
recruitment	each	year	in	each	
management	area	into	contributions	
of	local	births	and	net	migration	based	
on	the	InfoPM,	depicting	the	posterior	
distributions	(medians	and	95%	credible	
intervals)	for	each	parameter.	Net	
migration	is	summed	over	the	entire	year	
for	each	location,	while	‘births’	represent	
effective	births	(or	juveniles	that	are	born	
the	previous	year,	survive	to	the	next	
birth	pulse,	and	transition	to	adults)	each	
year.	Because	the	birth	pulse	is	mid-	
year,	a	single	tegu	cohort	spans	multiple	
capture	seasons.	Thus,	we	estimate	one	
additional	year	of	birth	cohorts	compared	
to	estimates	for	net	migration,	where	year	
for	‘births’	corresponds	to	the	year	of	
adult	transition.
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tegus	are	prolific	breeders	(Meshaka	et	al.,	2019)	and	large-	scale	har-
vest	in	the	native	range	for	the	skin	trade	appears	to	be	sustainable	
(Fitzgerald,	1994),	indicating	that	local	control	in	the	invasive	range	
will	be	challenging.	Furthermore,	this	conclusion	is	based	on	model	
assumptions	and	there	may	be	other	important	processes	responsi-
ble	for	this	decline	that	we	did	not	include	in	these	models,	such	as	
density	dependence,	migration	from	the	Core	to	other	management	
areas,	or	fluctuation	in	habitat	quality.	Furthermore,	because	net	mi-
gration	was	an	 important	 source	of	adult	 recruitment	 in	 the	West	
and	 East	 management	 areas	 (Figure 3),	 immigration	 from	 outside	
locations	 could	 lead	 to	population	growth	or	maintenance	growth	
despite	 otherwise	 local	 control.	We	 also	 note	 that	 the	 number	 of	
traps	and	the	density	of	traps	based	on	area	alone	are	not	a	directly	
comparable	 metric	 between	 areas	 given	 differences	 in	 trapping	

methods	and	in	sizes	of	the	effective	capture	area	based	on	habitat	
configuration.	Thus,	we	only	model	the	effect	of	total	effort	relative	
to	each	area	and	year.	However,	ongoing	habitat-	selection	studies	
and	tegu-	specific	habitat	maps	are	under	development,	which	may	
facilitate	efforts	for	comparable	trap-	density	measures	and	changes	
in	 the	 effective	 capture	 area	over	 time.	 Further	 investigation	 into	
effort	relationships,	especially	those	relaxing	the	independence	as-
sumption,	could	help	to	gain	a	better	understanding	of	the	optimal	
formulation.

Estimates	of	availability	in	each	management	area	supported	our	
a	priori	expectations	of	tegu	availability	throughout	the	year,	being	
lowest	at	the	start	(March)	and	end	(October)	of	the	year	(cold	sea-
son)	and	highest	in	the	early	summer	(Figure 2).	This	trend	was	most	
pronounced	in	the	Core	area	but	was	also	present	in	the	West	and	

F I G U R E  4 Predictions	from	the	top	InfoPM	model	for	the	superpopulation	abundance	and	annual	capture	rates	both	uncorrected,	and	
corrected,	for	relative	juvenile	availability	bias.	(a)	Predictions	from	the	top	InfoPM	model	in	each	location	comparing	the	superpopulation	
abundance	(M)	uncorrected	for	hatchling	bias	and	the	corrected	superpopulation	estimate	(M∗).	The	difference	in	these	parameters	is	driven	
by	juvenile	abundance,	survival,	and	relative	availability	bias.	The	parameter	estimates	are	most	different	directly	after	the	birth	pulse,	and	
they	converge	to	similar	estimates	directly	before	the	birth	pulse	the	next	year.	(b)	Yearly	effective	capture	probability	in	each	location	and	
year	without	and	with	corrections	for	juvenile	availability	bias.	Annual	capture	probabilities	

