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Abstract

In this study we investigate a CT radiomics approach to predict response to chemotherapy of

individual liver metastases in patients with esophagogastric cancer (EGC). In eighteen

patients with metastatic EGC treated with chemotherapy, all liver metastases were manually

delineated in 3D on the pre-treatment and evaluation CT. From the pre-treatment CT scans

370 radiomics features were extracted per lesion. Random forest (RF) models were gener-

ated to discriminate partial responding (PR, >65% volume decrease, including 100% volume

decrease), and complete remission (CR, only 100% volume decrease) lesions from other

lesions. RF-models were build using a leave one out strategy where all lesions of a single

patient were removed from the dataset and used as validation set for a model trained on the

lesions of the remaining patients. This process was repeated for all patients, resulting in 18

trained models and one validation set for both the PR and CR datasets. Model performance

was evaluated by receiver operating characteristics with corresponding area under the curve

(AUC). In total 196 liver metastases were delineated on the pre-treatment CT, of which 99

(51%) lesions showed a decrease in size of more than 65% (PR). From the PR set a total of

47 (47% of RL, 24% of initial) lesions were no longer detected in CT scan 2 (CR). The RF-

model for PR lesions showed an average training AUC of 0.79 (range: 0.74–0.83) and 0.65

(95% ci: 0.57–0.73) for the combined validation set. The RF-model for CR lesions had an

average training AUC of 0.87 (range: 0.83–0.90) and 0.79 (95% ci 0.72–0.87) for the valida-

tion set. Our findings show that individual response of liver metastases varies greatly within

and between patients. A CT radiomics approach shows potential in discriminating respond-

ing from non-responding liver metastases based on the pre-treatment CT scan, although fur-

ther validation in an independent patient cohort is needed to validate these findings.
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Introduction

The outcome of esophageal and gastric carcinomas (EGC) is poor, with an overall 5-year

survival rate of 10% worldwide [1]. In patients with metastatic EGC, curative treatment is no

longer possible, resulting in an even worse prognosis with a median survival of less than a

year [2–4]. Although EGC are two distinct entities, patients with metastatic adenocarcinoma

of the esophagus and stomach are often studied collectively, because the dysregulation of

oncogenic pathways and standard treatment often overlap [5]. Currently, chemotherapy

with a combination of capecitabine and oxaliplatin (CAPOX) is the standard treatment for

metastatic EGC in many centers [6,7]. Although some patients with metastatic disease do

benefit substantially from this palliative systemic treatment, others do not while still

experiencing adverse effects [3].

Contrast enhanced computed tomography (CT), following RECIST criteria, is the current

standard for initial staging and follow-up (treatment response) evaluation of metastatic EGC

[8]. This approach is valuable to determine tumor location, location of distant metastases and

to evaluate treatment response based on size and spread of the disease. However, these size cri-

teria are rather crude and changes can become apparent slower than actual treatment effects

[9,10]. Furthermore, RECIST based criteria cannot be used for treatment response prediction

and for evaluation of individual lesions.

Intra tumor heterogeneity has already been associated with treatment resistance in EGC

[11]. More advanced image processing algorithms enable the assessment of this tumor hetero-

geneity, by extracting quantitative imaging biomarkers from standard medical images (e.g.

CT). The so-called radiomics approach [12], where a combination of advanced image filtering

is applied to extract image features, has the potential to extract prognostic phenotypes of indi-

vidual lesions, as demonstrated in multiple cancer types [13–15]. Radiomics image features

include textural features, information on tumor shape and size, and statistics on spatial inten-

sity distributions before and after applying different image filters.

In esophageal cancer patients treated with neo-adjuvant chemoradiotherapy, studies have

shown that CT-based textural features correlate with pathological tumor stage, response to

treatment and overall survival [16–18]. The correlation with survival is also observed in

patients treated with neo-adjuvant chemotherapy [19]. For gastric cancer several studies have

investigated the relation between CT texture based tumor characteristics and tumor stage and

grade, histopathological features, and survival after surgical resection or chemotherapy treat-

ment [20–26].