(

pyear
)

	account	for	capture	efficiency,	trap	effort,	
availability	bias,	and	zero	inflation	(daily	suitability)	in	each	year,	whereas	p∗

year
	accounts	for	these	processes	in	addition	to	juvenile	availability	

and	age-	structure	throughout	the	year.
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East	areas	(Figure 2).	It	could	be	that	availability	is	easier	to	estimate	
in	 the	Core	 area	 given	 the	higher	 removal	 rates,	 or	 there	 are	 less	
suitable	hibernation	sites	in	the	Core	area	due	to	generally	shallower	
bedrock	compared	to	the	West	and	East	areas,	though	there	 is	no	
direct	evidence	of	such	a	difference.	Furthermore,	suitable	habitat	
for	 tegus	 is	more	 isolated	 in	 the	Core	area	compared	 to	 the	West	
and	East,	where	the	effective	trapping	regions	are	adjacent	to	other	
upland	habitat.	Thus,	opportunities	for	temporary	migration	may	be	
lower	in	the	Core	than	in	the	other	areas	during	the	middle	of	the	
year.	Finally,	fluctuation	in	availability	in	the	East	and	West	manage-
ment	 areas	highlights	 that	 availability	 is	 a	 complex	process	driven	
by	the	spatial	distribution	of	tegus,	movement	and	density	depen-
dent	behaviors,	the	spatial	distribution	of	food	sources,	and	spatial	

arrangement	 of	 trap	 effort.	Over	 time,	 removing	 tegus	 also	 alters	
the	 spatial	 distribution	 of	 tegus,	 and	 how	 they	 respond	 to	 these	
removals	will	influence	availability.	Fluctuating	availability	through-
out	 the	 year	 highlights	 the	 importance	of	 accounting	 for	 this	 bias	
when	modeling	population	dynamics,	lest	changes	in	availability	be	
misinterpreted	 as	 dynamics	 in	 superpopulation	 abundance.	While	
informative	covariates	can	be	quite	useful	 for	estimating	availabil-
ity	(Zhao	&	Royle,	2019),	and	a	quadratic	effect	for	day	of	year	ap-
pears	reasonable,	additional	covariates	and	random	effects	are	likely	
needed	to	sufficiently	inform	these	parameters,	so	we	opted	to	esti-
mate	the	availability	directly	from	temporal	replication.

By	comparing	the	uncorrected	estimates	for	M	and	annual	cap-
ture	probabilities	 to	 those	 corrected	 for	 relative	 juvenile	 available	

F I G U R E  5 Evaluating	the	effectiveness	of	removal	actions	by	comparing	estimated	trends	in	uncorrected	(M)	and	corrected	(M∗) 
superpopulation	abundance	estimates	to	predictions	from	no-	removal	scenarios	assuming	the	same	dynamics	parameters	(birth	rates,	
survival,	and	net	migration)	in	each	location	and	year	except	for	the	amount	of	removed	animals.	(a)	No-	removal	scenarios	compared	to	
estimates	for	catchable	population	(M)	in	each	location	over	time.	(b)	No-	removal	scenarios	compared	to	estimates	for	total	abundance	
corrected	for	the	juvenile	age	class	(M∗)	in	each	location	over	time.
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and	age	distribution	throughout	the	year,	we	can	glean	the	utility	of	
using	the	InfoPM	approach	(Figure 4).	Our	results	indicate	that	the	M 
and	M*	can	vary	greatly	throughout	the	year,	with	the	largest	differ-
ence	directly	after	the	birth	pulse,	and	the	least	difference	directly	
before	 the	 birth	 pulse.	 In	 fact,	 directly	 before	 the	 birth	 pulse	 the	
estimates	converge,	and	thus	this	time	of	the	year	may	be	the	best	
to	estimate	abundance	using	the	RW	approach.	In	all	management	
areas,	the	annual	removal	rate	uncorrected	for	juvenile	bias	(i.e.,	the	
capture	rate	of	adult	tegus)	suggests	that	individuals	have	over	a	50%	
probability	of	capture	by	 the	end	of	each	year	 if	 they	are	present	
in	the	superpopulation	for	the	entire	year	(Figure 4).	However,	this	
finding	 is	hard	 to	 reconcile	with	 increasing	 superpopulation	abun-
dance	in	the	West	and	East	areas	(Figure 2).	Furthermore,	this	esti-
mate	is	somewhat	at	odds	with	the	low	incidence	of	recapture	rates	
for	 telemetered	 animals	 in	 the	West	 management	 area;	 however,	
trap	avoidance	after	first	capture	may	help	to	explain	this	difference.	
After	correcting	for	juvenile	bias	due	to	relative	juvenile	availability	
and	the	expected	proportion	of	juveniles	in	the	population	through-
out	the	year,	the	annual	removal	rates	were	still	generally	high	but	
more	conservative	(Figure 4)	and	provided	more	realistic	estimates	
of	 removal	 rates	 given	 abundance	 trends.	 Importantly,	 these	 esti-
mates	for	annual	capture	probabilities	account	for	every	source	of	
bias	 estimated	 in	 these	 models	 (detection,	 availability,	 temporal	
suitability,	 relative	 juvenile	availability,	and	proportion	of	 juveniles	
in	the	population),	and	heterogeneity	in	these	parameters	across	pri-
mary	periods	each	year.	Previous	work	on	tegu	population	modeling	
found	a	removal	rate	of	approximately	20%	is	needed	to	stabilize	a	
single	age-	structured	population	when	there	are	no	sources	of	im-
migration,	and	when	all	 individuals	are	equally	catchable	 (Johnson	
et	al.,	2017).	However,	hatchlings	are	removed	at	a	lower	rate	than	
adults,	and	net	migration	is	present	(and	often	positive)	in	all	popula-
tions,	thus	the	true	removal	rate	needed	to	stabilize	or	reduce	these	
populations	 is	 likely	 much	 higher.	We	 found	 that	 annual	 removal	
rates	around	40%	in	the	Core	management	area	appear	to	have	sta-
bilized	populations,	while	 in	 the	West	and	East	 areas,	populations	
continued	to	increase	despite	annual	removal	rates	of	around	30%.	
Technically,	when	dynamics	are	maintained	by	net	migration	from	a	
separate	source,	populations	could	increase	or	be	maintained	locally	
through	continued	immigration	even	with	removal	rates	near	1,	es-
pecially	if	the	source	population	is	large.

Thus,	it	is	possible	that	the	areas	adjacent	to	the	effective	trap-
ping	area	in	each	management	area	could	maintain	populations	de-
spite	local	control	efforts.	This	is	worth	noting	because	the	results	
from	the	InfoPM	suggest	that	net	migration	was	a	large	and	signifi-
cant	driver	of	adult	recruitment	in	the	West	and	East	management	
areas	(Figure 3)	and	also	to	a	lesser	extent	in	the	Core	area.	While	
the	source	of	these	migrants	is	unclear,	private	lands	bordering	the	
Core	and	West	areas	are	mostly	agricultural	areas	that	are	not	man-
aged	through	similar	systematic	trapping	programs	due	to	logistical	
difficulties.	Such	adjacent	and	unmanaged	areas	may	provide	critical	
spatial	 refugia	from	removal	efforts	and	could	hamper	 local	popu-
lation	 control	 efforts	 through	 spillover.	 Further	 research	 into	 the	
distribution	 and	 abundance	 of	 tegus	 in	 these	 locations	 combined	

with	 decision	 support	 tools	 for	 spatial	 population	 management	
may	help	to	effectively	plan	the	control	of	such	spatially	structured	
populations.

In	this	work,	we	used	the	InfoPM	framework	to	predict	an	addi-
tional	 ‘no-	removal’	 scenario	 in	 each	management	 area	 to	 evaluate	
the	past	effectiveness	of	each	removal	program	on	tegu	population	
dynamics.	This	model	allows	managers	to	address	the	questions	of	
how	removal	efforts	have	affected	the	population	directly,	through	
present	mortality,	and	indirectly,	given	future	survival	(i.e.,	some	ani-
mals	would	have	died	nonetheless)	and	birth	processes	(i.e.,	removed	
animals	cannot	contribute	to	births).	We	demonstrate	through	coun-
terfactual	analysis	that	even	though	the	populations	have	increased	
in	the	West	and	East	areas,	tegu	abundances	(both	M*and	M)	would	
be	significantly	higher	without	trapping	effort,	and	abundance	in	the	
Core	 area	would	have	 grown	 rather	 than	declined	 (Figure 4).	 This	
framework	could	also	be	used	 to	 forecast	 the	 tegu	populations	 in	
each	management	area	under	different	management	scenarios	as-
suming	 average	 availability	 and	 capture	 conditions	 throughout	 a	
year.	Furthermore,	 the	estimates	obtained	 from	 the	 InfoPM	could	
be	included	in	formal	decision	analysis,	such	as	a	Markov	Decision	
Process	(e.g.,	Williams,	2009)	model	where	the	actions	are	to	decide	
the	amount	of	trap	effort	to	allocate	at	each	primary	period	of	the	
year.