Next to intra-tumoral heterogeneity, metastatic sites are also prone to develop their own

tumor phenotype [27]. Hence, treatment response can differ between the primary tumor

and metastases and between individual metastatic sites [28]. Previous studies have demon-

strated correlation of CT textural features with pathological features and clinical outcome in

liver metastases [29–31] However, generally only a small selection of the liver metastases a

patient presents with are investigated. Due to the variety in response between lesions, a

lesion based identification and prediction of response could help to get a more comprehen-

sive view on the patient status and treatment options when other treatment regimens, as for

instance metastasectomy, are considered [32]. In this study we investigated if a CT radiomics

approach can predict response of individual liver metastases of EGC in patients treated with

chemotherapy.

Materials & methods

This study has been performed and reported according to the TRIPOD statement for the

reporting of multivariable prediction models (S1 File) [33].
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Patient selection

Patients were retrospectively selected from all patients treated for advanced EGC in our insti-

tute in the period Jan 2011—Jan 2015 based on the following criteria: treated with at least 3

cycles of capecitabine and oxaliplatin, at least one liver metastasis present on the pre-treatment

CT scan and evaluation CT scan performed after three cycles of therapy. A treatment cycle

comprised a 3 weekly schedule of oxaliplatin (i.v., 130 mg/m2) on day 1, with capecitabine (p.

o., 2 times a day, 1000mg/m2) on day 1-14. All procedures followed were in accordance with

the ethical standards of the responsible committee on human experimentation (institutional

and national). All patient scanning was performed under standard clinical routine and retro-

spective, anonymized, use of the data without further need for informed consent was approved

by the Institutional Review Board of the Academic Medical Center.

CT data

CT data for all potential patients were retrieved from the image archiving system. Since

patients often received their pre-treatment CT scan at the referring hospital, images were

acquired on different scanners with different scan protocols. Post-treatment CT scans were all

made in our center. For quality assurance, scans were selected based on DICOM header infor-

mation only including scans that were acquired with at least 120 kVp, a slice thickness of< =

5 mm and intra vascular contrast. The delayed contrast phase was used for lesion delineation

and further feature extraction. To reduce variability between the data, scans were resampled to

1x1x2 mm3 voxels using linear interpolation [34].

Image analysis

All scans were reviewed by a radiologist with 11 years of experience in abdominal imaging (B.

M.). Images from the pre-treatment scan and evaluation scan were reviewed side by side in

Velocity (Varian Medical Systems, Inc, Palo Alto, CA, USA) and liver metastases were delin-

eated for each axial image slice to form a 3D region of interest (ROI) comprising the complete

lesion in both scans. Care was taken to annotate corresponding lesions identically in both the

pre-treatment and evaluation scan if still present. When necessary, pre and post treatment

scans were aligned manually to be viewed side by side.

Within all lesion ROIs, a total of 370 radiomics features were extracted using an in-house

developed radiomics toolbox (supported by Oncoradiomics, https://www.oncoradiomics.

com/) implemented in Matlab 2016a (Mathworks, Natick, MA, USA). These features were

based on a previous analysis in which these features were stable in esophageal cancer [35]. The

total feature space comprised 7 first-order grey-level statistics describing lesion intensity, 19

features describing shape and size, 65 textural features describing the spatial distribution of

voxel intensities, and 279 textural and statistics features extracted after three-dimensional

wavelet transformation of the images. These features were derived from the grey-level co-

occurrence (GLCM) [36], grey-level distance-zone (GLDZM) [37], grey-level run-length

(GLRLM) [38], grey-level size-zone (GLSZM) [39], neighboring grey-level dependence

(NGLDM) [40], and neighborhood grey-tone difference (NGTDM) [41] matrices. A list of

used features is available in the supplementary materials (S1 Table). Mathematical definitions

of the features are available in the supplementary materials of Lambin et al. [42].

Statistical analysis

Statistical analysis was performed in R-3.2.5 (R: A Language and Environment for Statistical

Computing, 2016, Vienna, Austria) and Matlab 2016a (Mathworks, Natick, MA, USA).
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Responding lesions (RL) were defined as having a volume decrease of more than 65%

between the pre-treatment CT and the evaluation CT scan. The 65% cut off was chosen as it

represent the same amount of tumor shrinkage as a linear decrease of 30%, defined in the

RECIST criteria as partial response and has shown similar performance in describing treat-

ment response in previous studies [43,44]. A model was trained to discriminate RL from the

remaining lesions based on the pre-treatment CT radiomics features.

To further evaluate the data, a subset of the RL was selected with 100% decrease in volume.

These complete remission lesions (CR) were no longer detectable on the evaluation CT scan.

Another model was built to select solely these lesions based on the pre-treatment CT radiomics

features.