The	simulation	study	post-	validated	the	results	of	the	RW	model	
under	 similar	 conditions	 to	 those	estimated	 for	each	management	
area	and	year.	Our	results	indicate	that	we	can	reliably	estimate	su-
perpopulation	abundance	and	removal	probabilities	 in	all	 locations	
with	reasonable	precision	and	bias	when	removal	rates	and	starting	
population	sizes	are	high.	The	lowest	biases	were	found	in	the	Core	
area	(median	biases	each	year	were	within	2%)	where	removal	prob-
abilities	and	the	starting	superpopulation	was	highest.	In	the	West	
and	 East	 areas,	 where	 starting	M	 and	 removal	 probabilities	 were	
lower,	estimates	were	less	accurate	(Appendix	C,	Figure	C- 1),	which	
agrees	with	previous	work	on	estimating	removal	model	parameters	
(Davis	 et	 al.,	 2016).	 For	 application	 for	 invasive	 species,	 we	 view	
these	levels	of	bias	as	acceptable,	especially	given	that	alternatives	
(e.g.,	 CPUE)	 have	 additional	 and	 unmeasured	 biases	 including	 im-
perfect	detection	and	availability	bias	 (Anderson,	2001).	However,	
when	applying	this	model	to	systems	with	lower	starting	population	
sizes	or	lower	removal	rates,	biases	would	likely	be	larger,	thus	it	is	
important	to	ensure	the	bias	levels	are	acceptable	for	the	intended	
application.

These	 models	 and	 applications	 have	 several	 limitations.	 The	
first	 is	 that	we	did	not	account	 for	 finer	 spatial	 influences	 in	both	
the	 capture	 and	 population	 dynamics	 processes,	 but	 rather	mod-
eled	 the	 superpopulation	 corresponding	 to	 effective	 capture	 area	
in	 each	management	 area.	 Future	work	may	extend	 these	models	
to	a	spatially	explicit	version	using	methods	developed	for	spatially	
structured	 removal	 models	 (e.g.,	 Kéry	 &	 Royle,	 2015).	 A	 further	
enhancement	 would	 include	 specifying	 spatially	 explicit	 transi-
tion	 functions	 for	 local	 growth	 and	 movement	 probabilities.	 For	
example,	 recent	 work	 in	 open	 removal	 models	 with	 spatially	 ex-
plicit	movement	probabilities	(Link,	Schofield,	et	al.,	2018)	appears	
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promising	 if	 extended	 to	 include	availability	bias	or	 age-	structure.	
A	spatial	approach	would	also	allow	for	more	precise	estimates	of	
the	relationship	between	capture	probabilities	and	trap	effort	and	
could	 incorporate	 spatial	 covariates;	 however,	 the	 degree	 of	 tem-
porary	 emigration	 bias	 due	 to	 partial	 overlap	 of	 home	 ranges	will	
likely	be	higher	which	could	make	estimation	challenging.	A	second	
limitation	 is	 that	we	used	non-	age-	structured	 removal	 data	 in	our	
InfoPM	framework.	Recent	methods	 (Meshaka	et	al.,	2019)	 to	age	
tegus	given	size	and	time	of	year,	or	skeleton	chronology,	could	be	
used	in	future	work	to	explicitly	include	age-	structured	removal	data	
into	the	likelihood	(e.g.,	Zipkin	et	al.,	2014),	but	given	the	generally	
low	incidence	of	juvenile	captures,	prior	information	may	still	be	re-
quired.	Because	we	make	a	prediction	for	the	expected	captures	of	
adults	and	juveniles	already	with	our	combined	likelihood	approach	
(Equation 16),	 extending	 out	 InfoPM	 to	 age-	structured	 removals	
would	 only	 require	 separating	 the	 first	 half	 the	 of	 the	 combined	
equation	the	likelihood	for	adult	removals,	and	the	second	half	of	the	
equation	as:	the	likelihood	for	juvenile	removals.	Such	an	approach	
would	also	provide	additional	empirical	information	to	estimate	the	
relative	juvenile	availability	distribution,	vital	rates,	and	abundance.	
A	third	limitation	is	that	we	did	not	incorporate	density	dependence,	
which	 becomes	 more	 important	 as	 populations	 continue	 to	 grow	
larger	over	time.	A	fourth	limitation	is	the	assumption	that	adult	and	
juvenile	 survival	are	constant	 throughout	 the	year	 since	 these	are	
likely	to	vary	due	to	seasonal	influences.	However,	with	the	current	
formulation	of	net	migration	each	period,	a	model	with	time	varying	
survival	would	be	overparameterized.	Net	migration	is	informed	by	
the	 difference	 in	 population	 dynamics	 each	 period	 that	 is	 not	 ex-
plained	by	birth	rates	and	constant	survival	rates,	thus	the	net	migra-
tion	process	absorbs	differences	in	time	varying	survival,	and	it	may	
be	better	termed	“apparent	net	migration”.