Models were built based on a random forest (RF) approach using the ‘randomForest’ pack-

ages [45], using 150 trees and a node size of 1. To validate the performance of the models,

leave one out cross validation was used. First, all lesions from one patient were removed from

the complete data set to be used as validation set. Next, the RF-model was trained on the

lesions of the remaining patients. Then, the trained model was used to predict the outcome of

the lesions from the validation patient. This process was repeated for all patients individually.

The predicted outcomes of the lesions from all patients were combined to extract receiver

operating characteristics (ROC) and plot the ROC curve of the model performance.

For all features the Pearson correlation coefficient with baseline lesion volume was calcu-

lated using the Matlab corrcoeff function, correlations with p<0.0001 were considered statisti-

cally significant.

The 10 most important features for both the RL and CR datasets were extracted based on

the decrease in maximum Gini index averaged over the trained models.

Results

Patients & lesions

Of the 69 patient treated with CAPOX in the inclusion period, 22 had liver metastases prior to

CAPOX treatment. Four of these patients were excluded because the CT data could not be

retrieved from the imaging archives. The remaining 18 patients had a total of 196 liver lesions

on the pre-treatment CT scans with a median number of 10 (range 1–42) lesions per patient

(Fig 1). Baseline characteristics of the included patients are summarized in Table 1.

Slightly more than half of the lesions, 99 (51%) in total, showed a decrease in size of more

than 65% (RL set). The remaining 97 (49%) lesions showed a decrease in size of less than 65%

or an increase in size. From the RL set 47 lesions (47% of RL, 24% of initial lesions) were no

longer detected in scan 2 (CR set), compared to 149 (76% of initial) lesions that were still delin-

eated on scan 2. Fig 2 illustrates the variation in lesion response amongst the included patients.

Mean lesion volume in the pre-treatment CT of the RL set was 4.3 ± 7.3 vs. 10.4 ± 29.3 mL

(p = 0.10) in the other lesions. The initial volume of the CR lesions (1.1 ± 2.6 mL) was signifi-

cantly lower than the other lesions (9.3 ± 24.2 mL, p< 0.01) (Fig 3).

Random forest model results

The RF-model for the RL showed an average AUC of 0.79 (range: 0.74–0.83) for the 18 trained

models. The ROC of the best and worst performing trained model are shown in Fig 4a along

with the ROC of the combined validation set which had a AUC of 0.65 (95% ci 0.57–0.73).

For the CR set the RF-models performed better. The 18 trained models showed an average

area under the curve of 0.87 (range: 0.83–0.90). The result of the best and worst performing

training models are shown in Fig 4b along with the ROC curve of the combined validation sets

which had an area under the curve of 0.79 (95% ci 0.72–0.87).
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Performance plots for both models can be found in S1 and S2 Figs. The top 10 most

important features are summarized in Table 2. Wavelet based features were dominant in

discriminating lesions for both the RL and CR models. Furthermore, most of the features

are a measure for tumor heterogeneity or describe the tumor intensity. Lesion volume on

the pre-treatment CT scan did not show up in the top 10 features for both models. The cor-

relation with initial lesion volume was limited and only significant in 2 out of the top 10 fea-

tures for the RL model and one out of the top CR model features (Table 2). For the RL data

the pre-treatment lesions volume alone reached an AUC of 0.35 (95% ci 0.27–0.43). For the

CR data pre-treatment lesion volume alone was predictive with an AUC of 0.68 (95% ci

0.60–0.76).

Fig 1. Flowchart of included patients.

https://doi.org/10.1371/journal.pone.0207362.g001
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Discussion

Here we studied treatment response prediction of liver metastases in patients with primary

EGC based on radiomics features extracted from pre-treatment CT scans. To our knowledge

we are the first to predict response of individual liver lesions to chemotherapy treatment. We

found that radiomics features can predict a significant decrease in volume after therapy with

an AUC of 0.64 (95% ci: 0.55–0.73) for PR and an 0.79 (95% ci 0.72–0.86) for CR lesions. This

demonstrates that CT radiomics features are indeed sensitive to underlying tumor characteris-

tics that influence therapy resistance in metastatic EGC.