Another	key	assumption	of	our	model	was	that	data	are	collected	
using	a	robust-	design	framework;	however,	our	data	were	collected	
throughout	 the	 entire	 year	 and	 so	 primary	 periods	 and	 temporal	
dynamics	were	 approximated.	We	 used	 a	 time	 period	 of	 2-	weeks	
to	 designate	 primary	 periods,	was	 long	 enough	 period	 to	 achieve	
high	enough	total	removal	rates	to	estimate	the	models	(e.g.,	Davis	
et	 al.,	 2016),	 and	 short	 enough	 to	 reasonable	 assume	 population	
closure	other	 than	 temporary	emigration.	Future	work	may	evalu-
ate	the	optimal	blocking	structure	for	estimating	abundance	given	
capture	rates	and	collection	periods.	Finally,	we	did	not	account	for	
differences	in	multiple	types	of	removal	methods	(e.g.,	trap	types);	
rather,	we	estimate	the	average	capture	efficiency	of	traps	based	in	
each	location	each	year.	Future	work	could	extend	this	framework	
to	estimate	the	capture	efficiency	of	traps	separately	or	investigate	
different	relationships	between	effort	and	capture	probabilities.

In	this	work,	we	developed	open	removal	abundance	estimators	
to	overcome	common	violations	of	assumptions	in	removal	time	se-
ries,	which	arise	due	to	population	dynamics	and	time-	varying	avail-
ability	bias.	Such	models	provide	an	important	monitoring	tools	for	
invasive	species	management	programs	to	evaluate	past	effort	and	
efficiently	 plan	 for	 future	management	 efforts.	We	demonstrated	
the	utility	of	these	models	for	the	Argentine	black	and	white	tegus	in	

South	Florida	and	provide	important	insights	into	the	past	and	future	
effectiveness	 of	 trapping	 programs.	We	 importantly	 provided	 the	
first	empirical	evidence	that	populations	may	be	controllable	locally	
given	present	levels	of	trap	densities	in	the	Core	management	area,	
which	 provides	 an	 opportunity	 for	 successful	 control	 of	 invasive	
tegu	 populations.	However,	we	 highlight	 continued	 growth	 in	 the	
West	and	East	areas,	possible	source	locations	in	nearby	spatial	refu-
gia,	and	continued	potential	for	spread	to	ecologically	sensitive	areas	
as	remaining	challenges	for	management.	Finally,	the	models	we	de-
veloped	here	can	be	applied	to	other	removal	monitoring	programs	
to	estimate	population	dynamics	and	inform	conservation	manage-
ment	while	accounting	for	capture	probabilities	and	availability	bias.
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