As demonstrated in this and other studies, response can greatly vary within patients and is

not completely described by standard used RECIST criteria. In our study patients showed a

large variation in volume change after treatment, with some patients showing both evident vol-

ume decrease and increase. Although RECIST evaluation is not solely based on these liver

lesions, this variation underlines the earlier findings that treatment response cannot be sum-

marized with one label for all lesions in a patient [9,10]. Furthermore, RECIST evaluation is

restricted to the choice of target lesions at the baseline scan, omitting changes in other lesions

and limiting the evaluation as a whole. None the less, in our current approach we choose a

RECIST associated cut off to identify responding lesions. Furthermore, variations in delineated

volumes increase with decreasing lesion size, making reliable estimation of response more dif-

ficult [43]. Ideally, pathological response of each individual lesion would have been the refer-

ence standard as was recently done in gastric cancer [23]. However, pathological response is

not evaluated as standard in this patient group with metastatic cancer. Furthermore, pathologi-

cal treatment evaluation of all lesions would not be feasible in this respect with up to 42 indi-

vidual lesions resulting in 42 percutaneous punctures per patient. Implications on how

alternative response evaluation, whether or not based on size criteria, would influence our

results should be investigated in dedicated, prospective, studies.

Although the AUC for the PR model was fairly limited, no alternatives are readily available.

Existing models to predict patient outcome to chemotherapy in EGC mainly include clinical

factors [46]. Although clinical factors could improve the performance of the current RF-mod-

els, it should be noted that clinical factors are patient based, so identical for all lesions of a

patient, and therefore will not contribute to discriminate between lesions within a patient. In

Table 1. Patient characteristics.

Characteristic Value (range)

Age (Y) 61 (37–78)

Sex 17 M / 1 F

Primary tumor

Esophagus 8

Gastroesophageal junction 9

Stomach 1

Adeno / Squamous 16 / 2

Number of liver lesions 10 (1–42)

Lesion size (cm3) 1.89 (0.06–194.66)

RECIST after 3 cycles

Partial response 10

Stable 2

Progressive 4

Mixed response 2

Median overall survival (M) 8.8 (4.2–24.1)

https://doi.org/10.1371/journal.pone.0207362.t001
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Fig 2. Proportional volume change of all liver metastases for each patient along with the total number of lesions (All), partial

response (PR) and complete responding (CR) number of lesions. Note the spread of lesion volume change between and within

individual patients.

https://doi.org/10.1371/journal.pone.0207362.g002

Fig 3. Median lesion size for the compared groups. CR lesions were significantly smaller at baseline than the other lesions.

https://doi.org/10.1371/journal.pone.0207362.g003
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turn, adding CT based radiomics features to a clinical nomogram might improve prediction of

patient outcome, since an independent measure of response is added to the data. The CR

model performed better than the PR model. In a clinical context this might also be the most

important model, since pre-treatment identification of CR lesions could aid in the further

work-up of a patient to additional treatments. Identifying CR lesions implicitly also deter-

mines the non or partially responding lesions in a patient. Patients with only a small number

of remaining non or partially responding lesions could potentially benefit most from addi-

tional, local, treatments which could then be targeted directly at the right lesions based on the

model predictions [32]. Patients with no CR lesions could probably benefit most from a switch

to alternative treatment regimens.

Fig 4. ROC curves of the PR (a) and CR (b) model for the best and worst training (solid) and the validation set (dashed).

https://doi.org/10.1371/journal.pone.0207362.g004

Table 2. Top 10 important features according to the average decrease in Gini index over the 18 training models (features with a higher decrease tend to better split

mixed nodes into single class nodes) and correlation coefficients of features with lesion volume.

RL Model CR Model

Radiomics Feature Gini r Radiomics Feature Gini r

Wavelet_LHH_GLCM_correl1 1.44 0.06 Wavelet_HHH_GLDZM_LDE 1.15 0.22

GLCM_clusShade 1.24 0.00 Wavelet_HHH_GLDZM_SDE 1.00 0.30

Wavelet_LHH_Stats_rms 1.07 0.14 Wavelet_HHH_GLDZM_DZNN 1.00 -0.24

Wavelet_LLL_GLCM_clusShade 1.03 0.05 Wavelet_HHH_Stats_p10 0.84 0.05

Wavelet_LHH_Stats_std 1.03 -0.03 Wavelet_HHH_GLDZM_DZV 0.84 -0.17

Wavelet_LHH_Stats_p90 1.01 -0.06 Wavelet_HHL_Stats_p10 0.74 0.05

Wavelet_LHH_GLCM_infoCorr1 1.00 0.51� GLSZM_ZP 0.70 -0.48�

Wavelet_LHH_Stats_var 0.91 -0.14 Wavelet_HHH_NGTDM_coarseness 0.67 -0.15

Wavelet_HHH_GLCM_infoCorr1 0.81 0.55� Wavelet_HHH_Stats_iqr 0.67 -0.17

Wavelet_HHH_Stats_p10 0.73 0.05 Wavelet_HHL_Stats_iqr 0.66 -0.10

�p<0.0001

https://doi.org/10.1371/journal.pone.0207362.t002
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A large part of the lesions in our study only had limited volume at baseline. Although radio-

mics extraction from small lesions is known to be dependent on size [47], the features found

most important in our models only showed limited correlation with lesion volume. This could

partly be explained by the relatively high resolution of the CT images compared to for instance

PET and that we resampled the images to 1x1x2mm3, therefore including more voxels in the

same volume, making extraction of radiomics features more feasible. Furthermore, this suggest

that more intrinsic, tumor phenotype based, features are dominant for predicting tumor

response. Previous studies have also described the performance of CT textural features in pri-

mary esophageal and gastric cancer [16,17,19–26], showing promising results. Our study adds

to the previous findings that, for esophageal cancer, most predictive markers are based on

tumor heterogeneity. This heterogeneity might be attributed to tumor stroma, since this

involves a complicated interaction of supporting cells, collagen and vascular networks, result-

ing in micro-structural differences between tumors. The tumor stroma has shown to play a

decisive role in the development of treatment resistance in, amongst others, gastric cancer

[11]. However, more direct comparisons between tissue characteristics and radiomics features,

as were reported for lung cancer [48], are needed to further elucidate the underlying mecha-

nism of radiomics features in esophageal cancer.

Patients with advanced EGC often present with multiple metastatic sites, so including other

metastatic sites than the liver only. Main reason to focus on liver metastases was the high prev-

alence of liver metastases in this disease and the ability to reliably detect and delineate liver

lesions in the CT data. Adding the primary lesion to the analysis might contribute to get a

more complete prediction of patient response to treatment. However, since not all patients in

our study had their primary tumor in situ, we chose not to include the primary tumor site in

the current analysis. For this study, all individual liver lesions were delineated in each patient,

up to 42 lesions in one patient. For future implementation this approach is far too time con-

suming. Furthermore, manual delineation is known to be prone to fluctuations that can also

influence radiomics features [49]. More robust methods on lesion detection and automated

segmentation algorithms have to be implemented to make this approach feasible in clinical

routine, and have shown to improve repeatability of radiomics feature extraction [50].

The current study approach has its limitations. Although the total number of lesions was

large for the current analysis and the lesion response showed a homogeneous distribution

between patients, the total number of patients was small. Since some data dated back to as

early as 2011 (start of CAPOX treatment in our center) we were not able to retrieve all data

from the archiving systems due to technical issues introduced by data transitions and software

changes. In a prospective setting this would not be an issue, since data would be readily avail-

able. We therefore don’t believe this affects generalizability of our study. Due to the small num-

ber of patients we did not perform survival analysis on patient basis. Inclusion of more

patients will further improve the ability to generalize the current approach and to explore the

possibilities of defining a predictive model for per patient survival prediction. Additionally, an

independent dataset would help to further validate the result found in this study. The pre-

treatment CT scans were performed in different institutes, meaning that different scan equip-

ment and protocols were used. Radiomics features are known to be rather instable and differ

between scan moments and parameters [34,35,51,52]. Although we did only use previously

described stable features [35] and resampled the scans to an equal voxel size, instability of fea-

tures could have influenced our findings in multiple ways. First, different scan parameters

introduce scan specific variation in the data, making extraction of generic features from the

overall data more challenging. Also, one patient with a lot of similar behaving lesions could

also introduce a feature solely based on scan parameter fluctuation rather than intrinsic value.

However, in daily clinical practice patients are often referred to different hospitals, while CT-
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scans have already been performed. Therefore our results, based on a heterogeneous dataset,

might be more generalizable.

Conclusion

Individual response of liver metastases varies greatly within and between patients. In this

study, we demonstrated that a CT radiomics based approach shows potential in discriminating

responding from non-responding liver metastases based on the pre-treatment CT scan. These

results demonstrate the potential value of a CT radiomics approach in oncological practice of

advanced EGC, although further validation in an independent patient cohort is needed to vali-

date these findings.
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